# E-Health System Based KED and DNA Cryptosystem

Htet Htet Naing University of Computer Studies Yangon, Myanmar htethtetnaing@ucsy.edu.mm Zin May Aye University of Computer Studies Yangon, Myanmar zinmayaye@ucsy.edu.mm Soe Kalayar Naing University of Computer Studies Yangon, Myanmar soekalayarnaing@ucsy.edu.mm

Abstract- Today, technology change is very fast. Security and fast processing are necessary for data transformation. The health system is related to important roles in any country for its national interest. E-health care system include patient treatment result, diagnostic report. Patient Health Information (PHI). Patient health information is securely stored and accesses this data so that only authorized entities can update and retrieve the data over the Internet. Safety becomes an important issue when providing an electric healthcare system because confidential patient data is collected and shared by different users and organizations. Two types of cryptography: Symmetric Key and Asymmetric Key. Using the same keys is Symmetric key and Asymmetric key is using Separate key. In this paper, a Symmetric Key algorithm called as KED (Key Encryption Decryption) using modulo92 is used. Two keys are used in which one is a natural number which is relatively prime to 92. In this paper, KED (Key Encryption and Decryption) algorithm combines AES Sbox and DNA cryptography for electronic healthcare security system. In this system, propose an MCS (Medical Center Server) that connects to the patient and the doctor. The proposed system is fast in computing and can withstand cryptographic attacks such as differential and linear cryptanalysis attacks.

# Keywords— Key Encryption and Decryption, E-health care, S-box, DNA, medical center server

#### I. INTRODUCTION

The security requirements for the healthcare involve authorization, authentication, nonsystem repudiation integrity, privacy, and confidentiality [3]. The privacy of PHI applies to the individuals and right person to prevent their private information and personal from being accessible [8]. The privacy of PHI is required to be of the highest standard. Physicians generally take out previous PHI data all along a new treatment session, and the currently generated PHI is recollection and updated with new medical records [5]. A patient physically reserves a doctor each time a treatment analysis is needed, after that the patient and generates the patient's diagnostic data are treat to doctor, designated by PHI [2]. The physician uploads the total data of the PHI treatment to the MCS and the patient obtains a copy of the text data of his PHI from the MCS to know the result of the treatment [1]. The security standards of the patient's right to understand how their PHI will be used and stored must be maintained proposed combine symmetric and asymmetric key algorithm called KED (Key Encryption Decryption), AES, DNA cryptography[4]. The same key is used for both decryption and encryption using modulo 92 [8].

### II. RELATED WORK

Many cryptographic algorithms have already been proposed and implemented to provide security to the user that your message will remain secure at the moment of communication through the web. But nowadays privacy has become a common practice in society which made such cryptographic algorithms no longer safe. In this article we have studied several symmetric key algorithms and selected one of them to reference in the proposed algorithm.

#### Proposed an algorithm based on Modulo 37 by Prakash Kuppuswamy, Dr. Saeed Q Y Al-Khalid, in the year 2012.

- two keys are uses: k1=positive integer, k2=negative integer, modulo 37 are using both of inverse to fine, giving k1', k2'.
- Assigning A=1, C=3.Z=26,0=27,9=36, Space=37 for message synthetic value.
- Encryption: CT= (integer value\*k1) mod37, CT1=(CT\*k2) mod37=Cipher Text. Calculate with modulo 37
- Decryption: (CT1\*k1'\*k2') mod37,
- In this algorithm have been used for only alphabets and numbers.

#### **III. RESEARCH METHOD**

#### A. KED key generation

KED (Key Encryption Decryption) is key generation method and symmetric key algorithm. The proposed algorithm is used for two keys of encryption and decryption process, using modulo92. The encryption process is shown in figure 1. Two keys will be used key1 and key2. The first key key1, is a natural number and k2 can be a combination of English characters A-Z, numbers0-9 and special characters will be derived from the key entered by the user. And m=92.

Key 1= length of the key  
Key 2=  
$$K2=(\sum_{i=0}^{kl-1} 2^i * kl * val) \mod m$$
 92

i = character of key position. val= integer value k1= natural number

#### B. Algorithm of KED Encryption

```
for (i=0; i<messagelength; i++)
{
num1=hm.get(str. charAt(i));
n1=(num1*key1);
n2=(n1+k2)%92;
for(Map. Entry < Character, String > entry:
hm1.entrySet())
{
str1=""+n2;
if (entry. get Value (). equals(str1))
{
Ch.=entry. get Key();
encrypted=encryptedmsg+Ch;
}
}
```

#### C. DNA cryptography and AES algorithm

DNA (deoxyribonucleic acid) cryptography achieve more advance calculations processing than binary computations [6]. Four components are using, namely of DNA cryptography C, A, T, and G for computation, considered from the compounds C-Cytosine, A-Adenine, T-Thymine and G-Guanine [3]. The computation instead of their counter binary parts are using these four components.

TABLE 1. DNA COMPONENTS

| DNA<br>component | Binary<br>equivalent |
|------------------|----------------------|
| Α                | 00                   |
| G                | 01                   |
| С                | 10                   |
| Т                | 11                   |

#### D. S-Box in AES

Substitution box S-Box is used in Rijndael encryption, on which the AES cryptographic algorithm is based. S-boxes provide an invertible (reversible) transformation of plaintext segments during encryption, and the reverse during decryption. The AES (Advanced Encryption Standard) algorithm takes in blocks of 128 ,192 and 256 applies a sequence of permutations and substitutions. The substitutions apply an "S-box", named the Rijndael S-box after its designers [2], that works on 8 bits at a time an invertible nonlinear transformation. There are 16\*16=256 possible 8-bit numbers, and inputs to outputs mapping in 16 by 16 represented in S-box. AES chosen one encryption algorithm is unique nonlinear operation in S-box, and it determines the performance of AES. AES S-box are analyzed the complexity and security of the system. The system proposes the complexity and security increase of AES S-box by combine KED and DNA cryptosystem.

#### IV. PROPOSED SYSTEM

In proposed system KED that uses module 92, DNA cryptosystem, and AES algorithm. KED, AES and DNA cryptosystem are used in information transform over the internet

by key generation uses. The encryption and decryption respectively will be used in AES S-Box Table. Proposed a hybrid of KED (Key Encryption Decryption) that uses module 92, AES algorithm, and DNA cryptography (Key-Adv DNA cryptosystem). The contribution of system is AES which hybrid DNA cryptography for S-Box, advanced encryption standard for fast processing and secured algorithm. The encryption process is using KED, DNA and S Box, to arrange the advance security from the attacks like differential and linear cryptanalysis attacks.

AES S -box changing it into DNA cryptography. DNA cryptography is more advance in computational processing than binary calculations. The combination of DNA cryptography, advanced encryption standard for fast processing and secure algorithm. The AES S-Box algorithm is developed by update and advance DNA cryptography. AES S-Box uses a symmetric key that can be generated by an algorithm.

#### A. KED\_ADV DNA cryptosystem

KED (Key encryption Decryption), ADV is use in initial of (Advance encryption Standard) AES and DNA is (deoxyribonucleic acid). KED\_ADV DNA is using encryption and decryption of E-health care system. Firstly, the KED is using, user enter the plaintext is convert to integer value by using Table 2. And then, multiply to key K1 and Add to Key K2. The result is mod to 92. After that, using AES S-box value is assigning and the value is converted to Binary value. Lastly, convert to DNA property.

#### B. Integer Assigning

This below table is replaced in integer to encryption and decryption process. This table include 26 characters of A to Z, 26 characters of a-z, special character, space and Number 0-9 etc.

#### TABLE 2: INTEGER ASSIGNING

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    |    |    |    |    | -  |    |    |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|----|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Α  | В  | С  | D  | E  | F  | G  | н  | I  | J  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K  | L  | M  | N  | 0  | Р  | Q  | R  | s  | Т  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U  | v  | W  | х  | Y  | Z  | а  | b  | с  | d  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e  | f  | g  | h  | į  | j  | k  | 1  | m  | n  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0  | р  | q  | r  | s  | t  | u  | v  | w  | x  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | у  | z  | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8  | 9  | !  | a  | #  | %  | ^  | &  | *  | (  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| /         .         .         ↓         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<> | )  | +  | -  | _  | =  | :  | ** | <  | >  | ?  |
| <u>81</u> 82 83 84 85 86 87 88 89 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| <u>81</u> 82 83 84 85 86 87 88 89 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /  |    | ,  | /  |    | 1  | 1  | {  | }  | :  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81 | 82 |    | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| · S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •  | s  |    |    |    |    |    |    |    |    |
| 91 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91 | 92 |    |    |    |    |    |    |    |    |

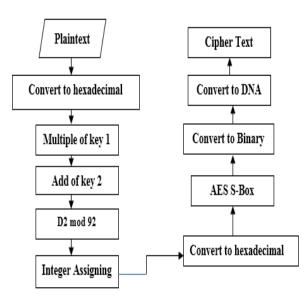



Figure 1: Encryption Process

#### D. Cryptography based E-health care system

In proposed system, A patient and doctors must register with identity card to MCS (Medical Center Server), which contains all healthcare information. After registration, MCS server send OTP code to doctors and Patients. They are Log in with OTP code and MCS check with their OTP code to Database in this system. Patient or Doctor ID is correct they enter in this system and send Detail information to MCS by using KED\_ADV DNA cryptosystem encryption Process. MCS decrypt with Patient information and accessed via the internet for secure handling of patient PHI.

MCS stored Patients and Doctors information and will contact the doctor who can cure the disease of the patient. After the completion of patient PHI treatment session is upload to the MCS and a copy of the same is securely sent to the patient by using KED\_ADV DNA cryptosystem. Hybrid of KED algorithm that uses modulo 92, DNA cryptography, and AES algorithm. Two-factor authentication (2FA), sometimes referred to as *two-step verification*. In this system using OTP (One-time password) for Authentication.

A key component is more secure information confidentiality would be encryption. The security of Encryption can read the information is only the right people. KED and AES algorithm used encryption for Confidentiality.

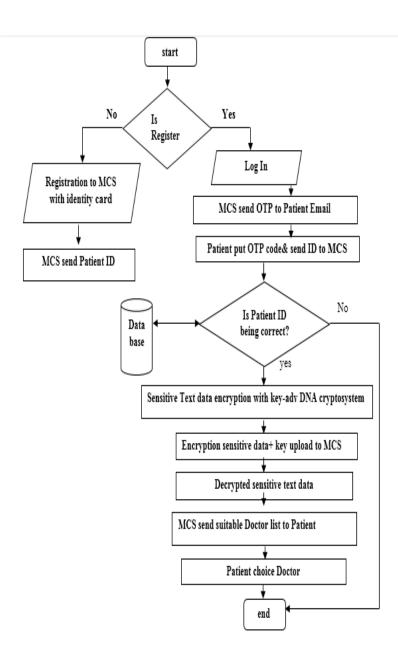



Figure 2: General structure of E -health care system

#### E. Structure of E-health care system

In this system, patient and doctor must register to MCS. This step patient sends his/her information to MCS. This information includes Patient Name, Address, Male/Female, marital status, Date of Birth, Phone no, E-mail, Symptoms, Disease type. MCS receive patient information form, it sends OTP code to patient and then patient log in to OTP code. MCS save patient information in Database. Doctors registration include Doctor Name, Address, Phone No, E-mail, Degree, graduated country, Treatable disease, Number of Doctor receive. Table 3 is used already have AES S-Box table. The Table 4 process is using to KED (Key encryption and decryption algorithm).

#### F. MCS (Medical Center Server)

MCS receive doctor and patient information forms, it sends OTP (One Time Passcode) code to Patient/Doctor and then they log in to OTP code. Doctor/Patient information is transfer to MCS by using KED\_ADV DNA cryptosystem. The function of MCS is store in patients and doctors of detail information in database. MCS check to their information in database and made between the doctor and patient are connected. MCS sends good doctors list to patients and they choose Doctor. And then, the other side Doctor is chosen to be suitable for the patients.

#### TABLE 3: AES S-BOX

|    | 00 | 01         | 02 | 03 | 04 | 05 | 06 | 07 | <b>08</b> | 09 | 0a | 0b | 0c | 0d | 0e | Of         |
|----|----|------------|----|----|----|----|----|----|-----------|----|----|----|----|----|----|------------|
| 00 | 63 | 7c         | 77 | 7b | f2 | 6b | 6f | c5 | 30        | 01 | 67 | 2b | fe | d7 | ab | 76         |
| 10 | ca | 82         | c9 | 7d | fa | 59 | 47 | fO | ad        | d4 | a2 | af | 9c | a4 | 72 | c0         |
| 20 | b7 | fd         | 93 | 26 | 36 | 3f | f7 | сс | 34        | a5 | e5 | f1 | 71 | d8 | 31 | 15         |
| 30 | 04 | c7         | 23 | c3 | 18 | 96 | 05 | 9a | 07        | 12 | 80 | e2 | eb | 27 | b2 | 75         |
| 40 | 09 | 83         | 2c | 1a | 1b | 6e | 5a | a0 | 52        | 3b | d6 | b3 | 29 | e3 | 2f | 84         |
| 50 | 53 | d1         | 00 | ed | 20 | fc | b1 | 5b | 6a        | cb | be | 39 | 4a | 4c | 58 | cf         |
| 60 | d0 | ef         | aa | fb | 43 | 4d | 33 | 85 | 45        | f9 | 02 | 7f | 50 | 3c | 9f | <b>a</b> 8 |
| 70 | 51 | a3         | 40 | 8f | 92 | 9d | 38 | f5 | bc        | b6 | da | 21 | 10 | ff | f3 | d2         |
| 80 | cd | 0c         | 13 | ec | 5f | 97 | 44 | 17 | c4        | a7 | 7e | 3d | 64 | 5d | 19 | 73         |
| 90 | 60 | 81         | 4f | dc | 22 | 2a | 90 | 88 | 46        | ee | b8 | 14 | de | 5e | 0b | db         |
| a0 | e0 | 32         | 3a | 0a | 49 | 06 | 24 | 5c | c2        | d3 | ac | 62 | 91 | 95 | e4 | 79         |
| b0 | e7 | c8         | 37 | 6d | 8d | d5 | 4e | a9 | 6c        | 56 | f4 | ea | 65 | 7a | ae | 80         |
| c0 | ba | 78         | 25 | 2e | 1c | a6 | b4 | c6 | e8        | dd | 74 | 1f | 4b | bd | 8b | 8a         |
| d0 | 70 | 3e         | b5 | 66 | 48 | 03 | f6 | 0e | 61        | 35 | 57 | b9 | 86 | c1 | 1d | 9e         |
| e0 | e1 | f8         | 98 | 11 | 69 | d9 | 8e | 94 | 9b        | 1e | 87 | e9 | ce | 55 | 28 | df         |
| f0 | 8c | <b>a</b> 1 | 89 | 0d | bf | e6 | 42 | 68 | 41        | 99 | 2d | Of | b0 | 54 | bb | 16         |

## V. RESULT AND ANALYSIS

A. Key Generation Process of KED

Plaintext: The Students are learning. K1= 3@! \$ Position i= 0 1 2 3 Key length Key 1= 4  $k2=(\sum_{i=0}^{kl-1} 2^i * k! * val) \mod 92$ = {(20\*4\*56) +(21\*4\*64) +(22\*4\*63) + (23\*4\*92)} mod 92 = (224+512+1008+2944) mod 92 = 4688 mod 92 = 88

| select a natura | l number | say, Key | 1=5 |
|-----------------|----------|----------|-----|
|-----------------|----------|----------|-----|

| Plain<br>text | Integer<br>value<br>(V1) | V1*K1<br>(C1) | C1+K2<br>(C2) | C2mod<br>92 | Synthetic<br>Value |
|---------------|--------------------------|---------------|---------------|-------------|--------------------|
| Т             | 20                       | 100           | 188           | 4           | D                  |
| h             | 34                       | 170           | 258           | 74          | -                  |
| e             | 31                       | 155           | 243           | 59          | 6                  |
| S             | 9                        | 45            | 133           | 41          | 0                  |
| t             | 46                       | 230           | 318           | 42          | р                  |
| u             | 47                       | 235           | 323           | 47          | u                  |
| d             | 30                       | 150           | 238           | 54          | 1                  |

TABLE 4: ENCRYPTION PROCESS OF KED\_ADV DNA SYSTEM

| e | 31 | 155 | 243 | 59 | 6 |
|---|----|-----|-----|----|---|
| n | 40 | 200 | 288 | 12 | L |
| t | 46 | 230 | 318 | 42 | р |
| s | 45 | 225 | 313 | 37 | k |
| a | 27 | 135 | 223 | 53 | 0 |
| r | 44 | 220 | 308 | 32 | f |
| e | 31 | 155 | 243 | 33 | g |
| 1 | 38 | 190 | 278 | 2  | В |
| e | 31 | 155 | 243 | 59 | 6 |
| а | 27 | 135 | 223 | 39 | m |
| r | 44 | 220 | 308 | 32 | f |
| n | 40 | 200 | 288 | 12 | L |
| i | 35 | 175 | 263 | 79 | > |
| n | 40 | 200 | 288 | 12 | L |
| g | 33 | 165 | 253 | 69 | * |

| Binary | Hexa  | AES | Binary | DNA    | Cipher |
|--------|-------|-----|--------|--------|--------|
| value  | decim | S-  | Value  | sequen | text   |
| , arao | al    | Box | , aroo | ce     |        |
|        | Value |     |        |        |        |
| 010001 | 44    | 1b  | 10001  | CACT   | CAC    |
| 00     |       |     | 011    |        | Т      |
| 010111 | 5F    | cf  | 11001  | TACT   | TAC    |
| 11     |       |     | 111    |        | Т      |
| 001101 | 36    | 05  | 00001  | AACC   | AAC    |
| 10     |       |     | 010    |        | С      |
| 011011 | 6F    | a8  | 10101  | CCCA   | CCC    |
| 11     |       |     | 000    |        | Α      |
| 011100 | 70    | 51  | 10100  | CCAC   | CCA    |
| 00     |       |     | 010    |        | С      |
| 011101 | 75    | 9d  | 10011  | CGTG   | CGT    |
| 01     |       |     | 101    |        | G      |
| 001100 | 31    | c7  | 11000  | TACT   | TAC    |
| 01     |       |     | 111    |        | Т      |
| 001101 | 36    | 05  | 00001  | AACC   | AAC    |
| 10     |       |     | 010    |        | С      |
| 010011 | 4C    | 29  | 10100  | CCGA   | CCG    |
| 00     |       |     | 100    |        | A      |
| 011100 | 70    | 51  | 10100  | CCAC   | CCA    |
| 00     |       |     | 010    |        | С      |
| 011101 | 75    | 9d  | 10011  | CGTG   | CGT    |
| 01     |       |     | 101    |        | G      |
| 001100 | 30    | 04  | 00001  | AACA   | AAC    |
| 00     |       |     | 000    |        | A      |
| 011001 | 66    | 33  | 11001  | TACA   | TAC    |
| 10     |       |     | 100    |        | A      |
| 011001 | 67    | 85  | 10000  | CAGG   | CAG    |
| 11     |       |     | 101    |        | G      |
| 010000 | 42    | 2c  | 10001  | CACA   | CAC    |
| 10     |       |     | 100    |        | A      |
| 001101 | 36    | 05  | 00001  | AACC   | AAC    |
| 10     |       |     | 010    |        | С      |
| 011011 | 6D    | 3c  | 11001  | TACA   | TAC    |
| 01     |       |     | 100    |        | A      |

| 011001 | 66 | 33 | 11000 | TAAT | TAA |
|--------|----|----|-------|------|-----|
| 10     |    |    | 011   |      | Т   |
| 010011 | 4C | 29 | 10100 | CCGA | CCG |
| 00     |    |    | 100   |      | А   |
| 001111 | 3E | b2 | 10110 | CTGC | CTG |
| 10     |    |    | 010   |      | С   |
| 010011 | 4C | 29 | 10100 | CCGA | CCG |
| 00     |    |    | 100   |      | А   |
| 001010 | 2A | e5 | 11100 | TCGG | TCG |
| 10     |    |    | 101   |      | G   |

#### V CONCLUSION

In conclusion, health security needs Confidentiality, Integrity, Authentication, and other important features such as Brute Force Attack, Time Attack, Differential Cryptanalysis Attack, and Linear Cryptanalysis Attack. The possibility of using symmetric encryption algorithm, such as AES, DNA combination with KED, was also studied and implemented. In proposed system, Patient's PHI is stores in MCS, which is securely retrieved / updated by Doctor and MCS, and the patient also their updated PHI receives from MCS. The proposed cryptosystem was able to combine KED using modulus 92 AES and DNA cryptosystem

#### REFERENCES

- J. Warjri, Dr. E. George Dharma Prakash Raj. "KED-A Symmetric Key Algorithm for Secured Information Exchange Using Modulo 69," *I.J Computer Network and Information Security*, vol. 10, pp 37-43, 2013.
- [2] Q. Zhang and A. Qunding, "Digital image encryption based on Advanced Encryption Standard(AES) algorithm," 5th Int. Conf. Instrum. Meas. Comput. Commun. Control. IMCCC 2015, pp. 1218–1221, 2015.
- [3] P. K. Panda, "A Hybrid Security Algorithm for RSA Cryptosystem," 2017.Y.
- [4] O. A. Dawood, A. M. S. Rahma, and A. M. J. Abdul Hossen, "New Symmetric Cipher Fast Algorithm of Revertible Operations' Queen (FAROQ) Cipher," *Int. J. Comput. Netw. Inf. Secur.*, vol. 9, no. 4, pp. 29–36, 2017.
- [5] S. Oukili and S. Bri, "High throughput FPGA Implementation of Data Encryption Standard with time variable subkeys," *Int. J. Electr. Comput. Eng.*, vol. 6, no. 1, p. 298, 2016.
- [6] Jie Cui,Liusheng Huang, Hong Zhong, Chinchen Chang, "An improved AES S-box and its performance analysis".International Journal of innovative computing, information and control IJICIC, May 2011.
- [7] Edwin R. Arboleda, Carla Eunice R. Fenomeno, Joshua Z. Jimenez. "KED-AES algorithm: combined key encryption decryption and advance encryption standard algorithm.. IJAAS. Vol. 8, No. 1, March 2019, pp. 44~53 ISSN: 2252-8814, DOI: 10.11591/ijaas.v8.i1.pp44-53.
- [8] G. Jaswanth Varma ,B. Ajani Kumar , Fazal Noorbasha , Harikishore Kakarla , M. Manasa. "DATA SECURITY BASED ON DNA CRYPTOGRAPHY USING S-BOX ENCRYPTION". International Journal of Pure and Applied Mathematics Volume 115 No. 7 2017, 429-434 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (online version)