
Anti Network Scanning Honeypot System

Aung Chan Min

University of Computer Studies, Yangon

mgdipa@gmail.com

Abstract

 In today computer security field, honeypot

technology is rapidly maturing and various types

of honeypots are establishing their role of

countermeasure as viable and useful in modern

network defense system. In this paper, we

proposed the anti network scanning honeypot

system that can deceive to potential hackers’

remote network scanning attempts. The proposed

system dynamically creates virtual honeypot
machines with configured virtual TCP/IP

networking stack of different OS and these virtual

honeypots can response different types of network

scanning attempts correctly. The proposed system

hides the real topology of internal networks design

and displays the layout of virtual machines with

configured virtual routing topology to remote

hackers. The proposed system can detect different

types of network scanning attempts and produce

log for further analysis.

 Keywords - Network Security, Intrusion

detection, Hacker Distraction

1. Introduction

 Honeypot is a security system resource whose

value lies in unauthorized or illicit use of that

resource. This means that a honeypot can be

anything - a program sitting on a computer logging

all the users who log into the system and by means

they log into, just a dummy account on the system

which when logged into generates an alarm, and to

some very extent it could even be a fake record
with interesting name to attract invalid intruders.

 In security circles honeypots are often thought

to be as bait-and-capture systems. Since there are

various configurations of honeypots, it is hard to

define what a particular honeypot does and how far

it can meet its objective. The definition of a

honeypot is as "a security resource whose value

lies in being probed, attacked or compromised"

[1]. This means that whatever users designate as a

honeypot, it is general expectation and goal to have

the system probed, attacked, and potentially

exploited. How users use honeypot is up to users

and depends on what users are attempting to
achieve.

 Honeypots are closely monitored network

decoys serving several purposes: they can distract

adversaries from more valuable machines on a

network, they can provide early warning about

new attack and exploitation trends and they allow

in-depth examination of adversaries during and

after exploitation of a honeypot.

 Honeypots are a highly flexible security tools

with different applications for security. They don't

fix a single problem. Instead they have multiple
uses, such as prevention, detection, or information

gathering [2]. All Honeypots share the same

concept: a security resource that should not have

any production or authorized activity. In other

words, deployment of honeypots in a network

should not affect critical network services and

applications.

1.1Types of honeypots

 There are two types of honeypot systems low-

interaction honeypots and high-interaction

hoenypots [3]. A high-interaction honeypot

simulates all aspects of an operating system. A

low-interaction honeypots simulates only some

parts, for example the network stack. A high-
interaction honeypot can be compromised

completely, allowing an adversary to gain full

access to the system and use it to launch further

network attacks. In contrast, low-interaction

honeypots simulate only services that cannot be

exploited to get complete access to the honeypot.

Low-interaction honeypots are more limited, but

they are useful to gather information at a higher

level, e.g., learn about network probes or worm

activity. They can also be used to analyze

spammers or for active countermeasures against

worms.
 Honeypots can also be classified as physical

and virtual honeypots [4]. A physical honeypot is a

real machine with its own IP address. A virtual

honeypot is a simulated machine with modeled

behaviors, one of which is the ability to respond to

network traffic. Multiple virtual honeypots can be

mailto:mgdipa@gmail.com

simulated on a single system. Virtual honeypots

are attractive because they require fewer computer

systems, which reduce maintenance costs. Using

virtual honeypots, it is possible to populate a

network with hosts running numerous operating

systems. To convince adversaries that a virtual
honeypot is running a given operating system, we

need to simulate the TCP/IP stack of the target

operating system carefully, in order to deceive

TCP/IP stack fingerprinting tools.

 Physical honeypots are often high-interaction,

so allowing the system to be compromised

completely, they are expensive to install and

maintain. For large address spaces, it is impractical

or impossible to deploy a physical honeypot for

each IP address. In that case, we need to deploy

virtual honeypots.

2. System Overview

The proposed system can be classified as low-

interaction virtual honeypot system; it sits among

production systems and emulates virtual honeypot

machines with configured OS networking stack

within simulated virtual routing topology. The

proposed system creates virtual networks by using

unused IP subnet addresses of the local network

and distracts potential hackers from real

production systems.

2.1 Simulation of virtual honeypots

 The proposed system is implemented as a low-

interaction honeypot system that simulates virtual

honeypots with TCP and UDP services. It also

understands and responds correctly to ICMP

messages. Instead of simulating every aspect of an

operating system, the proposed system simulates

only its network stack. The proposed system uses

TCP/IP stack spoofing techniques to create virtual

honeypots with different Operating Systems. The

main purpose of the TCP/IP stack emulation is to
assure adversaries that they are probing remote

network with real target machines running

different Operating Systems. Another advantage of

network stack emulation is that virtual honeypots

simulated by the proposed system can handle

different scanning probes such as, ping scan

(ICMP ping, TCP ping, UDP ping), port scan

(connect scan, stealth scan) and remote OS detect

scan.

2.2 Simulation of Virtual Networks

 The proposed system simulates virtual honeypots

on multiple IP addresses simultaneously, in order
to populate the network with numerous virtual

honeypots with different operating systems and

services. To increase the realism of simulation, the

proposed system simulates arbitrary network

routing topologies with configurable link

characteristics such as latency and packet loss.

When networking mapping tools like traceroute

are used to probe the virtual network, they discover

only the topologies simulated by proposed

honeypot system.

3. System Design and Implementation

 To fulfill the desired goal, the main operational

steps that are performed by the proposed system

are:

 Redirection of IP traffic destined for IP

addresses of configured virtual honeypots

to host machine upon which the proposed

system is running

 Simulation of TCP/IP stack for virtual

honeypot machines with configured

Operating System personality

 Simulation of configured virtual static

routing topology with virtual networks

and virtual routers

3.1 IP traffic redirection

 The proposed system is designed to reply to
network packets whose destination IP address

belongs to one of the simulated honeypots. To

receive the correct packets, the network needs to

be configured appropriately. There are several

ways to do this, e.g., we can create special routes

for the virtual IP addresses that point the proposed

system machine, or we can use ARP spoofing, or

we can use network tunnels.

 The proposed system uses the ARP spoofing

method to redirect IP traffic. When an adversary

sends a packet from the Internet to one of
configured virtual honeypots, local entry router

receives and attempts to forward the packet. The

router queries its routing table to find the

forwarding address for destination machine. If no

special route has been configured, the router makes

ARP requests to determine the MAC address of the

destination machine. As there is no corresponding

physical machine, the ARP requests go

unanswered. The proposed system host replies to

ARP requests for configured virtual honeypots

with its own MAC address. This is called ARP

spoofing and allows the router to send packets for

virtual honeypot to proposed system MAC address.

Figure 3-1 ARP spoofing to accept IP traffic for

virtual honeypots

3.2 TCP/IP stack simulation

Fig 3-2 Components of TCP/IP stack simulation

process

 Adversaries commonly run fingerprinting tools

like Xprobe [5] or Nmap [6] to gather information

about a target system. It is important that virtual

honeypots do not stand out when fingerprinted. To

make them appear real to a probe, proposed system

simulates the TCP/IP network stack behavior of a

given operating system. We call this the

personality of a virtual honeypot. Different

personalities can be assigned to different virtual

honeypots. The personality modifier makes a

honeypot's network stack behave as specified by
the personality by introducing changes into the

protocol headers of every outgoing packet so that

they match the characteristics of the configured

operating system. The proposed system uses Nmap

fingerprint database as its reference for TCP and

UDP behaviors.

3.3 Virtual routing topology simulation

Proposed system’s virtual routing

topology is constructed with virtual router nodes

and virtual network links. Starting from root entry

router; which is located on physical network, acts

as default gateway for one virtual network link.

Another router resides on that virtual network and

acts as default gateways for lower virtual sub

networks. In this way rooted tree static virtual

routing topology is implemented. Multiple entry

routers scheme can be used to simulate virtual

routing topology with more than one rooted tree

structure.

Figure 3-3 Virtual routing topology

4. Test result

 To test the output result of the proposed
system, we use two PCs connected with PROLiNK

10/100M Fast Ethernet switch. The specification of

the test computers and their Operating Systems are

shown in table 1. First we configure the proposed

system machine with IP address 11.0.0.1 and tester

machine with IP address 11.0.0.5 to form the

physical network 11.0.0.x

Internet

ARP request
broadcast ARP reply

Production Systems
Proposed

System

Virtual

Honeypots

Router

VM1

VM2

VMn

VM=Virtual Machine

configuration

Packet

Classifier

ICMP

handler

TCP

handler

UDP

handler

Service Simulation
Scripts

OS Fingerprints

Database

Personality

Modifier

O
u

tg
o

in
g

 N
e

tw
o

rk
 P

a
c
k
e

ts

In
c
o

m
in

g
 N

e
tw

o
rk

 P
a
c
k
e

ts
 Router

Internet

Proposed

System

11.0.1.x

11.1.0.X

11.1.1.x 11.1.2.X

VR1

VR2
VR3

11.0.0.x

VR=Virtual Router

Role of

Computer

 OS Processor RAM

Proposed

Honeypot

System

RedHat

Linux 9

1GHz

IntelCeleron

Pentium 3

128

MB

Tester Windows

XP SP2

2.0 GHz

 Intel(R)
Pentium 4

512

MB

Table 1. Specifications of Computers used in

Testing

 To make testing, we configure the proposed

system machine to simulate four virtual networks

of class C size to form the virtual routing

topology which is shown in Fig 3-3. The simulated

virtual routing topology consists of 1014 virtual

honeypot machines and 4 virtual routers.

 We perform the traceroute testings from

probing machine to virtual honeypots located at

different depth virtual subnets and get the correct

result which is shown in Fig 4-1 and Table 2.

Figure 4-1 Traceroute testing snapshot

Virtual

Honeypot

IP

Hop

Count

1stRTT

(ms)

2ndRTT

(ms)

3rdRTT

(ms)

10.0.1.55 1 0.631 0.722 0.648

10.1.0.55 2 39.884 39.671 39.927

10.1.1.55 3 40.000 39.745 39.966

10.1.2.55 3 39.927 39.761 39.967

Table 2. Traceroute testing results

 We carried out to visualize the configured

virtual routing topology by using Zenmap utility

and get the visual routing topology as shown in Fig

4-2.

Figure 4-2 Zenmap topology discovery result

 The next step to test the performance of the

proposed system is to measure the response time

speed to various scanning types using Nmap

network scanner. To get the response time of the
proposed system, we laugh different types of

scanning probes on first level virtual network link

10.0.1.0/24 and Nmap shows all virtual honeypots

(254 hosts) are up. The response times for various

scanning types are shown in table 3.

Scan Type Response Time for 254

hosts

Connect scan 244.478

SYN Stealth scan 258.850

ACK Stealth scan 211.453

FIN/ACK Stealth scan 209.962

FIN Stealth scan 219.439

NULL Stealth scan 210.246

Xmas Tree Stealth scan 211.927

TCP window scan 212.277

Table 3 Response time results

5. Conclusion

 The proposed system presents a lightweight

honeypot system for creating virtual honeypots.

Proposed system allows us to instrument thousands

of IP addresses with virtual machines and

corresponding network services. The proposed

system limits adversaries to interacting with virtual

honeypots only at the network level. Instead of

simulating every aspect of an operating system, the

proposed system simulates only its network stack.

The proposed system can handle virtual honeypots

on multiple IP addresses simultaneously, in order
to populate the network with numerous virtual

honeypots simulating different operating systems

and services. To increase the realism of simulation,

the proposed system simulates arbitrary virtual

network topologies.

5.1 Future work

 The proposed system has some weakness in its

implementation issue and future modifications to

proposed honeypot system should address

following facts:

 Currently available fingerprinting tools

are usually stateless because they neither

open TCP connections nor explore the

behavior of the TCP state machine for

states other than LISTEN or CLOSE.
There are several areas like congestion

control and fast recovery that are likely to

be different between operating systems

and are not checked by fingerprinting

tools. An adversary who measures the

differences in TCP behavior for different

states across operating systems would
notice that they do not differ in proposed

system and thus be able to detect

existence of virtual honeypots.

 Another method to detect virtual

honeypots is to analyze their performance

in relation to other hosts. Sending

network traffic to one virtual honeypot

might affect the performance of other

virtual honeypots but would not affect the

performance of a real host

References

[1]http://www.securityfocus.com/infocus/1897/1
[2] http://www.honeypots.net/
[3] Honeypots: Tracking Hackers
http://www.tracking-hackers.com/book
[4] Know Your Enemy

http://www.honeynet.org/book/
[5] Ofir Arkin and Fyodor Yarochkin. Xprobe v2.0:
A “Fuzzy” Approach to Remote Active Operating
System Fingerprinting. www.xprobe2.org, August
2002.
[6] Fyodor. Remote OS Detection via TCP/IP
Stack Fingerprinting. www.nmap.org/nmap/
nmap-fingerprinting-article.html, October

1998.

http://www.honeypots.net/
http://www.tracking-hackers.com/book
http://www.honeynet.org/book/

