

PREVENTION OF CROSS-SITE REQUEST

FORGERY USING ANTI-CSRF TOKEN

PHYU PHYU WIN

M.C.Sc. SEPTEMBER 2022

PREVENTION OF CROSS-SITE REQUEST

FORGERY USING ANTI-CSRF TOKEN

BY

Phyu Phyu Win

B.C.Sc.

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Computer Science

(M.C.Sc.)

University of Computer Studies, Yangon

SETEMBER 2022

i

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude and

sincere appreciation to the following persons who have contributed

directly or indirectly towards the completion of this thesis and helped me

make this dissertation possible.

Secondly, I would like to express my special thanks to Dr. Mie

Mie Khin, the Rector of the University of Computer Studies, Yangon who

gave me the opportunity to develop this thesis and for her general

guidance during the period of study.

And I would also like to thank Dr. Mie Mie Thet Thwin, the

former Rector of the University of Computer Studies, Yangon who gave

me the opportunity to develop this thesis and for her general guidance

during the period of study.

I would like to express my respectful gratitude to Dr. Si Si Mar Win,

Processor and Dr. Tin Zar Thaw, Processor, Course Coordinators of the

Master 24th batch, University of Computer Studies, Yangon, for their

excellent guidance.

I would like to thank the former Course Coordinator, Dr. Mie Mie

Su Thwin who gave me the opportunity to do this thesis on the topic,

“Prevention of Cross-Site Request Forgery using Anti-csrf token”, and

also gave invaluable recommendations regarding to this thesis.

I would like to express my sincere gratitude to my former

supervisor, Dr. Nyein Myint Myint Aung, Associate Professor of

Faculty of Information Science, University of Computer Studies, Yangon

for her encouragement and support.

ii

My sincere thanks and respect go to my supervisor, Dr. Yi Mon Thet,

Associate Professor of Faculty of Information Science, University of

Computer Studies, Yangon, for her invaluable advice, giving me detailed

guidance, support and comments throughout the thesis process.

I also wish to express my deepest gratitude to U Aung Myint Thain,

Assistant Lecturer, English Department, the University of Computer

Studies, Yangon, for his editing this thesis from the language point of

view.

Last but not least, I am extremely thankful to my parents and my

family for supporting, inspiring and encouragement to me from the

childhood to the present time. Finally, I am extremely grateful to all my

teachers, my colleagues and all of my friends for their invaluable and

precious help and general guidance.

iii

STATEMENT OF ORIGINALITY

I hereby certify that the work embodied in this thesis is the result of original

research and has not been submitted for a higher degree to any other University or

Institution.

 Date Phyu Phyu Win

iv

ABSTRACT

Online banking system has created an enormous impact on IT, Individuals,

and networking worlds. Online banking systems and its exclusive architecture have

numerous features and advantages over traditional banking system. The proposed

system detects the csrf-attack with two types of web application, sign in with token

and sign in without token. In the system, detection rate illustrates with percentage(%).

Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute

unwanted actions on a web application in which they're currently authenticated. CSRF

attacks specifically target state-changing requests, not theft of data. This attacks target

functionality that causes a state change on the server such as changing the victim’s

email address, password or purchasing something. In the system, the attacker creates a

malicious link and sends to the website. The main objectives of the proposed system

is to provide the data security of the customer’s critical transmission data, to protect

for state changing functionalities on critical data processing between the client and

server, to illustrate the secure transaction and record transaction history, to prevent the

attack using the anti-csrf token when making transactions in banking system. The

proposed system illustrates the secure transaction in banking system and provides the

data security of the customer’s critical transmission data. The proposed system in this

thesis is implemented to prevent the CSRF attack. The Blum Blum Shub algorithm is

used to generate the Anti-csrf token. The token is a secret, unique and unpredictable

value a server-side application generates in order to protect CSRF vulnerable

resources. The tokens are generated and submitted by the server-side application and

SHA-256 hash is used when sending to the client site. After the request is made, the

server aspect utility compares the two tokens found in the user consultation and

inside the request. If the token is not match from the received transaction form , the

request is rejected.

Keywords: CSRF Prevention, Anti-csrf Token, Blum Blum Shub Algorithm, HMAC

(SHA-256) Algorithm

v

CONTENTS

 Page

ACKNOWLEDGEMENTS i

STATEMENT OF ORIGINALLY iii

ABSTRACT iv

CONTENTS v

LIST OF FIGURES vii

LIST OF TABLES viii

LIST OF EQUATIONS ix

LIST OF ABBREVIATIONS x

CHAPTER 1

INTRODUCTION

1

 1.1 Related Work 1

 1.2 Objectives of the Thesis 2

 1.3 Organization of the Thesis 3

CHAPTER 2

BACKGROUND THEORY

4

 2.1 Open Web Application Security Project (OWASP) Top 10

Attacks

4

 2.1.1 Injection 4

 2.1.2 Broken Authentication and Session Management 5

 2.1.3 Cross-Site Scripting (XSS) 6

 2.1.4 Insecure Direct Object Reference 7

 2.1.5 Security Misconfiguration 8

 2.1.6 Sensitive Data Exposure 8

 2.1.7 Missing Function Level Access Control 9

 2.1.8 Cross-Site Request Forgery 10

 2.1.9 Using Components With Know Vulnerabilities 12

 2.1.10 Un-validated Redirects And Forward 13

 2.2 Preventive Measure for CSRF 13

 2.2.1 Using a Secret Cookie 13

 2.2.2 Only accepting POST request 14

 2.2.3 Multi step transaction 14

vi

 2.2.4 Checking Referrer Header 15

 2.2.5 Anti csrf-token

15

CHAPTER 3 DESIGN OF THE PROPOSED SYSTEM 22

 3.1 Overview of the Proposed System 22

 3.2 Blum Blum Shub Generator 26

 3.3 SHA-256 Hash Algorithm

27

CHAPTER 4 IMPLEMENTATION OF THE PROPOSED SYSTEM 29

 4.1 Experimental Setup 29

 4.2 Implementation of the System 29

 4.3 Experimental Results

34

CHAPTER 5 CONCLUSION 37

 5.1 Limitation and Further Extension

37

 AUTHOR’S PUBLICATION 38

 REFERENCES 39

vii

LIST OF FIGURES

 Page

Figure 2.1 MD5 Hashing Algorithm 19

Figure 2.2 SHA-1 Hash Algorithm 21

Figure 3.1. System Flow Diagram of the Proposed System 23

Figure 3.2 CSRF Attack System Flow 24

Figure 3.3 Algorithm of Proposed System 25

Figure 3.4 Blum Blum Shub Algorithm 26

Figure 3.5 SHA-256 hashing Algorithm 28

Figure 4.1 Main Form of the Proposed System 29

Figure 4.2 Creating a Malicious Link Form 30

Figure 4.3 Home Page Form 30

Figure 4.4 Withdraw Form 31

Figure 4.5 Transfer Form 31

Figure 4.6 Account Transfer Confirmation Form 32

Figure 4.7 Cancel Confirmation Form 32

Figure 4.8 Detail Transaction Form 33

Figure 4.9 Transaction History Form 33

Figure 4.10 Attack Form 34

Figure 4.11 Non-secure Transaction and Secure Transaction Form 35

Figure 4.12 Attack Detection Rate with Graph 36

viii

LIST OF TABLES

 Page

Table 1 Detection of the Attack 35

ix

LIST OF EQUATIONS

 Page

Equation 2.1 Equation for Tausworth Generator 16

Equation 2.2 Equation for XOR operation 16

Equation 2.3 Equation for Linear Congruential Generator 17

Equation 2.4 Equation for HMAC Hash Function 18

Equation 3.1 Equation for Blum Blum Shub Generator 26

x

LIST OF ABBREVIATIONS

 Page

OWASP Open Web Application Security Project 1

CSRF Cross-Site Request Forgery 1

CRLF Carriage Return and Line Feed 5

LDAP Light Weight Directory Access Protocol 5

IDOR Insecure Direct Object Reference 5

XSS Cross-Site Scripting 6

LCG Linear Congruential Generator 16

HMAC Keyed-Hashing for Message Authentication Code 17

MD5 Message Digest Hash 18

SHA-1 Secure Hash Algorithm 1 20

BBS Blum Blum Shub 26

SHA-256 Secure Hash Algorithm 256-bit 27

1

CHAPTER 1

INTRODUCTION

 Banking is popular today and uses to deposit/withdraw the cash. This is the

place where customers feel the sense of safety for their property. This is why banking

becomes an important role in lives. In the act of using web applications, people give

personal information to the organization, and then store sensitive information on them.

On the other hand, some attackers who are unethical and selfish exploit the web

application to gain unauthorized access and do other things such as identity theft,

privacy violation, and other cyber-attacks. These illegal points allow the attackers to

make whatever they want through the weaknesses of the web application.

 Vulnerability is the weak point of the web application caused by unawareness of

the developers who cannot be handled validation the user inputs, appropriate

validation methods, and so on. Because of those facts, detection of vulnerability is

needed more. There are so many different kinds of vulnerabilities but, it is indicated to

OWASP in 2019 that CSRF attack reaches number eight vulnerabilities. Cross-site

request forgery (CSRF) is a web security vulnerability that allows an attacker to

induce users to perform actions that they do not intend to perform. In a successful

CSRF attack, the attacker causes the victim user to carry out an action unintentionally.

This might be to change the email address on their account, to change their password,

or to make a funds transfer.

1.1 Related Work

In this thesis, the system intends to support the admins who require to obtain

secure transaction without vulnerabilities and to prevent CSRF attacks from the

attacker. The system uses anti-csrf token and also has generated by a random number

generator. This section discusses the previous studies of preventing CSRF

vulnerabilities concerning needed to protect against.

The first study describing the implementation of cross site request forgery

method using tools is implemented by Sentamilselvan. K Assistant [12]. Their

experiment provides suitable solutions for the cross site request forgery attack by

means of applying parsing techniques to identify the attacking spots before the

2

attackers attack. It takes a long time and it requires no additional memory.

In 2018, Sami Azam introduced the „Preventive Measures for Cross Site

Request Forgery Attacks on Web-based Applications‟ that identify the available

solutions to prevent CSRF attacks [4]. By analyzing the techniques employed in each

of the solutions, the optimal tool can be identified. Tests against the exploitation of

the vulnerabilities were conducted after implementing the solutions into the web

application to check the efficacy of each of the solutions. The research also propose a

combined solution that integrates the passing of an unpredictable token through a

hidden field and validating it on the server side with the passing of token through

URL.

In 2008, Adam Barth and Collin Jackson examined the scope and diversity of

CSRF vulnerabilities, studied existing defenses, and described incremental and new

defenses based on headers and web application firewall rules [1]. We introduce login

cross-site request forgery attacks, which are currently widely possible, damaging, and

under-appreciated. There are three widely used techniques for defending against

CSRF attacks: validating a secret request token, validating the HTTP Referrer header,

and validating custom headers attached to XML Http Requests.

In the other study, Emil Semastin implemented to identify the available

solutions to prevent CSRF attacks using tools Pinata, CSRF tester, Burp Suite and

OWASP ZAP. Tests against the exploitation of the vulnerabilities were conducted

after implementing the solutions into the web application to check the efficacy of each

of the solutions. The suggested solution is a combination of the most effective

existing technique and the second best option. By implementing this, a double

validation takes place at the server side of the web application to ensure the

prevention of CSRF attacks.

1.2 Objectives of the Thesis

 The main objectives of the thesis are as follows:

 to provide the data security of the customer‟s critical transmission

data

 to protect for state changing functionalities on critical data processing

between the client and server

3

 to illustrate the secure transaction and record transaction history

 to prevent the attack using the anti-csrf token when making

transactions in banking system

1.3 Organization of the Thesis

This thesis consists of five chapters.

Chapter 1 is the introductory section in which the introduction to web

application vulnerability. And the related works, the objectives, and the organization

of the thesis are presented.

Chapter 2 describes the background theory related to this thesis such as

OWASP Top Ten attacks, preventive measure for CSRF attack, and Blum Blum Shub

algorithm that are described in details.

Chapter 3 presents the design of the proposed system describing system flow,

the detailed explanation with algorithms and the evaluation of the output resulting

from the post detection.

Chapter 4 describes the implementation of the proposed system in detail and the

experimental result.

Finally, Chapter 5 concludes this thesis which its benefits, limitation and

further extension of the proposed system.

4

CHAPTER 2

BACKGROUND THEORY

In this chapter, the related background theory about the research this is

presented. In the first section, the Open Web Application Security Project (OWASP)

top ten attacks and the types of the attack are described. The next section describes

about the preventive measures of the attacks. In the last section, types of pseudo

number generator and HMAC with hash algorithm are presented in details.

2.1 Open Web Application Security Project (OWASP) Top 10

Attacks

 The Open Web Application Security Project, or OWASP, is a worldwide no

income organization dedicated to web application safety [8]. The OWASP Top ten is

a regularly-updated report outlining security concerns for web application security,

focusing on the ten most critical risks.

2.1.1 Injection

 Injection happens when an attacker exploits insecure code to insert (or inject)

their personal code into a software. Because the program is unable to determine code

inserted in this way from its own code, attackers are able to use injection attacks to

access secure areas and confidential information as though they are trusted users.

Examples of injection include SQL injections, command injections, CRLF injections,

and LDAP injections.

 SQL injection: SQL injection is the position of malicious code

in statements, through the web page input. In the case of

advanced SQL Injection attacks, the attacker can use SQL

commands to write arbitrary files to the server and even

execute OS commands. This may lead to full system

compromise.

 Command injection: The attacker injects operating system

commands with the privileges of the user who is running the

web application. In advanced cases, the attacker may exploit

additional privilege escalation vulnerabilities, which may lead

to full system compromise.

https://www.veracode.com/security/sql-injection

5

 CRLF infusion: The attacker injects an unexpected CRLF

character collection. This sequence is used to split an HTTP

response header and write arbitrary contents to the response

body. This attack may be combined with Cross-site Scripting

(XSS).

 LDAP infusion: The attacker injects LDAP (Lightweight

Directory Access Protocol) statements to execute arbitrary

LDAP commands. They can gain permissions and modify the

contents of the LDAP tree.

 Header Injection in Email: CRLF injections are very similar

to this attack. The intruder sends IMAP/SMTP commands to a

mail server that cannot be accessed directly through a web

application.

 Injection of the host header: The attacker poisons web caches

and password-rest functionality by taking advantage of the

HTTP Host header's implicit trust.

 Injection of OS commands: With the permissions of the web

application's user, the attacker injects operating system

commands. In more advanced scenarios, the attackers may take

advantage of additional privilege escalation flaws, which could

result in the complete system compromise.

 Injection of XPath: In order to carry out crafted XPath

queries, the intruder injects data into an application. They can

use them to get into data that isn't theirs and get around

authentication.

2.1.2 Broken Authentication and Session Management

 Broken authentication and session management vulnerabilities is an OWASP

indexed vulnerability that acknowledges the risk of credentials due to bad identity and

access controls implementation. Exploiting a broken authentication, an attack is

commonly initiated by means of taking gain of poorly managed credentials and login

classes to masquerade as authenticated customers.

6

 Attackers use automated tools to retrieve additional data and take control of

the application after manually spotting holes in user validation and verification in

session management vulnerabilities. Since attackers are always looking for ways to

gain access by taking advantage of security implementation flaws, authentication and

session management are essential components of modern application security

frameworks.

 Due to the complex and integrated nature of modern applications, scanning for

authentication and session management vulnerabilities can be difficult. Broken

authentication and session management vulnerabilities are discussed in this post,

along with recommended procedures and tools for implementing them safely.

 A session is a series of events and transactions that happen during the same

time period for the same user. A unique Session ID (Cookies, URL Parameters,

Authentication Tokens, etc.) is given to each user upon logging in to a system. This

ID enables communication between the user and the web app during a valid session. It

is easier for a hacker to take over the session ID and gain unauthorized system access

because many developers fail to develop the appropriate session parameters.

Additionally, attackers can impersonate users who are already logged in to the system

because some developers fail to set session time limits and rotation plans.

2.1.3 Cross-Site Scripting (XSS)

 Cross-Webpage Prearranging (XSS) assaults are a sort of infusion, wherein

noxious contents are infused into in any case harmless and confided in sites. XSS

assaults happen when an aggressor utilizes a web application to send malevolent code,

by and large as program side content, to an alternate end client. Blemishes that permit

these assaults to succeed are very inescapable and happen anyplace a web application

utilizes input from a client inside the result it produces without approving or encoding

it.

An aggressor can utilize sending a malevolent content to a clueless client. The

end client's program has no real way to realize that the content ought not be relied

upon, and will execute the content. Since it thinks the content came from a believed

supply, the vindictive content can get passage to any treats, meeting tokens, or other

delicate data held through the program and utilized with that site on the web.

7

The term "stored" refers to attacks, in which the injected script is permanently

stored on the target servers, such as in a message forum, visitor log, comment field, or

database. When the victim requests the stored data, the malicious script is retrieved

from the server. Persistent or Type-I XSS are other names for Stored XSS.

Persistent XSS includes blind cross-site scripting as one type. It usually

happens when the attacker's payload is saved on the server and sent back to the victim

by the backend application. An attacker can, for instance, use feedback forms to

submit a malicious payload. Once the backend user or administrator of the application

opens the submitted form via the backend application, the attacker's payload will be

executed. XSS Hunter is one of the best tools for confirming blind cross-site scripting

in real-world situations.

When the injected script is reflected off the web server in an error message,

search result, or other response that includes some or all of the input sent to the server

as part of the request, these attacks are referred to as "reflected attacks." Victims of

reflected attacks receive the information via a different means, such as an email or a

different website. The injected code travels to the vulnerable website, which reflects

the attack back to the user's browser, when the user is tricked into clicking on a

malicious link, submitting a specially crafted form, or even just browsing to a

malicious website. The code is then executed by the browser due to its origin from a

"trusted" server. Non-Persistent or Type-II XSS are other names for Reflected XSS.

2.1.4 Insecure Direct Object Reference

Unreliable direct item references (IDOR) are a network protection issue that

happens when a web application designer utilizes an identifier for direct admittance to

an internal execution object anyway gives no extra access control as well as approval

checks. For instance, IDOR weakness would occur in the event that the URL of an

exchange could be changed through client-side client contribution to show

unapproved information of another exchange. Shaky direct item happens the

designers use reference objects in URL. The aggressor can change the worth in

reference protests and can see other data and afterward can do the catalog crossing

attack.

8

2.1.5 Security Misconfiguration

Security misconfigurations are security controls which can be erroneously

designed or left unreliable, putting the designs and measurements at possibility.

Fundamentally, any ineffectively reported setup changes, default settings, or a

specialized issue across any variable on endpoints might need to cause a

misconfiguration.

Misconfiguration weaknesses are arrangement shortcomings that could exist in

programming subsystems or parts. For example, web server programming could send

with default client accounts that a cybercriminal could use to get to the framework, or

the product could have a known arrangement of standard setup documents or catalogs,

which a cybercriminal could take advantage of.

Assuming weaknesses are the doorway to the local area, it's the

misconfigurations that assailants influence to vindictive program their way to the

planned targets. Finding them is a needle in the bundle, as they can be situated across

any part in an association's frameworks, like its servers, working frameworks,

applications, and programs. Absence of deceivability and incorporated means to

remediate misconfigurations makes associations succumb to misconfiguration

assaults.

Present day local area foundations are particularly muddled and portrayed by

utilizing ordinary change; associations can without issues disregard fundamental

security settings, which incorporates new organization gadget that could keep up with

default setups. Regardless of whether provision secure designs to endpoints,

reviewing arrangements and wellbeing controls consistently to see the inescapable

setup stream. Frameworks exchange, new framework is brought into the organization;

patches are executed all adding to misconfigurations.

2.1.6 Sensitive Data Exposure

 Delicate information is any data that is intended to be shielded from

unapproved access. Delicate information can incorporate anything from actually

recognizable data (PII, for example, Federal retirement aide numbers, to banking data,

to login qualifications. At the point when this information is gotten to by an assailant

because of information break, clients are in danger for delicate information openness.

9

 Any time an association needs security strategies, information is in danger of

openness. To improve methodologies of relief on potential application attacks,

advancement and security groups should initially have a solid handle on the manners

in which that information is inclined to openness including:

 Information on the way: Information on the way is

profoundly defenseless, particularly while getting across

unprotected channels or to the application programming point

of interaction (Programming interface) that permits applications

to speak with each other. One assault that objectives

information on the way is a man-in-the-center assault, which

captures traffic and screens correspondences.

 Information very still: is housed in a framework, be it a PC or

organization. It is believed to be less powerless without the

danger of assaults in passing, yet all at once more important.

Aggressors utilize various vectors to get tightly to house

information, frequently utilizing malware like diversions or PC

worms. Both of these get entrance into frameworks lodging

information through direct downloading from a vindictive USB

drive or by clicking pernicious connections that are emailed or

text. On the off chance that information is housed in a server,

assailants could get tightly to data put away in records beyond

the typical verified areas of access.

2.1.7 Missing Function Level Access Control

 The missing capability level gain passage to influence weakness allows in

clients to perform capacities that should be confined, or allows them to get to

resources that should be incorporated. Typically, capabilities and assets are

straightforwardly safeguarded in the code or by design settings, yet it's not generally

simple to accurately do. Assailants who suspect that capabilities or assets are not as

expected safeguarded should initially get sufficiently close to the framework they

need to assault. To take advantage of this weakness, they should have consent to send

genuine Programming interface calls to the endpoint.

10

 OWASP gives an illustration of this weakness of an enrollment interaction set

up to permit new clients to join a site. It would presumably utilize a Programming

interface GET call, similar to this:

GET/programming interface/welcomes/{invite_guid}

The noxious client would get back a JSON with insights regarding the

welcome, including the client's job and email. They could then change GET to POST

and furthermore hoist their welcome from a client to an administrator utilizing the

accompanying Programming interface call:

POST/programming interface/welcomes/new

{"email":"shadyguy@targetedsystem.com","role":"admin"}

Just administrators ought to have the option to send POST orders, however on

the off chance that they are not as expected got, the Programming interface will

acknowledge them as authentic and execute anything the aggressor needs.

2.1.8 Cross-Site Request Forgery

 Cross-Site Request Forgery (CSRF) is an assault that powers an end client to

execute undesirable activities on a web application in which they're presently verified

[9]. With a little assistance of social designing, (for example, emailing a connection or

talk), an assailant might deceive the clients of a web application into executing

activities of the aggressor's picking. In the event that the casualty is an ordinary client,

an effective CSRF assault can compel the client to perform state changing

solicitations like moving assets, changing their email address, etc.

 CSRF attacks target usefulness that causes a state change on the server, for

example, changing the casualty's email address or secret phrase, or buying something.

Driving the casualty to recover data doesn't acquire an assailant on the grounds that

the aggressor doesn't get the reaction, the casualty does. Accordingly, CSRF attacks

target state-evolving demands.

 There are different methodologies in which an end client might be fooled into

stacking data from or submitting data to a web utility. To execute an attack, the initial

comprehend how to produce a legitimate malevolent solicitation for our casualty to

execute. Allow this to think about the accompanying model: Alice wishes to move

$100 to Sway utilizing the bank.com web application that is defenseless against

11

CSRF. Maria, an assailant, wants to fool Alice into sending the cash to Maria all

things considered. The attack will include the accompanying advances.

 In the event that the application was intended to basically utilize GET

solicitations to move boundaries and execute activities, the cash move activity may be

diminished to a solicitation like:

 GET http://bank.com/transfer.do?acct=BOB&amount=100 HTTP/1.1

 Maria currently settles on a decision to exploit this web application weakness

the utilization of Alice on the grounds that the person in question. Maria first develops

the accompanying make the most URL which will switch $100,000 from Alice's

record to Maria's record. Maria takes the first order URL and replaces the recipient

name with herself, raising the exchange sum altogether simultaneously:

 http://bank.com/transfer.do?acct=MARIA&amount=100000

The social designing part of the assault fools Alice into stacking this URL

when Alice is signed into the bank application. This is generally finished with one of

the accompanying procedures:

 sending a spontaneous email with HTML content

 establishing an adventure URL or content on pages that are most likely

to be visited through the casualty while they're moreover doing internet

banking.

The endeavor URL can be veiled as a normal connection, empowering the

casualty to click it:

VIEW

My Photos!

Or on the other hand as a 0x0 phony picture:

<img src="http://bank.com/transfer.do?acct=MARIA & amount=100000"

width="0" height="0" border="0">

Assuming this picture tag was remembered for the email, Alice wouldn't see

anything. In any case, the program will in any case present the solicitation to

bank.com with practically no visual sign that the exchange has occurred.

The bank present utilizes post and the weak solicitation seems this way:

12

POST http://bank.com/transfer.do HTTP/1.1 acct=BOB & amount=100

Such a solicitation can't be conveyed utilizing standard an or IMG labels yet

can be conveyed utilizing a Structure labels:

<form action="http://bank.com/transfer.do method=POST">

<input type="hidden" name=acct" value=MARIA"/>

<input type="hidden" name="amount" value=100000"/>

<input type="submit" value="View My Photos"/>

</form>

This structure will require the client to tap on the submit button, yet this can be

additionally executed naturally utilizing JavaScript:

<body onload="document.forms [0].submit ()">

<structure…..>

2.1.9 Using Components With Know Vulnerabilities

 This specific weakness can carry enormous gamble to the business particularly

due to its simplicity of exploitability. On the off chance that the aggressor can figure

out the weak parts which a specific application is utilizing, it tends to be handily taken

advantage of since the endeavor techniques are now out there in the web and the

aggressor basically needs to utilize it and can cause a negligible effect, or serious or

even total information split the difference, or lead to server/have takeover for

associations.

This weakness can undoubtedly sidestep the application security safeguards

and can likewise go about as a turning point to empower different assaults for instance

programmers might summon a web administration with full consent without giving an

approval token or direct a remote code execution. The shortcoming while at the same

time utilizing weak parts incorporate infusion, XSS and broken admittance control.

Developers must consider the consequences of using dependencies and be

fully aware of all of the dependencies they use. Additionally, all dependencies ought

to be entered into an inventory system that can provide a straightforward overview of

all the dependencies being utilized. Although developers should keep in mind which

13

automatic actions are carried out, it is best to perform all of these actions

automatically.

In order to avoid being overlooked, these scans should be performed on a

regular basis, preferably automatically. Because of how the customer interacts with

the web application or program, it is best to perform these scans using an external

system. Additionally, this will guarantee that no other servers will be slowed down by

the resources required for these scans.

2.1.10 Un-validated Redirects and Forward

 Nullified Diverts and forward Weakness, likewise occasionally known as URL

Redirection Weakness, is a kind of pernicious program found inside the web

application. In this kind of weakness, the aggressor uses to control the URL and sends

it to the person in question. When the casualty opens the URL, the site diverts it to a

pernicious site or site to which the aggressor believes that the client should get

diverted.

The aggressor regularly uses to exploit this type of Weakness with the help of

manual control in the URL or with the assistance of a few devices like Burp suite,

which provides an assailant with a few sorts of approaches in light of which he can

control the URL to get Diverted.

2.2 Preventive Measure for CSRF

 The system describes many CSRF prevention mechanisms. This includes

Using a Secret Cookie, Only accepting POST request, Multi step transaction,

Checking Referrer Header, Anti csrf-token. In this system, the anti-csrf token is used

to prevent the csrf attack.

2.2.1 Using a Secret Cookie

 The severe worth will keep the treat from being dispatched via the program to

the objective site in all pass-site riding setting, regardless of whether following an

ordinary hyperlink. A monetary organization site yet would have no desire to permit

any conditional pages to be connected from outside destinations, so the severe banner

would be generally reasonable.

14

The default remiss worth gives a sensible harmony among security and ease of

use for sites that need to keep up with client's signed in meeting after the client shows

up from an outside connect. The meeting treat would be permitted while following an

ordinary connection from an outer site while obstructing it in CSRF-inclined demand

techniques like POST. Just cross-site-demands that are permitted in careless mode are

the ones that have high level routes and are likewise protected HTTP techniques.

Illustration of treats utilizing this characteristic:

Set-Treat: CookieName=CookieValue; SameSite=Lax;

Set-Treat: CookieName=CookieValue; SameSite=Strict;

Assuming the worth is going to Severe, it moves toward that any solicitation

beginning from an outsider site to your site might have all treats wiped out by means

of the program. It „smiles the most solid putting and empowers in forestalling

untrusted lawful solicitations from being delivered.

Setting the worth to Remiss doesn't eliminate the treats for any GET demands.

This gives a consistent encounter to your client when they follow joins from different

destinations to your site.

2.2.2 Only accepting POST request

 Applications can be created to just acknowledge POST demands for the

execution of business rationale. The misinterpretation is that since the aggressor can't

develop a malevolent connection, a CSRF attack can't be executed. There are various

procedures where in an assailant can fool a victim into recording a manufactured

distribute demand, alongside a simple shape facilitated in an assailant's site with

stowed away qualities. This structure can be set off naturally by JavaScript or can be

set off by the casualty who figures the structure will accomplish something different.

2.2.3 Multi step transaction

 Multi-Step exchanges are certainly not a sufficient counteraction of CSRF.

Inasmuch as an aggressor can are expecting or derive each step of the finished

exchange, then CSRF is conceivable.

15

2.2.4 Checking Referrer Header

 The Referrer header is an old header that contains the URL the client came

from. In the event that you click on a connection, the URL of the ongoing page is sent

in the Referrer header to the mentioned connects. At the end of the day, this could be

utilized to figure out where the client came from, which can assist us with hindering

cross-site demands. Notwithstanding, there are two issues with the Referrer header.

In the first place, the Referrer header is ineffectively determined. It isn't

determined on which demands the header ought to be sent, or regardless of whether it

ought to be sent by any means. Despite the fact that most programs in all actuality do

send this header, there is no particular that says they ought to.

Also, the Referrer header releases the entire URL to different areas. Assuming

the URL contains delicate information, for example, the meeting token or some other

identifier that is spilled when the URL is sent in the Referrer header when the client

clicks a connection. This is the explanation that numerous enemy of infection

arrangements take the Referrer header from all HTTP demands, to try not to release

delicate information in the URL. Since so many enemy of infection arrangements

strip the header, we can't depend on the Referrer header to be available.

2.2.5 Anti csrf-token

A CSRF Token is confidential, one of a kind and unusual worth a server-side

application produces to safeguard CSRF weak assets [2]. The tokens are created and

presented by utilizing the server-side application. After the solicitation is made, the

server side application analyzes the two tokens situated inside the individual meeting

and inside the solicitation. On the off chance that the token is missing or doesn't

match the worth inside the client meeting, the solicitation is dismissed, the client

meeting ended and the occasion logged as a potential CSRF assault.

Tokens is used to prevent attackers from sending requests through a victim are

anti-CSRF.A pair of cryptographically related anti-CSRF tokens that a user receives

to validate his requests. For instance, when a user sends a request to the webserver for

a form-filled page, the server calculates two cryptographically related tokens and

sends them to the user as a response. The Set-Cookie header of the response contains

the other token, which is sent as a hidden field in the form. These two tokens are sent

16

back to the server when the user submits the form: one in a cookie and one as a

GET/POST parameter (which is sent to the user as a hidden form field).Following

that, the server checks these two tokens for forgery or malformation. The server

validates the request and performs the appropriate function if the tokens match the

cryptographic mechanism; otherwise, the server returns an error.

CSRF token is produced utilizing a cryptographic strength pseudo-irregular

number generator (PRNG), cultivated with the timestamp when it was made and a

static mystery. The token submits to the client inside a secret field of the client submit

structure. The symbolic will then be incorporated as a solicitation boundary when the

structure is submitted:

<input type="hidden" name="csrf-token" value="CIwNZNlR4XbisJF39I8

yWnWX9wX4WFoz"/>

2.3 Types of Pseudorandom Number Generator

A pseudorandom number generator (PRNG) also known as a deterministic

random bit generator, is an algorithm for generating a sequence of numbers whose

properties approximate the properties of sequences of random numbers.

2.3.1 Tausworth Generator

Tausworth Generator is a sort of pseudorandom number generator, which

produces irregular pieces.

The following equation-

 Xn+1 = (A1xn+A2xn-1+---+Akxn-k+1) mod 2 (2.1)

Where,

 Xi, Ai {0, 1} for all i.

Since TG just delivers bits, it is too delayed to possibly be helpful. A strategy

to accelerate is to utilize a unique structure called three fold based TG.

Using XOR operation

 Ii=Ii-250 XOR Ii-147 (2.2)

Where XOR shows a bitwise selective or activity. It likewise has an extremely

lengthy inside express (the last 250 whole numbers). Subsequently the cycle length is

extremely lengthy.

17

2.3.2 Linear Congruential Generator (LCG)

 Direct Congruential Generator (LCG) creates long irregular line of number

with the grouping rehashing eventually. The irregular line of significant worth not

entirely settled by a proper number called a seed.

Xn+1 = (aXn+b) mod m (2.3)

Where X is the sequence of pseudo-random values, and

m =modulus and m>0

a =the mutiplier and 0 < a < m

c =the increment and 0 < b < m

X0 =the starting seed value and 0 ≤ x0 < m

The degree arbitrary numbers produced is not exactly the scope of the number

utilized in the computation. The produced arbitrary numbers xi are supposed to be

occasional where the period is in every case less ≤ m and all xi are in the stretch 0 ≤ xi < m

A LCG with enormous enough state can finish even tough factual

assessments; a modulo-2 LCG which returns the high 32 pieces passes. An ideal

arbitrary number generator with 32 pieces of result is supposed to start copying before

yields. Any PRNG whose result is its full, shortened state won't create copies until its

full period passes, an effectively perceptible factual defect.

2.4 HMAC using Hash Function

HMAC stands for (keyed-hash message authentication code or hash-based

message authentication code) is a specific type of message authentication code

(MAC) involving a cryptographic hash function and a secret cryptographic key[5]. As

with any MAC, it can be used to simultaneously verify both the information integrity

and authenticity of a message. Any cryptographic hash function, such as SHA-1 or

SHA-3, may be used in the calculation of an HMAC; the resulting MAC algorithm is

termed HMAC-X, where X is the hash function used (e.g. HMAC-SHA256). The

cryptographic strength of the HMAC depends upon the cryptographic strength of the

underlying hash function, the size of its hash output, and the size and quality of the

key. HMAC does not encrypt the message. Instead, the message (encrypted or not)

must be sent alongside the HMAC hash. Parties with the secret key will hash the

message again themselves, and if it is authentic, the received and computed hashes

will match.

https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/Cryptographic_strength

18

 () ((' ⊕ opad) || H ((K' ⊕ ipad) || m)) (2.4)

 K' = H (K) K is a larger than block size, K otherwise

Where

 H is a cryptographic hash function

 m is the message to be authenticated

 K is the secret key K' is a block-sized key derived from the secret key,

 || denotes concatenation

 ⊕ denotes bitwise exclusive or (XOR)

opad is the block-sized outer padding

ipad is the block-sized inner padding

2.4.1 MD5 Hash

 MD5 is a cryptographic hash capability calculation that accepts the message as

contribution of any length and changes it into a fixed-length message of 16 bytes.

MD5 calculation represents the message-digest set of rules. The result of MD5

(Condensation length) is consistently 128 pieces. MD5 became advanced in 1991

through Ronald Rivest. MD5 creates a similar hash capability for various data

sources. MD5 gives unfortunate security over SHA1. MD5 has been viewed as an

uncertain calculation. So presently utilizing of SHA256 rather than MD5.

19

Figure 2.1 MD5 Hashing Algorithm

Algorithm: MD5 Hashing Algorithm

Input = 5bit array variable

Output = character

Begin

 Initialize variables:

 Append 1 bit to message

 Append 0 bit until message length in bits = 448 (mod 512)

 Append original length in bits mod 2
64

 to message

 For each 512-bit chunk of padded message do

 Break chunk into sixteen 32-bit words M[j], 0 ≤ j ≤ 15

 For i from 0 to 63 do

 var int F, g

 If 0≤ i ≤ 15 then

 F: = (B and C) or ((not B) and D)

 g: = i

 Else if 16 ≤ i ≤ 31 then

 F: = (D and B) or ((not D) and C)

 g: = (5×I + 1) mod 16

 Else if 32 ≤ i ≤ 47 then

 F: = B xor C xor D

 g: = (3×i + 5) mod 16

 Else if 48 ≤ i ≤ 63 then

 F: = C xor (B or (not D))

 g: = (7×i) mod 16

 F: = F + A + K[i] +M[g], A: = D, D: = C, C: = B, B:= B + leftrotate (F, s[i])

 End for

 Adding hash, a0:= a0 + A, b0:= b0 + B, c0:= c0 + C, d0:= d0 + D

 End for

 Var char digest [16]:= a0 append b0 append c0 append d0

End

20

2.4.2 SHA-1 Hash Algorithm

 SHA-1 is the abbreviation for Secure Hash Algorithm 1, utilized for hashing

information and declaration documents. Each piece of information delivers a novel

hash that is completely non-duplicable by some other piece of information. SHA-1

works by taking care of a message as a piece string delivering a 160-piece hash

esteem known as a message digest. SHA-1 (Secure Hash Calculation 1) is a

cryptographically broken yet at the same time broadly utilized hash capability which

takes info and produces a 160-bit (20-byte) hash esteem known as a message digest. It

was planned by the US Public safety Office, and is a U.S. Government Data Handling

Standard.

21

Figure 2.2 SHA-1 Hash Algorithm

Algorithm: SHA-1 Hashing Algorithm

Input = an array 5 items long

Output = hash code

Begin

 Initialize variables:

 Append the bit '1' to the message.

 Append 0 ≤ k < 512 bits '0', such that the resulting message length in bits.

 Append ml, the original message length in bits, as a 64-bit big-endian integer.

 Break message into 512-bit chunks

 for each chunk

 break chunk into sixteen 32-bit big-endian words w[i], 0 ≤ i ≤ 15

 for i from 16 to 79

 w[i] = (w [i-3] xor w [i-8] xor w[i-14] xor w[i-16]) leftrotate 1

 for i from 0 to 79

 if 0 ≤ i ≤ 19 then

 f = (b and c) or ((not b) and d)

 k = 0x5A827999

 else if 20 ≤ i ≤ 39

 f = b xor c xor d

 k = 0x6ED9EBA1

 else if 40 ≤ i ≤ 59

 f = (b and c) or (b and d) or (c and d)

 k = 0x8F1BBCDC

 else if 60 ≤ i ≤ 79

 f = b xor c xor d

 k = 0xCA62C1D6

 temp = (a leftrotate 5) + f + e + k + w[i]

 e = d

 d = c

 c = b leftrotate 30

 b = a

 a = temp

End for

End for

 output hash = (h0 leftshift 128) or (h1 leftshift 96) or (h2 leftshift 64) or (h3 leftshift 32) or h4

End for

End

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Circular_shift

22

CHAPTER 3

DESIGN OF THE PROPOSED SYSTEM

The main goal of this thesis is to prevent Cross-Site Request Forgery (CSRF)

attack using Anti-csrf Token. The Blum Blum Shub algorithm is used to generate the

token in the server site. Firstly, the overview of the proposed system of system

architecture is described. And each of the algorithms that take part in the main program

is described in a detailed explanation. This chapter mainly focuses on the design of the

system.

3.1 Overview of the Proposed System

The proposed system consists of the algorithm of proposed system, system

flow and CSRF attack flow. The expected architecture of the system is shown in

Figure (3.1).

23

Figure 3.1 System Flow Diagram of the Proposed System

Server
Start

Login

Input data in transaction form

and process the transaction

Confirm transaction

form

Request token from

server

Insert token in the

form

Submit transaction

form

View transaction

history

Request is

completed.

Web Server

Server generates token with key

(sessionID+timestamp) by using

random number generator

Store token at

server site

Generate token by using

HMAC hash (sha-256)

Verify token in received

transaction form

Token

Match?

Time

stamp<token

expiry time

Message Alert to

Customer

“Request login Form has

attacker.”

Transaction is valid

Process the

transaction request

Message Alert to Customer:

“Request Time Out”

End

Client

Request data

from server

Send the

request

Request

token

Transfer token

with hidden field

Submit form

to server

Yes

No

No

Token is match in

received transaction form

Yes

24

In figure (3.2), the system shows the creation of the csrf attack. The attacker

creates the malicious request sending to web application for a fund transfer. The

attacker embeds the request into hyperlink and sending to the website. Website

validates request and transfers funds from the client‟s account to the attacker.

Figure 3.2 CSRF Attack System Flow

Login

Start

The attacker forges a request for a

fund transfer to a website

The attacker embeds the request into a

hyperlink and sends it to client

Client clicks on the link, inadvertently

sending the request to the website.

Website validates request and transfers funds

from the client‟s account to the attacker.

End

25

Figure 3.3 Algorithm of Proposed System

 Begin

Step 1: Create a CSRF Token

1.1 Start a session on the server.

1.2 Generate a user session ID(using a random number generator)

1.3 Keep Token Expire Time

1.4 Generate a CSRF Token using key k

1.4.1 Generate HMAC (user session ID+timestamp)

 Step 2: Include the token in the form (i.e. HMAC+timestamp)

 2.1 Inject the token into the hidden field of the user submit form

 Step 3: Validate the token

 3.1 Regenerated the token with the same key k (parameter are session ID from the

request and timestamp in the received token.

 3.2 If (“If the HMAC in the token and the one generated in this step match”) {

 If (Timestamp received is less than token expire time) {

 Request is treated as legitimate and can be allowed ;}

 Else {Request Time Out ;}

 End If

 Else if (“If the HMAC in the token and the one generated in this step not

match”)

 {Reject the Process ;}

End If

End If

End

Algorithm of Proposed System

Input = banking URL, attack link

Output= secure transaction or attack

26

3.2 Blum Blum Shub Generator

The Blum Blum Shub (BBS) generator is perhaps the earliest and most

popular cryptographically secure pseudo-arbitrary piece generators. The Blum Shub is

a pseudorandom number generator proposed in 1986 by LenoreBlum, Manuel Blum

and Michael Shub. Blum Shub takes the structure-

 xi+1 = xn
2
mod M (3.1)

Where M = pq is the result of two enormous primes p and q. At each step of

the calculation, some result is gotten from xn+1; the result is normally the piece

equality of xn+1 or at least one of the most un-critical pieces of xn+1. The seed x0

ought to be a number that is co-prime to M (for example p and q are not elements of

x0) and not 1 or 0. The two primes, p and q, ought to both be compatible to 3 (mod 4).

The generator BBS fills in as follow:

Figure 3.4 Blum Blum Shub Algorithm

Algorithm: Blum Blum Shub Algorithm

Input = two prime number

Output = random sequence

Begin

 Compute n = pq .

 Select a random integer 0 <S < n (the seed) such that gcd (S, n) =1

 Compute y = S
2
 mod n

 For i from 1 to N do the following:

 yi = yi-1
2

mod n

 xi = yi mod 2 the least significant bit of yi

 The output sequence is x1, x2, …, xi .

End

27

3.3 SHA-256 Hash Algorithm

 SHA-256 represents Secure Hash Algorithm 256-digit and it's utilized for

cryptographic security. A hash isn't 'encryption' - it can't be decoded back to the first

text. It is remarkably difficult to reproduce the underlying information from the hash

esteem. To break a hash to want every one of the 64 of the digits to coordinate. It

would require a long investment to break a SHA-256 hash utilizing all the whole

organization.

28

Figure 3.5 SHA-256 hashing Algorithm

Algorithm: SHA-256 hashing Algorithm

Input = an array 8 items long

Output = hash values

 Begin

 Initialize hash values- The compression function uses 8 working variables, a through h

 Initialize array of round constants- k [0..63] := [428a2f98, 71374491, b5c0fbcf, e9b5dba5,

3956c25b, 59f111f1, 923f82a4,…]

 Pre-processing (Padding) - begin with the original message of length L bits

 - append a single '1' bit

 - append K '0' bits, where K is the minimum number

 Expanded message blocks w0, w1,…, w63

 First 16 words w [0...15] of the message schedule

 wi=m
(j)

i for i=0,1,…,15, and

 For i=16 to 63

 σ0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor (w[i-15] rightshift 3)

 σ1 := (w[i- 2] rightrotate 17) xor (w[i- 2] rightrotate 19) xor (w[i- 2] rightshift 10)

 w[i] := w[i-16] + σ0 + w[i-7] + σ1

 Initialize working variables to current hash value

 for i from 0 to 63

 s1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)

 ch: = (e and f) xor ((not e) and g)

 temp1:= h + s1 + ch + k[i] + w[i]

 s0:= (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)

 maj := (a and b) xor (a and c) xor (b and c)

 temp2:= s0 + maj

 Produce the final hash value

 hash: = h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7

End

29

CHAPTER 4

IMPLEMENTATION OF THE PROPOSED SYSTEM

4.1 Experimental Setup

The purpose of this chapter is to present the implementation, design, and

performance evaluation of the proposed system. The banking application testing

system uses the anti-csrf token to prevent the csrf attack the web application.

4.2 Implementation of the System

When the system starts, the user can see the main form of the system as shown

in Figure (4.1). The main form consists of the normal banking form and preventing

the attack using anti-csrf token form.

Figure 4.1 Main Form of the Proposed System

30

Figure 4.2 Creating a Malicious Link Form

In Figure (4.2), The attacker creates a malicious link to trick the user. The link

sends within a hyperlink. Send button is used to make the process.

The two options are used to enter the banking website. User reaches home page

in Figure (4.3). In the home page, the user can view user account, user name, NRC

number, phone number, email, user address and available amount. And then, the user

can make withdraw funds and transfer funds to another user. After the user makes the

transaction,the results show in the transaction history. And the user can logout from the

banking application.

Figure 4.3 Home Page Form

31

Figure 4.4 Withdraw Form

In withdraw form, the user can make withdraw process from the account. In the

form consists of account number, user name, NRC number, phone number, email,

address and the current amount. The user can enter the withdraw amount in the entry

box. Shown in Figure (4.4). Go button is used to make the process.

Figure 4.5 Transfer Form

32

In the transfer form, the user can transfer amount to another account. The user

enters the transfer account and the amount in the entry box. The user uses the transfer

button to make the process in Figure (4.5). And then, in the confirm page consists of

transfer account name and the transfer amount. The confirm button is used to process the

transaction.

Figure 4.6 Account Transfer Confirmation Form

In Figure (4.6), the user uses confirm button to transfer amount. In Figure (4.7),

the user can make the cancel transaction in within 5 seconds. The detail transaction

shows in Figure (4.8) when the user doesn‟t make the cancel transaction.

Figure 4.7 Cancel Transaction Form

33

Figure 4.8 Detail Transaction Form

In the transaction history form, the user can view the history. The form consists

of transaction ID, transaction Date, user1, user2, amount and transaction Type in Figure

(4.9).

Figure 4.9 Transaction History Form

34

The attacker builds an exploit URL tricking the user into executing the action

with social engineering. In Figure (4.10), the attack sends a malicious link and the user

clicks the link. The attacker injects to the bank application and changes name and the

transfer amount at the same time. The amount reaches to the attacker account.

Figure 4.10 Attack Form

4.3 Experimental Results

The proposed system prevents the csrf attack using anti-csrf token. Blum Blum

Shub is used to generate token and hash function uses HMAC-sha 256. The attack can

inject to the bank application when the user enters with the normal bank application. The

attacker sends the malicious link to the user and the user clicks the link when logged to

bank application. The attacker gets the user authorization and changes name, amount to

his account. The user uses anti-csrf token in the application, the attack cannot inject to

bank application. The user gets the secure transaction when making the transfer amount.

35

Figure 4.11 Non-secure Transaction and Secure Transaction Form

The proposed system was evaluated in terms of in percentage. In detection

attack, without anti-csrf token in 100 times, the attack affected 100 % and defense in

0%. In detection attack, with anti-csrf token in 100 times, the attack affected 0% and

defense in 100%. In the system, the detection of the attack is showed with the

percentage in table (4.1).

 Table (4.1) Detection of the Attack

36

Figure 4.12 Attack Detection Rate with Graph

In figure (4.12), shows attack detection rate with graph of the proposed

system. in the system shows attack affected rate and defense rate with percentage.

37

CHAPTER 5

CONCLUSION

 In this thesis, the prevention of the cross-site request forgery (CSRF) attack is

used the anti-csrf token. This thesis presents the proposed algorithm, Blum Blum Shub

Algorithm to generate anti-csrf token and HMAC sha-256 uses to generate hash and

to transfer the token within the hidden field. The experimental results are produced

the secure transaction. The system is implemented using C#.Net programming

language on the web platform. In this chapter, the summary of the main conclusion

and advantages, limitations, and further extensions are suggested.

 The proposed system uses URLs as input for banking web application. The

attack sends a malicious link to the target web application. The system prevents the

attack vulnerability using the token checks at the server side. This system is to show

the secure transaction, the attack transaction, record transaction history and prevents

the csrf attack using the anti-csrf token.

 The experimental results of the proposed algorithm produce percentage result

with the graph. The attack detects in 100 times, the user uses two types of web

application, sign in without token and sign in without token application. The attack

detects in 100 times, the user uses sign in with token application that the attack

affected in 0 % and defense in 100%. The attack detects in 100 times, the user uses

sign in without token application that the attack affected in 100 % and defense in 0%.

 In conclusion, the proposed Blum Blum Shub algorithm is a secure,

randomness, unique. And it helps web developers to secure their web applications

from being attacked.

5.1 Limitation and Further Extension

In this study, the proposed system does not consider other web application

vulnerabilities such as buffer overflow, XSS, command injection, and so on. The

future work will be dedicated to prevent all vulnerabilities in websites and to get

secure transaction when the transferring funds in web application.

38

AUTHOR’S PUBLICATION

[1] Phyu Phyu Win, Yi Mon Thet, University of Computer Studies, Yangon,

Myanmar, “Prevention of Cross-Site Request Forgery Using Anti-CSRF Token”, to

be published in the Proceedings Journal Organizing Committee PSC 2022, Yangon,

Myanmar, 2022.

39

REFERENCES

[1] A.Barth, C.Jackson, and J.C.Mitchell. “Robust defenses for cross site request

forgery”. In Proc. ACM Conference on Computer and Communications

Security (CCS), Oct, 2008.

[2] Anti-csrf token, https://blog.insiderattack.net/anti-csrf-tokens-to-prevent-

cross-site-request-forgery-csrf.

[3] Banking System prevent from the Attack, https://blog.nettitude.com/how-can-

banks-protect-themselves-from-cyber-attacks.

[4] Emil Semastin, Sami Azam,Preventive Measures for Cross Site Request

Forgery Attacks on Web-based Applications, College of Engineering, IT and

Environment, Charles Darwin University, Australia, 2018.

[5] HMAC, hash-based message authentication code,

https://en.wikipedia.org/wiki/HMAC

[6] Lenore Blum, Manuel Blum and Michael Shub, Blum Blum Shub Algorithm,

https://en.wikipedia.org/wiki/Blum_Blum_Shub, 1986.

[7] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. “Preventing cross

site request forgery attacks”.In IEEE International Conference on Security and

Privacy in Communication Networks (SecureComm), 2006.

[8] OWASP. Top ten most critical web applications

securityvulnerabilities.https://www.owasp.org/index.php/Top_10_2013Top_1

0.Forgeries.www.securityfocus.com/archive/1/19S90,2001.

[9] OWASP. (2017), CSRF prevention cheat sheet.

https://www.owasp.org/index.php/CrossSite_Request_Forgery_(CSRF)_Preve

ntion_Cheat_Sheet.

https://blog.insiderattack.net/anti-csrf-tokens-to-prevent-
https://blog.insiderattack.net/anti-csrf-tokens-to-prevent-
https://blog.nettitude.com/how-can-banks-protect-themselves-from-cyber-attacks
https://blog.nettitude.com/how-can-banks-protect-themselves-from-cyber-attacks
https://en.wikipedia.org/wiki/Blum_Blum_Shub
https://www.owasp.org/index.php/CrossSite_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/CrossSite_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

40

[10] Ozgur Yildirim, Daniel Gerep, SHA-256 Algorithm, 2020.

https://blog.boot.dev/cryptography/how-sha-2-works-step-by-step-sha-256/

[11] Sooel Son, “Prevent Cross site Request Forgery Attack PCRF”, Global science

journals (GSJ) userweb.cs.utexas.edu/ Samuel/PCRF/Final_PCRF_paper.pdf.

[12] Sentamilselvan. K, Lakshmana Pandian. S “: Preventive Measures”, Assistant

Professor Kongu Engineering College Perundurai, Tamilnadu, 2014.

[13] W. Zeller and E. W. Felten, “Cross-Site Request Forgeries: Exploitation and

Prevention,” Technical Report, Princeton University, 2008.

https://blog.boot.dev/cryptography/how-sha-2-works-step-by-step-sha-256/

