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Abstract 

 

 A novel metric that integrates the correlation 

and reliability information between each feature 

and each class obtained from Multiple 

Correspondence Analysis (MCA) is currently the 

popular solution to score the features for feature 

selection. However, it has the disadvantage that 

p-value which examines the reliability is 

conventional confidence interval.  The main goal 

of this paper is to introduce a new classifier 

independent (filter-based) feature selection 

method, Modified Multiple Correspondence 

Analysis (Modified-MCA) which is designed to 

modify MCA, improving the reliability. The 

efficiency and effectiveness of proposed method 

is demonstrated through extensive comparisons 

with MCA and other feature selection methods, 

using five benchmark datasets provided by 

WEKA and UCI repository. Naïve Bayes, 

Decision Tree and JRip are used as the 

classifiers. The classification results, in terms of 

classification accuracy and size of feature 

subspace,   show that the proposed Modified-

MCA outperforms three other feature selection 

methods, MCA, Information Gain, and Relief. 

 

1. Introduction 

 

 Feature selection is an important step aiming 

to extract the most important discriminatory 

information for classification. The motivation for 

applying feature selection is multifarious. At first 

place, features can be expensive to acquire. The 

cost includes measurement acquisition, data 

preprocessing, transfer and storage, 

computational reasons, etc. Furthermore, high-

dimensional problems need more samples for 

training to achieve a good generalization 

capability of a classifier (i.e., the curse of 

dimensionality). Reduced dimensionality of the 

feature set can also help to gain better 

understanding of a given problem in 

applications. 

 Instead of altering the original representation 

of features like those based on projection (e.g., 

principal component analysis) and compression 

(e.g., information theory) [1], feature selection 

eliminates those features with little predictive 

information, keeps those with better 

representation of the underlying data structure.  

 The Multiple Correspondence Analysis 

(MCA) is currently the popular solution to score 

the features for feature selection [2]. The main 

goal of this paper is to design a classifier 

independent (filter-based) feature selection 

method, Modified Multiple Correspondence 

Analysis (Modified-MCA). The proposed 

approach, Modified-MCA, continues to explore 

the geometrical representation of MCA and aims 

to find an effective way to indicate the relation 

between features and classes. However, the study 

tries the p-value as smaller as possible by 

adjusting with the significance level. Therefore, 

Modified-MCA could be considered as a 

potentially better approach. This paper is 
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organized as follows: Related work is introduced 

in Section 2; the proposed Modified-MCA is 

presented in Section 3; followed by an analysis 

of the experimental results in Section 4. Finally, 

conclusions are given in Section 5. 

 

2. Related Works 

 

 There are many approaches to feature 

selection proposed in the literature, however, all 

in principle involve two main ingredients: 

1. A search strategy which explores the set of 

all feature subsets in a purposeful manner. 

2. A criterion (objective) function which 

evaluates those feature subsets. 

 The search strategy is independent of the 

criterion function used [3]. The best subset of 

features is found by optimising (usually 

maximising) the criterion function. The best 

performance of the selected features can be 

achieved when both the feature selection and 

classification stages are optimized together using 

the same criterion function [4]. The search 

strategy usually employs feature ranking ([5], 

[6]) or subset search ([3], [7]) techniques. Both 

approaches can be premised on either 

deterministic or randomized principles which 

guide the search through the feature space. 

 Feature selection can be either classifier 

independent ([5], [8]) (i.e., filter approach) or 

classifier specific ([8], [9]) (i.e., wrapper 

approach or embedded method), depending on 

how it is combined with the construction of the 

classification model.  

 

Figure.1 Wrapper Method 

  

 Wrappers choose feature subsets with high 

prediction performance estimated by a specified 

learning algorithm which acts as a black box, and 

thus wrappers are often criticized for their 

massive amounts of computation which are not 

necessary. 

 
 

Figure.2 Embedded Method 

 Similar to wrappers, embedded methods 

incorporate feature selection into the process of 

training for a given learning algorithm, and thus 

they have the advantage of interacting with the 

classification model, meanwhile being less 

computationally intensive than wrappers. 

 

 
Figure.3 Filter Method 

 



 In contrast, filter methods are independent of 

the classifiers and can be scaled for high-

dimensional datasets while remaining 

computationally efficient. In addition, filtering 

can be used as a pre-processing step to reduce 

space dimensionality and overcome the 

overfitting problem. Therefore, filter methods 

only need to be executed once, and then different 

classifiers can be evaluated based on the 

generated feature subsets [2]. 

 Filter methods can be further divided into two 

main sub-categories: univeriate and multivariate. 

The first one is univariate methods which 

consider each feature with the class separately 

and ignore the inter-dependence between the 

features, such as information gain and chi-square 

measure ([2], [10]).  

 The second sub-category is the multivariate 

methods which take features’ interdependence 

into account, for example, Correlation-based 

feature selection (CFS) and Relief ([11], [12]). 

They are slower and less-scalable compared to 

the univariate methods.  

 

3. Modified Multiple Correspondence 

 

 Multiple correspondence analysis (MCA) 

extends the standard Correspondence Analysis 

(CA) by providing the ability to analyze tables 

containing some measure of correspondence 

between the rows and columns with more than 

two variables. 

 

3.1 Correspondence Analysis (CA) 

 

 Standard Correspondence Analysis (CA) is a 

descriptive/exploratory technique designed to 

analyze simple two-way contingency tables 

containing some measure of correspondence 

between the rows and columns. Multiple 

Correspondence Analysis (MCA) is an extension 

of the standard CA [13], and the proposed 

method Modified-MCA is the modification of 

MCA. 

 

3.2 Geographical Representation of MCA 

 

MCA constructs an indicator matrix with 

instances as rows and categories of valuables as 

columns. Here in order to apply MCA, each 

feature needs to be first discretized into several 

intervals or nominal values (called feature-value 

pairs in the study), and then each feature is 

combined with the class to form an indicator 

matrix. Assuming the kth feature has jk feature-

value pairs and the number of classes is m, then 

the indicator matrix is denoted by Z with size (n 

× (jk + m)), where n is the number of instances. 

Instead of performing on the indicator matrix 

which is often vary large, MCA analyzes the 

inner product of this indicator matrix, i.e., ZTZ, 

called the Burt Table which is symmetric with 

size ((jk + m) × (jk + m)). The grand total of the 

Burt Table is the number of instances which is n, 

then P = ZTZ /n is called the correspondence 

matrix with each element denoted as pij .Let ri 

and cj be the row and column masses of P, that 

is, ri = ∑ j pij and cj = ∑i pij. The center involves 

calculating the differences (pij − ricj) between the 

observed and expected relative frequencies, and 

normalization involves dividing these differences 

by √ ricj, leading to a matrix of standardized 

residuals sij = (pij − ricj) / √ ricj. The matrix 

notation of this equation is presented in Equation 

(1). 

 

S = Dr
−1/2 (P – rcT) Dc

−1/2                             (1) 

 

 Where r and c are vectors of row and 

column masses, and Dr and Dc are diagonal 

matrices with these masses on the respective 

diagonals. Through Singular Value 

Decomposition (SVD), S = UΣVT where Σ is the 

diagonal matrix with singular values, the 

columns of U are called left singular vectors, and 

those of V are called right singular vectors. The 

connection of the eigenvalue decomposition and 

SVD can be seen through the transformation in 

Equation (2). 



SST = UΣVT VΣUT = UΣ2UT = UΛUT         (2) 

 

 Here, Λ=Σ2 is the diagonal matrix of the 

eigenvalues, which is also called principal 

inertia. Thus, the summation of each principal 

inertia is the total inertia which is also the 

amount that quantifies the total variance of S. 

The geometrical way to interpret the total inertia 

is that it is the weighted sum of squares of 

principal coordinates in the full S-dimensional 

space, which is equal to the weighted sum of 

squared distances of the column or row profiles 

to the average profile. This motivates us to 

explore the distance between feature-value pairs 

and classes represented by rows of principal 

coordinates in the full space. The χ2 distance 

between a feature-value pair and a class can be 

well represented by the Euclidean distance 

between them in the first two dimensions of their 

principal coordinates. Thus, a graphical 

representation, called the symmetric map, can 

visualize a feature-value pair and a class as two 

points in the two dimensional map.  

As shown in Fig 1, a nominal feature with 

three feature-value pairs corresponds to three 

points in the map, namely P1, P2, and P3, 

respectively. Considering a binary class, it is 

represented by two points lying in the x-axis, 

where C1 is the positive class and C2 is the 

negative class. Take P1 as an example. The angle 

between P1 and C1 is a11, and the distance 

between them is d11. Similar to standard CA, the 

meaning of a11 and d11 in MCA can be 

interpreted as follows. 

Correlation: This is the cosine value of the 

angle between a feature-value pair and a class in 

the symmetric map. The symmetric map of the 

first two dimensions represents the percentage of 

the variance that the feature-value pair point is 

explained by the class point. A larger cosine 

value which is equal to a smaller angle indicates 

a higher quality of representation [2]. 

Reliability: As stated before, χ2 distance 

could be used to measure the dependence 

between a feature-value pair point and a class 

point. Here, a derived value from χ2 distance 

called the p-value is used because it is a standard 

measure of the reliability of a relation, and a 

smaller p-value indicates a higher level of 

reliability [2].  

 

 
Fig.4 The Symmetric Map of the First Two 

Dimension 

 

Assume that the null hypothesis H0 is true. 

Generally, one rejects the null hypothesis if the 

p-value is smaller than or equal to the 

significance level, which means the smaller the 

p-value, the higher possibility of the correlation 

between a feature-value pair and a class is true. 

Here, the conventional significant level is 0.05. It 

means that a 5% risk of making an incorrect 

estimate and confidence level of 95%. One never 

rounds a p-value to zero. Low p-values reported 

as “<10-9”, or something similar, indicating that 

the null hypothesis is ‘very, very unlikely to be 

true’, but not ‘impossible’. In this paper, the 

propose M-MCA tries the p-value as smaller as 

possible by adjusting with the significance level. 

By this way, standard measure of the reliability 

can be improved.  

P-value can be calculated through the χ2 

Cumulative Distribution Function (CDF) and the 

degree of freedom is (number of feature-value 

pairs −1) × (number of classes −1). For example, 

the χ2 distance between P1 and C1 is d11 and their 

degree of freedom is (3 − 1) × (2 − 1), and then 

their p-value is 1−CDF (d11, 2). Therefore, 

correlation and reliability are from different 

points of view, and can be integrated together to 

represent the relation between a feature and a 

class. 

 

3.3 Modified-MCA Based Feature 

Selection Model 

 

 Modified-MCA continues to explore the 

geometrical representation of MCA and aims to 

find an effective way to indicate the relation 



between features and classes which contains 

three stages: Modified-MCA calculation, feature 

evaluation, and stopping criteria. First, before 

applying Modified-MCA, each feature would be 

discretized into multiple feature-value pairs. For 

each feature, the angles and p-values between 

each feature-value pair of this feature to the 

positive and negative classes are calculated, 

corresponding to correlation and reliability, 

respectively. If the angle of a feature-value pair 

with the positive class is less than 90 degrees, it 

indicates this feature-value pair is more closely 

related to the positive class than to the negative 

class, or vice versa. For p-value, since a smaller 

p-value indicates a higher reliability, (1 - p-

value) can be used as the probability of a 

correlation being true. The p-value is very close 

to zero but the probability of the correlation 

being true is very close to zero as well.  

 

 
 

Fig.5 Modified –MCA Based Feature 

Selection Model 

 

After getting the correlation and reliability 

information of each feature-value pair, the 

equations which take the cosine value of an angle 

and p-value as two parameters are defined (as 

presented in Equations (3) and (4)) in the feature 

evaluation stage. Since these two parameters 

may play different roles in different datasets and 

both of them lie between [0, 1], different weights 

can be assigned to these two parameters in order 

to sum them together as an integrated feature 

scoring metric. Considering different nominal 

features contain a different number of feature-

value pairs, to avoid being biased to features 

with more categories like Information Gain does, 

the final score of a feature should be the 

summation of the weighted parameters divided 

by the number of feature-value pairs. Assume 

there are totally K features. For the kth feature 

with jk feature-value pairs, the angles and p-

values for the ith feature-value pair are ai1 and p i1 

for the positive class, and ai2 and pi2 for the 

negative class, respectively. Then the score of 

the kth feature can be calculated through 

Equation (3) or (4). 

 

     Score k feature w a w p p jth

i i i

j

k

k

   1 1 2 1 2
1

1cos max , /
 (3) 

 

     Score k feature w a w p p jth

i i i

j

k

k

   1 2 2 2 1
1

1cos max , /
 (4) 

 

 If a feature-value pair is closer to the positive 

class, which means ai1 is less than 90 degrees, 

then equation (3) is applied, where max((1− pi1), 

pi2) would allow us to take the p-value with both 

classes into account. This is because that (1−pi1) 

is the probability of the correlation between this 

feature-value pair and the positive class being 

true, and pi2 is the probability of its correlation 

with the negative class being false. Larger values 

of these two probabilities both indicate a higher 

level of reliability. On the other hand, if a i1 is 

larger than 90 degrees, which means the feature-

value pair is closer to the negative class, then 

max((1− pi2), pi1) will be used instead, that is 

Equation (4). w1 and w2 are the weights assigned 

to these two parameters. Finally, after getting a 

score for each feature, a ranked list would be 

generated according to these scores, and then 



different stopping criteria can be adopted to 

generate a subset of features [2]. 

 

4. Experiments and Results 

 

 In this section, proposed method is evaluated 

in terms of speed, number of selected features, 

and learning accuracy on selected feature subset. 

Three representative feature selection algorithms, 

MCA, Information Gain, Relief are chosen in 

comparison with Modified-MCA. The proposed 

Modified-MCA is evaluated using five different 

benchmark datasets from WEKA and UCI 

repository. The dataset numbers, dataset names, 

and number of Features in original datasets are 

shown in Table.1.  

 

Table.1  Datasets Description 

No. 
Dataset 

Name 

No. of 

Features 

No. of 

Instances 

1 Diabetes 8 768 

2 Labor 16 57 

3 Ozone 72 2534 

4 Soybean 35 683 

5 Weather 5 14 
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Figure.7 Comparison Results of No. of Features 

Generated by Modified-MCA and MCA 

 

 
Figigure.8 Comparison Results of No. of Features 

Generated by Modified-MCA and Information 

Gain 

 

 
Figure.9 Comparison Results of No. of Features 

Generated by Modified-MCA and Relief 

 

 Three-fold cross validation is first applied to 

the whole dataset of each concept, which 

randomly splits the data into three sets with an 

approximately equal number of data instances 

and an equal P/N ratio. Then each fold uses two 

of three sets as the training data set and the 

remaining one as the testing data set. The final 

result is the average of these three folds. The 

proposed method, Modified-MCA, only takes 

nominal features. In order to get nominal 

features, discretization on the training dataset 

needs to be conducted, and then the same 

intervals are used to discretize the testing dataset. 

The discretization methods chosen would affect 

the final classification result. The discretization 

method applied in this research is the standard 

discretization method embedded in WEKA 

which is minimum description length ([14], 



[15]). And then, all feature selection algorithms 

are performed on the discretized training dataset.  

 In Fig. 7, 8 and 9, the comparison results of 

number of features generated by Modified-MCA, 

MCA, Information Gain, and Relief, are shown. 

It can be significantly seen that the proposed 

Modified-MCA can generate lesser number of 

meaningful features than other three feature 

selection methods, while Relief performs the 

worst. 

 After applying, these five sets of data, one for 

each feature selection method, are run under 

three classifiers, namely Decision Tree (DT), 

Rule based JRip (JRip), Native Bayes (NB). 

Each time, the precision, recall, F-Measure and 

running time for each classifier based on a 

particular subset of the features can be obtained.

   

Table.2 Average Performance of Modified-MCA 

Based Feature Selection 

Dataset 

Modified-MCA 

Precision Recall F-Measure 
Running  

Time (sec) 

1 0.754 0.756 0.754 0.036 

2 0.860 0.859 0.859 0.016 

3 0.917 0.869 0.880 0.490 

4 0.893 0.871 0.870 0.213 

5 0.510 0.667 0.566 0.010 

Avg 0.787 0.804 0.786 0.153 

 

Table.3 Average Performance of MCA Based 

Feature Selection 

Dataset 

MCA 

Precision Recall F-Measure 
Running  

Time (sec) 

1 0.750 0.743 0.746 0.045 

2 0.850 0.850 0.850 0.025 

3 0.901 0.834 0.866 0.602 

4 0.850 0.855 0.852 0.324 

5 0.501 0.647 0.564 0.030 

Avg 0.770 0.785 0.775 0.205 

 

 

 

Table.4 Average Performance of Information Gain 

Feature Selection 

Dataset 

Information Gain 

Precision Recall F-Measure 
Running  

Time (sec) 

1 0.733 0.737 0.734 0.13 

2 0.843 0.841 0.838 0.006 

3 0.915 0.846 0.846 2.716 

4 0.911 0.889 0.889 0.356 

5 0.542 0.690 0.598 0.001 

Avg 0.788 0.8006 0.781 0.6418 

 

Table.5 Average Performance of Relief Feature 

Selection 

Dataset 

Relief 

Precision Recall F-Measure 
Running  

Time (sec) 

1 0.736 0.741 0.737 0.07 

2 0.843 0.841 0.838 0.006 

3 0.916 0.845 0.864 1.63 

4 0.903 0.882 0.901 0.346 

5 0.542 0.690 0.598 0.001 

Avg 0.786 0.798 0.787 0.416 

 

 In Table.2 to 5, the evaluations are discussed 

by means of average Recall, average Precision, 

average F-measure and average running time 

over three classifiers rather than that of only one 

classifier to be more accurate. Based on the 

classification results, we can see significantly 

that the proposed Modified-MCA do better than 

MCA and other feature selection methods. 

Although the average F-measure of proposed 

method is nearly equal to that of Relief, the 

running time taken to build the classification 

model is significantly less than that of Relief, 

0.153 seconds and 0.416 seconds respectively. 

The difference is 0.263 seconds. Therefore, the 

proposed method does better than others feature 

selection methods. 

 

 

 

 



5. Conclusion 

 

 In this study, a new feature subset selection 

algorithm for classification task, Modified-MCA, 

was developed. The angles from the proposed 

method have been used as an indicator of 

correlation between features and classes, and 

also an indicator of the contribution of the 

features. The p-values is taken as a measure of 

reliability of the relation between features and 

classes. A ranking list of features can be 

generated according to the scores and then a 

features subset can be selected. Based on the 

results of that experiment, the performance of 

Modified-MCA is evaluated by several measures 

such as precision, recall and F-measure. Five 

different datasets are used to evaluate the 

proposed method. The results are compared to 

simple MCA, Information Gain and Relief. The 

results assure that proposed Modified-MCA 

makes better results than MCA and other feature 

selection methods over three popular classifiers.  
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