
Correlation of Object-Oriented Design Metrics with

Maintainability

Hnin Pwint Phyu

University of Computer Studies,

Yangon

ahpwint@gmail.com

Thi Thi Soe Nyunt

University of Computer Studies,

Yangon

thithisn@gmail.com

Abstract

Software maintainability prediction enables

organizations to predict the maintainability of

the software systems and can then help in

reducing the maintenance effort and thus,

reducing the overall cost and time spent on a

software project. Besides, measuring structural

design properties of a software system, such as

coupling, cohesion, or complexity, is a promising

approach towards early quality assessments. To

use such measurement effectively, quality models

are needed that quantitatively describe how these

internal structural properties relate to relevant

external system qualities such as reliability or

maintainability. In this paper, although the

framework of design prediction approach is

proposed which consists of two main phases, we

only focus on a set of object-oriented design

metrics that can be used to evaluate and

correlate object- oriented design maintainability.

Key Words: object-oriented design, design

prediction maintainability, design metrics

1. Introduction

 Software maintainability is defined by IEEE

standard glossary of Software Engineering as

“the ease with which a software system or

component can be modified to correct faults,

improve performance or other characteristics, or

adapt to a changed environment” [14]. The

software maintainability is an important

characteristic of a software system which is

intended to help in reducing a system's tendency,

and to indicate when it becomes cheaper and less

risky to rewrite the code instead to change it. In

order to identify and fix a fault within software,

maintainability is required.

 Every software quality model has some

characteristics and sub-characteristics, which

affect software quality. The quality of the

software can be measured by using software

quality characteristics. Quality measures of

object-oriented code or design artifacts usually

involve analyzing the structure of these artifacts

with respect to the interdependencies of classes

and components as well as their internal

elements (e.g., inner classes, data members,

methods)[7]. Design metrics play a vital role in

helping developers to appreciate design aspects

of software i.e. improve software quality and

developer productivity [13]. When an object-

oriented software becomes bigger and bigger,

duplicated elements start to appear, cause

decreasing the reliability and maintainability of

the software. Thus, the present paper proposes a

design prediction approach and emphasizes on

software maintainability characteristics with the

use of Formal Concept Analysis (FCA),

Relational Concept Analysis (RCA), and object-

oriented design (OOD) metrics for design

prediction. The uses of object-oriented design

metrics include inheritance related measures,

cohesion measures and coupling measures such

as DIT, NOC, MIF, AIF, LCOM and CBO to

predict maintainability.

2. Related Work

The maintainability of software is probably

the element that can be approached the best at

mailto:ahpwint@gmail.com

the level of the software's design and actual code.

Therefore, some studies investigated the

maintainability characteristics. The paper [11]

developed a multivariate linear model

‘Maintainability Estimation Model for Object-

Oriented software in Design phase’ (MEMOOD)

and estimates the maintainability of class

diagrams in terms of their understandability and

modifiability. The overview of various quality

models in which maintainability is described and

also provides the analysis of maintainability in

various quality models is in [14].

Paper [9] aims to predict object- oriented

software quality by estimating the number of

faults and the number of lines changed per class

with the use of object-oriented metrics. The

study of paper [15] investigates the connection

between design patterns, object-oriented (OO)

quality metrics and software maintainability and

describes ISO 9126-1 quality model

characteristics and sub-characteristics. ISO 9126-

1 quality model characteristics and sub-

characteristics are applied in the proposed

system. Briand and Wust [3] discuss measuring

structural design properties of a software system,

such as coupling, cohesion, or complexity, is a

promising approach towards early quality

assessments and also present overview of

correlational studies of different metrics.

This paper is organized as follows. Related

work of the proposed system is presented in

section 2. In section 3, the background theory of

design metrics and proposed objected-oriented

design metrics are discussed. The architecture of

the proposed design prediction approach is

detailed in section 4. Then, the framework of

correlation with metrics and maintainability is

presented in section 5 and conclusion is

described in section 6.

3. Design Metrics

In fact, object-oriented development requires

not only a different approach to design and

implementation, but also a different approach to

software metrics. Object-oriented design

includes attributes, methods, objects (classes),

relationships and class hierarchies. Object-

oriented design metrics are essential part of

software environment. A set of object-oriented

metrics that can be used to measure the quality of

an object-oriented design is described below.

These metrics look at the quality of the way the

system is being built. Design metrics can be

divided into

• Traditional Metrics

• Object-oriented Design Metrics.

Figure.1. Metrics Hierarchy

SLOC – Line Counts (size)

CP - Comment Percentage

CK - Chidamber and Kemerer

MOOD- Metrics for Object Oriented Design

The metrics for object-oriented design focus

on measurements that are applied to the class and

design characteristics. For example, metrics

proposed by Chidamber & Kemerer metrics (CK

metrics, 1994), MOOD metrics, Lorenz and Kidd

metrics etcs. CK metrics are the most popular

among them. Another comprehensive set of

metrics is MOOD metrics. Chidamber and

Kemerer proposed six metrics are Weighted

Method per Class (WMC), Depth of Inheritance

Tree (DIT), Number of Children (NOC),

Coupling Between Objects (CBO), Response for

a Class (RFC) and Lack of Cohesion in Methods

(LCOM).

Metrics

Project

Based

Metrics

Design

Based

Metrics

Product Resources Process Traditional Object-

oriented

Complexity SLOC CP ...etc CK MOOD …etc

The MOOD (Metrics for Object-Oriented

Design) metrics set refers to a basic structural

mechanism of the OO paradigm as

encapsulation, inheritance, polymorphisms,

message-passing and are expressed as quotients.

The set includes the following metrics are

Method Hiding Factor (MHF), Attribute Hiding

Factor (AHF), Method Inheritance Factor (MIF),

Attribute Inheritance Factor (AIF),

Polymorphism Factor (PF) and Coupling Factor

(CF).

3.1. The Proposed Object-Oriented

Design Metrics for Prediction

The selected object-oriented design metrics

are intended to be applied to the concepts of

cohesion (classes), coupling, and inheritance for

prediction of the maintainability of the class

hierarchy design.

3.1.1. Inheritance Metric: Inheritance is a type

of relationship among classes that enables

programmers to reuse previously defined objects

including variables and operators.

Depth of Inheritance Tree (DIT): The DIT will

be the maximum length from the node to the root

of the tree. DIT is a measure of how many

ancestor classes can potentially affect this class.

Number of Children (NOC): The number of

children is the number of immediate subclasses

subordinate to a class in the hierarchy.

Method Inheritance Factor (MIF): MIF is

defined as the ratio of the sum of the inherited

methods in all classes of the system under

consideration to the total number of available

methods for all classes.

Attribute Inheritance Factor (AIF): AIF is

defined as the ratio of the sum of inherited

attributes in all classes of the system under

consideration to the total number of available

attributes for all classes.

3.1.2. Cohesion Metric:

Lack of Cohesion in Methods (LCOM) is the

number of pairs of methods in the class using no

attributes in common, minus the number of pairs

of methods that do. Low cohesion increases

complexity, thereby increasing the likelihood of

errors during the development process.

3.1.3. Coupling Metric:

Coupling between object classes (CBO) is a

count of the number of other classes to which a

class is coupled. The larger the number of

couples, the higher the sensitivity to changes in

other parts of the design and therefore

maintenance is more difficult.

4. The Architecture of Proposed

Design Prediction Approach

Figure.2. Architecture of Design Prediction

Approach

The design prediction approach is proposed

which is intended to make the object-oriented

design easier to understand, maintain and reuse.

The aim of the proposed approach is to predict

maintainability of design by making well

designed class hierarchy and measuring and

correlating with design metrics.

In the first step, the proposed system takes as

input source code, encodes it into FCA (or RCA)

contexts, generates the corresponding concept

lattices, and produces the class diagram as

output.

Finally, the maintainability of the output class

diagram is predicted with object-oriented design

metrics especially with inheritance, cohesion,

FCA/

RCA

DIT

NOC

MIF

AIF

LCOM

CBO

Understandability

Analyzability

Testability

Maintainability

OOD Metrics

Sub-characteristics

of Maintainability

Source

Code

coupling metrics. In addition, sub- characteristics

and characteristics of maintainability are

correlated with design metrics.

Formal concepts naturally endow

“cohesiveness” because their extents comprise

members sharing all the properties in the

respective intents. Furthermore, in an attempt to

reduce coupling in the resulting OO code, the

links between class members are considered.

RCA provides a particularly suitable framework

for the redistribution because it can discover

strongly related sets of individuals with respect

to shared properties and inter-individual links

and hence supports the search of cohesive

subsets of class members.

Cohesion and Coupling can affect the

maintainability of the software design. So, design

could be improved by redistributing class

members among existing or new classes to

increase cohesion and/or decrease coupling with

the use FCA and RCA. This makes to improve

internal quality of the software design that

affects maintainability. Sub-characteristics of

maintainability such as understandability,

analyzability and testability can achieve from

measuring with OOD metrics of design. These

directly affect maintainability characteristics.

5. The Framework of Correlation with

Metrics and Maintainability

Figure.3. Correlation of Metrics and

Maintainability

To correlate maintainability characteristics

with understandability, analyzability and

testability of class diagram are being quantified

in terms of the result of measuring (NOC, DIT,

MIF, AIF, CBO and LCOM) design metrics

respectively as shown in figure. A set of six

metrics with its threshold values are defined to

evaluate maintainability of the software design.

ISO 9126-1 quality model characteristics and

sub-characteristics are applied in this work.

Understandability, analyzability and testability

are used as sub-characteristics of maintainability

because analyzability is the ability to find the

reasons of the failures, testability is the

verifiability of the new changes in the software

and maintainability is affected by

understandability.

NOC: This can be considered as a negative

impact on understandability and analyzability of

the software. NOC measures the breadth of a

class hierarchy, where DIT measures the depth.

NOC and DIT are closely related. High NOC has

been found to indicate fewer faults. The class is

potentially influencing a large number of

descendant classes. This can be a sign of poor

design. So, redesigning may be required.

DIT: Higher DIT decreases understandability and

latter indicates that higher DIT increases fault

proneness therefore, maintainability.

MIF and AIF: MIF and AIF should be in a

reasonable range, not too low and not too high

either. Too high a value indicates either

superfluous inheritance or too wide member

scopes. A low value indicates lack of inheritance

or heavy use of Overrides/Shadows. MIF and

AIF seem to increase with increasing

maintainability.

LCOM: the higher the LCOM, the lower the

quality of the system.

CBO: High CBO is undesirable. The larger the

number of couples, the higher the sensitivity to

changes in other parts of the design, and

therefore maintenance is more difficult. High

CBO signals poor and complex design, decreases

modularity and reuse, complicate testing of the

class and as a result decreases understandability

and testability. Excessive coupling between

object classes is detrimental to modular design

and prevents reuse.

CBO

LCOM

AIF

MIF

NOC

DIT

Analyzability

Understandability

Testability

Maintainability

6. Conclusion

As object-oriented programming languages

and development methodologies moved forward,

a significant research effort was also dedicated to

defining specific quality measures and building

quality models based on those measures.

Prediction using object-oriented design metrics

should be used for obtaining assurances about

software quality. It is believed that predicting the

maintainability of the design will help software

designers and maintainers to alter the

architecture of the software system for better

performance that leads to the overall reduction of

maintenance time and costs. Moreover,

correlation of design metrics with sub-

characteristics and characteristics of

maintainability is a crucial task for prediction.

Thus, this study focuses on object-oriented

design metrics (inheritance, cohesion and

coupling) that can be worn to measure the quality

of an object-oriented design and correlate sub-

characteristics with maintainability

characteristics. Java Open Source Projects will

be analyzed for the proposed system. Then, the

prediction approach will be validated in future

plan.

References

[1] O. Adekile, “Object-Oriented Software

Development Effort Prediction Using Design

Patterns From Object Interaction Analysis”,

2008.

[2] J. Bansiya, “A Hierarchical Model for

Object-oriented Quality Assessment”, IEEE,

2002.

[3] L. C. Briand, J. Wust, “Empirical Studies of

Quality Models in Object-Oriented Systems.”

[4] J. Falleri, M. Huchard, C. Nebut, “A generic

approach for class model normalization.”

[5] M. Genero, M. Piattini and C. Calero, “Early

Measures for UML Class Diagrams”, L' Objet

Volume 6 – No. 4/2000.

[6] M. Genero and M. Piattini, “Empirical

validation of measures for class diagram

structural complexity through controlled

experiments.”

[7] S. Muthanna, K. Kontogiannis,

K.Ponnambalam, B. Stacey, “A Maintainability

Model for Industerial Software Systems Using

Design Level Metrics”, IEEE, 2000.

[8] C. Neelamegam, Dr. M. Punithavalli, “A

Survey - Object Oriented Quality Metrics”, in

Global Journal of Computer Science and

Technology, p 183.

[9] T. Quah, M. M. Thet Thwin, “Application of

Neural Networks for Software Quality Prediction

Using Object-Oriented Metrics”, IEEE, 2003.

[10] M. Riaz, E. Mendes, E. Tempero, “A

Systematic Review of Software Maintainability

Prediction and Metrics”, IEEE, 2009.

[11] S. W. A. Rizvi and R. A. Khan,

“Maintainability Estimation Model for Object-

Oriented Software in Design Phase

(MEMOOD)”, in Journal of Computing, Volume

2, Issue 4, 2010.

[12] A. Shaik, C. R. K. Reddy, and B. Manda,

“An Empirical Validation of Object Oriented

Design Metrics in Object Oriented Systems”, in

JETEAS, 2010.

[13] H. A. Sahraoui, R. Godin, T. Miceli, “Can

Metrics Help Bridging the Gap between the

Improvement of OO Design Quality and Its

Automation.”

[14] R. Saini, S. K. Dubey, A. Rana “Analytical

Study of Mainability Models for Quality

Evaluation”, in IJCSE, 2011.

[15] T. Turk, “The Effect of Software Design

Patterns on Object- Oriented Software Quality

and Maintainability”, 2009.

