
UTILIZING ROBERTA INTERMEDIATE LAYERS
AND FINE-TUNING FOR SENTENCE

CLASSIFICATION

By

Eaint Thet Hmu Soe
B.C.Sc.

A Dissertation Submitted in Partial Fulfillment of the
Requirement for the Degree of

Master of Computer Science

M.C.Sc.

University of Computer Studies, Yangon

December 2022

ACKNOWLEDGEMENTS

I would like to express my respectful thanks to Dr. Mie Mie Khin, Rector of the

University of Computer Studies, Yangon, for her kind permission to submit this thesis.

I wholeheartedly express my sincere gratitude to Dr. Si Si Mar Win and

Dr. Thin Zar Thaw for their administrative support as Deans of Master Course and

Professors throughout the completion of this thesis.

I especially would like to thank my supervisor, Professor Dr. Win Pa Pa, for

introducing and supporting me to this research area and for her advice, guidance and

careful editing during the preparation of this thesis.

I would also like to thank Dr. Aung Nway Oo for letting my defense be an

enjoyable moment, and for your brilliant comments and suggestions.

I would like to extend my deepest gratitude to Daw Hnin Yee Aung, Lecturer,

Department of English, for editing my thesis paper from the language point of view.

I would like to appreciate the suggestions and recommendations of the teachers

who attended all my seminars.

I am grateful to my parents and the rest of my family for their continuous support

and encouragement during my graduate studies at UCSY.

I sincerely appreciate Bagan Innovation Technology for supporting the dataset for

my thesis.

Finally, I would like to thank all of the staff, teachers from the University of

Computer Studies, Yangon for their support.

i

ABSTRACT

Text classification becomes more and more challenging due to a scarcity of

standardized labeled data in the Myanmar NLP domain. The majority of the existing

Myanmar research has relied on models of deep learning that significantly focus on

context-independent word embeddings, such as Word2Vec, GloVe, and fastText, in which

each word has a fixed representation irrespective of its context. Meanwhile,

context-based pre-trained language models such as BERT and RoBERTa recently

revolutionized the state of natural language processing. In this paper, the experiments are

conducted to enhance the performance of classification in sentiment analysis by utilizing

the transfer learning ability of RoBERTa. Existing pretrained model based works only

utilize the last output layer of RoBERTa and ignore the semantic knowledge in the

intermediate layers. This research explores the potential of utilizing RoBERTa

intermediate layers to enhance the performance of fine-tuning of RoBERTa. To show the

generality, Myanmar pretrained RoBERTa model (MyanBERTa)[1] and multilingual

pretrained model (XLM-roBERTa)[3] are also compared. The effectiveness and

generality of intermediate layers were proved and discussed in the experimental result.

ii

CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

CONTENTS iii

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF EQUATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Overview of the Research 2

1.2 Problem Statement 2

1.3 Objective of the Research 3

1.4 Contribution of the Research 3

CHAPTER 2 RELATED WORK 5

CHAPTER 3 LITERATURE STUDY 7

3.1 Levels of Sentiment Analysis 7

3.2 Sentiment Analysis Approaches 8

3.2.1 Rule-based Approach 8

3.2.2 Machine Learning Approach 9

3.2.2.1 Support Vector Machine 9

3.2.2.2 Naïve Bayes Method 9

3.2.2.3 Decision Tree (DT) 10

iii

3.2.3 Deep learning Approach 10

3.2.3.1 Long Short-Term Memory Model (LSTM) 11

3.2.3.2 Gated Recurrent Unit (GRU) 12

3.2.4 Transformer-based Approach 12

3.2.4.1 BERT 12

3.2.4.2 ALBERT 13

3.2.4.3 RoBERTa 14

3.3 Word Embedding Techniques 14

3.3.1 TF-IDF 15

3.3.2 Word2vec 16

CHAPTER 4 METHODOLOGY 17

4.1 Explanation of the Transformer, BERT and RoBERTa Architecture 17

4.1.1 Transformers 17

4.1.2 BERT 19

4.1.2.1 Masked Language Modeling 20

4.1.2.2 Next Sentence Prediction 20

4.1.2.3 Multi-Head Self Attention 21

4.1.3 RoBERTa 22

4.1.3.1 Static vs. Dynamic Masking 23

4.2. Description of the Transfer Learning 24

4.3. Learning rate scheduler and loss function 25

4.3.1 Learning Rate Scheduler 25

4.3.2 Loss Function 27

iv

4.4. Visualization algorithms explanation of PCA and word2vec 27

4.4.1 Principal Component Analysis (PCA) 27

4.4.2 Word2vec 29

4.5 Pooling Approaches 30

4.5.1 Baseline approach 30

4.5.2 LSTM pooling approach 30

4.5.2.1 LSTM Architecture 30

4.5.3 Weighted pooling approach 31

4.6 The System Architecture 32

CHAPTER 5 EXPERIMENTS AND RESULTS 36

5.1 Experiments 36

5.1.1 DataSet 36

5.1.1.1 Data Preprocessing 37

5.1.1.2 Word Tokenization 37

5.1.1.3 Name Normalization 38

5.1.1.4 Data Analysis 38

5.2 Representation from the Pretrained Model 41

5.3. Experiment Setting 43

5.3.1 System Design 43

5.3.2 Experimental Setup 45

5.4 Experiment Results 46

5.5 Performance Criteria 51

5.6 Evaluation 51

5.7 User Interface Design of the System 53

v

CHAPTER 7 CONCLUSION 59

7.1 Future Work 60

Publication 61

References 62

vi

LIST OF FIGURES

Figure Page

Figure 3.1 Levels of Sentiment Analysis 8

Figure 3.2 LSTM Network 11

Figure 3.3 GRU Network 12

Figure 3.4 BERT Architecture 13

Figure 3.5 Word2vec Representation Illustration 16

Figure 4.1 Transformer Architecture 19

Figure 4.2 Masked LM (MLM) Approach 20

Figure 4.3 Next Sentence Prediction 21

Figure 4.4 Understanding the Optimal Learning Rate 26

Figure 4.5 Cross-entropy Loss 27

Figure 4.6 PCA Visualization 29

Figure 4.7 LSTM Architecture 31

Figure 4.8 Baseline Pooler Architecture 33

Figure 4.10 LSTM Pooler Architecture 34

Figure 4.10 Weighted Pooler Architecture 35

Figure 5.1 A Sample for Word Tokenization 38

Figure 5.2 A Sample for Name Normalization 38

Figure 5.3 Sentiment Class Frequency 39

Figure 5.4 Visualization with Word2vec embedding into PCA over the 40

selected sentiment dataset

Figure 5.5 The Transformed process of the word into index 41

using MyanBERTa

Figure 5.6 The Transformed Process of the Word into Index using 42

XLM-RoBERTa

Figure 5.7 The Representation from the Pre-trained Model 42

vii

Figure 5.8 The Overview Design of the System 44

Figure 5.9 MyanBERTa + Baseline Pooling Approach 47

Figure 5.10 MyanBERTa + LSTM Pooling Approach 48

Figure 5.11 MyanBERTa + Weighted Pooling Approach 48

Figure 5.12 XLM-RoBERTa-base + Baseline Pooling Approach 49

Figure 5.13 XLM-RoBERTa-base + LSTM Pooling Approach 49

Figure 5.14 XLM-RoBERTa-base + Weighted Pooling Approach 50

Figure 5.15 Comparison on the Classification Matrices 52

Figure 5.16 Main Dashboard of the system 53

Figure 5.17 Evaluation Result Comparison 54

Figure 5.18 Model Selection and Loading 54

Figure 5.19 Real Time System Testing with the 100 Random Selected 55

Sentences Text File

Figure 5.20 Real Time System Testing with Positive Sentence 56

Figure 5.21 Real Time System Testing with Neutral Sentence 56

Figure 5.22 Real Time System Testing with Negative Sentence 57

Figure 5.23 Dynamic Record Dashboard 57

Figure 5.24 Dynamic Analytic Dashboard 58

viii

LIST OF TABLES

Table Page
Table 5.1 Sample Sentence before Preprocessing 36

Table 5.2 Sample Sentence after Preprocessing 37

Table 5.3 The Explanation of RoBERTa Default Token 41

Table 5.4 The Hyperparameters of the Two RoBERTa Models 45

Table 5.5 The Parameters of the Six Models 46

Table 6.1 The Classification Results of the Models on Accuracy, Recall, 52

Precision and F1-score

ix

LIST OF EQUATIONS

Equation Page

Eq (3.1) Naïve Bayes Equation 9

Eq (3.2) Sentiment Equation into Bayes rule 10

Eq (3.3) Token and Sentiment Equation into Bayes rule 10

Eq (3.4) Equation for the Entropy of decision tree 10

Eq (3.5) Term Frequency Calculation 15

Eq (3.6) Inverse Document Frequency Calculation 15

Eq (4.1) Equation of the attention 22

Eq (4.2) Equation of the multi-head attention 22

Eq (4.3) Equation of the CLS representation into LSTM cells 30

Eq (4.4) Dot-product attention equation 31

Eq (4.5) Fully connected softmax equation 32

Eq (5.1) Accuracy calculation 51

Eq (5.2) Recall calculation 51

Eq (5.3) Precision calculation 51

Eq (5.4) F1-Score calculation 51

x

CHAPTER 1

INTRODUCTION

The process of examining a piece of text to forecast how an individual's attitude

toward an occurrence or perspective will be oriented is known as sentiment classification.

Text polarity is usually used to analyze sentiment. A sentiment classifier typically

classifies information as positive, negative, or neutral. Sentiment extraction is the

foundation of sentiment categorization, and extensive research has been conducted in this

area. The next critical step is sentiment mining, which has grown dramatically in recent

years in tandem with the global increase in textual data. People now share their thoughts

on a variety of topics electronically, such as online product reviews, book or film studies,

and political commentary. As a result, assessing various points of view becomes critical

for interpreting people's intentions.

Previous attempts to implement sentiment analysis in Myanmar relied on non

contextualized word embeddings (Word2Vec and fastText), which present a series of

static word embeddings without taking into account the many other contexts in which

they could occur. However, the recent emergence of the Bidirectional Encoder

Representations from Transformers such as BERT, RoBERTa and AlBERT phenomenon

greatly amplifies the contextualization strategy. BERT has established itself as the most

impressive NLP model capable of performing superbly in any NLP operation with proper

fine-tuning for specific downstream tasks as the trend shifted toward transformer based

architectures consisting of attention heads. BERT is a highly bidirectional state-of-the-art

(SOTA) language model that has been trained on a large English Wikipedia corpus.

BERT (Bidirectional Encoder Representations from Transformers) is a powerful

language model developed by Google that has been widely used for various natural

language processing tasks, including sentiment analysis.

1

1.1 Overview of the Research

To use BERT for sentiment analysis, the text data is preprocessed to convert it

into a format that BERT can understand. This typically involves tokenizing the text into

individual words or subwords, and encoding each word with a unique integer ID. This

preprocessed data is fed into a BERT model, which will return a fixed-length encoding

for each input text.

Next, a classification model is defined that takes the BERT encodings as input

and predicts the sentiment of the input text. This can be done using a fully-connected

(dense) layer on top of the BERT encodings, followed by a softmax activation function to

output a probability distribution over the possible classes (e.g., positive, neutral, or

negative).

To train the classification model, a labeled dataset is provided that consists of text

examples and their corresponding sentiments. This dataset is used to fine-tune the BERT

model and the classification layer together, using an optimization algorithm such as

stochastic gradient descent (SGD) or Adam.

Once the model is trained, it is used to predict the sentiment of new text examples

by providing them as input to the model and interpreting the output probabilities. It's

worth noting that while BERT is a very effective model for many natural language

processing tasks, it may not always be the best choice for sentiment analysis. There are

many other approaches and models that can be used for this task, and the choice of which

one to use will depend on the specific requirements and characteristics of the problems.

1.2 Problem Statement

The success of deep learning relies on the huge amount of labeled data in many

applications. Large quantities of tagged data are typically difficult or expensive to gather.

Researchers have turned to transfer learning to solve this problem. Transfer learning takes

into account the situation where little labeled data is from the target domain for a

particular task but has many relevant tasks with a lot of data from other domains (also

2

known as out-of-domain data). The objective is to transfer knowledge from the

high-resource domains to the low-resource target domain.

The lack of resources is the main issue in resolving new NLP research in the

Myanmar language, a low resource language. Analysis task of classification is labeled by

domain experts and this manual labeling process is intensively expensive. Pre-trained

language models can leverage large amounts of unlabeled data to learn the universal

language representations, which provide an effective solution for the above problem.

Pre-trained transformer-based masked language models such as BERT, RoBERTa and

ALBERT had a dramatic impact on the NLP landscape in recent years. A pre-trained

model is often trained on a supervised downstream dataset for a few epochs, which is

known as fine-tuning, in the common recipe for using such models.

1.3 Objective of the Research

In general, the goal of sentiment analysis is to understand and classify the

emotional content of a given piece of text. The main objectives of this research are

● To reduce the data requirement using pre-trained RoBERTa models

● To improve the generalization ability of the model

● To choose the best pooling approach for the fine-tuning

● To analyze the results between language specific RoBERTa model and

multilingual RoBERTa model.

1.4 Contribution of the Research

In this research, the best approach is explored for classification using the

pre-trained contextualized language model RoBERTa and compare the results with the

language specific model and multilingual model. The proposed architecture can be used

in any low resource classification problem to increase the accuracy than the traditional

machine learning and data intensive deep learning approach. The training pipeline and

prediction pipeline is developed.

In the training pipeline,

3

● Develop preprocessing, word tokenization and normalization on the dataset

● Analyze the dataset nature and visualize the data distribution

● Define the hyperparameters and training arguments

● Training and Evaluation the six different models using GPU

In the prediction pipeline,

● Deploy the backend models mapping into GPU into CPU

● Develop GUI and connect with the backend models

● Store the record into mysql database

● Show the analysis results on the GUI

4

CHAPTER 2

RELATED WORK

Numerous models for fine-tuning have been put forth for the sentiment analysis

problem. They create two efficient information pooling strategies (1. They use an LSTM

network to connect all intermediate representations of the [CLS] token, and the output of

the last LSTM cell is used as the final Representation. Aspect Based Sentiment Analysis

explores the possibility of utilizing intermediate layers of BERT. [10]. They employ a

dot-product attention module to dynamically aggregate all intermediates, and 2. Attention

Pooling, to resolve aspect-based sentiment analysis tasks. On three ABSA datasets, they

demonstrate their techniques for optimizing BERT-based models. They also do trials on a

significant and well-known NLI problem to show generality.

Weibo Text Sentiment Analysis, a public dataset of Weibo text collected during

the COVID-19 epidemic was based on BERT and Deep Learning. [4]. The pre-train layer,

the BiLSTM layer, the Attention layer, the CNN layer, and the Fully Connected layer are

the five layers that make up their model. They performed their experiment using a Weibo

text collection pertaining to the COVID-19 outbreak. The experimental findings for the

suggested model and various rival models are shown. The competition structure can be

divided into three sections. The first component is the old and existing deep learning

model, which contains CNN and BiLSTM, the second stage is based on transformer

models such as BERT, and the final component is the combined model.

End-to-End Aspect-Based Sentiment Analysis (E2E-ABSA) is an approach that

concentrates on the aspect term-level. [9]. It is possible to describe this issue as a

sequence labeling problem. Their approach uses the Design of Downstream Model,

which generates linear, RNN, and CRF models, and BERT as an embedding layer. In this

research, they examine how well BERT embedding components perform End-to-End

Aspect-Based Sentiment Analysis (E2E-ABSA). They carry out in-depth studies on two

5

benchmark datasets while examining how to combine the BERT embedding component

with other neural models.

There are several sentiment analysis approaches in the Myanmar NLP area.

Sentiment Analysis of Comments on a Public Facebook Page in Myanmar Text is one of

them that uses the Word Vector Representation Techniques with Machine-Learning

Classifiers[1]. The performance of three different Machine Learning (ML) techniques,

including Logistic Regression, SVM, and Random Forest, is compared while using

Myanmar sentiment analysis based on the word vector representation method. The

dataset that was used for sentiment analysis was a collection of Myanmar Facebook page

comments.

6

CHAPTER 3

LITERATURE STUDY

In the beginning of this research, the literature review is the most important

chapter in the research, and although it turned out to be cumbersome, without the

literature study further work will not be clear. With this knowledge and some experience

with transformers and transfer learning, further work does not require much effort, only

time to train networks. Main subjects covered here:

● Levels of Sentiment Analysis

● Sentiment Analysis Approaches

○ Rule-based Approach

○ Machine Learning Approach

○ Deep learning Approach

○ Transformer-based Approach

● Word Embedding Techniques

3.1 Levels of Sentiment Analysis

Sentiment analysis has primarily been studied at three stages. [6]. Identifying

whether a whole opinion document communicates a favorable or negative mood is the

primary task at the document level. This level of analysis is based on the assumption that

each document expresses opinions about a single entity. The main task at the sentence

level is to determine whether each sentence expresses a positive, negative or neutral

opinion. This level of analysis is closely related to subjectivity classification, which

distinguishes objective sentences expressing factual information from subjective

sentences expressing sentiment views and opinions. Document level and sentence level

analyses do not reveal what people favored and disliked. Aspect level does more precise

analysis. Instead of focusing on language constructs (documents, paragraphs, sentences,

clauses or phrases), aspect level examines the opinion itself.

7

Figure 3.1 Levels of Sentiment Analysis

3.2 Sentiment Analysis Approaches

There are several approaches to sentiment analysis, which is the process of

identifying and extracting subjective information from text data. Some common

approaches include rule-based approach, machine learning approach, deep learning

approach and transformer-based approach.

3.2.1 Rule-based Approach

To detect the sentiment of a sentence, the primary technique is rule-based and

makes use of a lexicon of words labeled by sentiment. [7]. Sentiment scores should

frequently be combined with additional guidelines to remove dependent clauses,

negations, and sarcasm from sentences. The following NLP methods are covered under

the rules:

• Stemming, tokenization, part-of-speech (POS) tagging

• Lexicons.

Since the sequential merger of words is ignored, rule-based systems are quite

straightforward. To enable newer forms of expression and vocabularies, better processing

techniques can be applied, and the most recent rules can be added. New rules, however,

have the potential to change previously discovered outcomes and make the system as a

whole quite complex. Rule-based systems necessitate continuous maintenance and

fine-tuning, which necessitates financing on a regular basis.

8

3.2.2 Machine Learning Approach

Before using an algorithm on the real data set, machine learning algorithms train

it on a training set of data. In order to eventually be able to deal with fresh, unknowable

data, machine learning techniques first train the algorithm using a set of specific inputs

and known outputs. The following list includes some of the most well-known machine

learning-based works.

3.2.2.1 Support Vector Machine

An extensive training set is needed for this non-probabilistic classifier. Using a

(d-1)-dimensional hyperplane, points are categorized. The greatest margin-possible

hyperplane is found through SVM. Decision planes serve as decision boundary

definitions and are used by support vector machines. A decision plane is a diagram that

divides up a collection of things into several classes. The dividing line establishes the

boundary between the items' classes, which are either red or green. This is a case of

mapping or transformation, where the original objects are reorganized or mapped using a

kernel-like mathematical function. After transformation, the mapped objects can be

linearly separated, which allows for the creation of complex structures with curves to

divide the objects. After transformation, the mapped items can be divided linearly, which

allows for the avoidance of complex structures that require curves to do so.

3.2.2.2 Naïve Bayes Method

This probabilistic classifier is typically employed when the size of the training set

is small. It belongs to the category of Bayes theorem-based example probabilistic

classifiers in machine learning. By applying the Bayes rule, the equation (1) determines

the conditional distribution that an event X occurs given the probability Y.

3.1𝑃(𝑋
𝑌) =

𝑃(𝑋)𝑃(𝑌
𝑋)

𝑃(𝑌)

Where X is an event and Y is the evidence. So for finding the sentiment the equation is

transformed into the below equation (2).

9

3.2 𝑃(𝑠𝑒𝑛𝑡𝑖
𝑠𝑒𝑛𝑡) =

𝑃(𝑠𝑒𝑛𝑡𝑖)𝑃(𝑠𝑒𝑛𝑡
𝑠𝑒𝑛𝑡𝑖)

𝑃(𝑠𝑒𝑛𝑡)

Where senti means sentiment and sent means sentence. P(sent/senti) is calculated as the

product of P (token /senti), which is formulated by the equation (3) .

3.3𝐶𝑜𝑢𝑛𝑡(𝑇ℎ𝑖𝑠𝑡𝑜𝑘𝑒𝑛𝑖𝑛𝑐𝑙𝑎𝑠𝑠) + 1
𝐶𝑜𝑢𝑛𝑡(𝐴𝑙𝑙𝑡𝑜𝑘𝑒𝑛𝑠𝑖𝑛𝑐𝑙𝑎𝑠𝑠) + 𝐶𝑜𝑢𝑛𝑡(𝐴𝑙𝑙𝑡𝑜𝑘𝑒𝑛𝑠)

Where means the tokens in one class, alltokensinclass means all the𝑇ℎ𝑖𝑠𝑡𝑜𝑘𝑒𝑛𝑖𝑛𝑐𝑙𝑎𝑠𝑠

tokens in the one class and alltokens means all tokens.

3.2.2.3 Decision Tree (DT)

When non-linear data sets need to be handled effectively, another supervised

learning algorithm, such as Decision Tree, is used. The decision tree method is fairly

efficient at creating classification models from the data that is given. Different types of

decision trees are frequently employed with logical procedures. The Decision Tree is

arranged in a way that resembles a flowchart and resembles a tree. Each leaf node or

terminal node serves as a representation of the class label, while the node at the decision

tree's tip serves as a representation of the root node. Equation (4) shows the equation for

the decision tree's entropy:

3.4𝐸(𝐷) = 𝑛∑𝑖 = 1 − 𝑝𝑐(𝑖)(𝑝𝑐(𝑖))

Where, 𝑝𝑐(𝑖) is the probability of class C(i) in a node. E(D) or also called entropy of D is

the measure of disorder of the considered samples.

3.2.3 Deep learning Approach

Deep learning commonly is one of many machine learning techniques built on

artificial neural networks and referred to as deep structured learning. Each degree of deep

learning learns how to change the incoming data into a tad more abstract and composite

representation. In an application for image recognition, the initial input could be a matrix

10

of pixels; the first representational layer could abstract the pixels and encode edges; the

second layer could compose and encode arrangements of edges; the third layer could

encode a nose and eyes; and the fourth layer could recognize that the image contains a

face. Importantly, a deep learning phase is capable of discovering on its own which traits

are most suited for each level. This does not eliminate the need for manual adjustment;

for instance, different layer counts and size can offer various levels of abstraction.

3.2.3.1 Long Short-Term Memory Model (LSTM)

Recurrent Neural Network (RNN) units comprise Long Short-Term Memory

Model (LSTM) units (RNN). On the basis of time series data, LSTM networks are

utilized for classification or prediction. Exploding and vanishing gradient issues can be

resolved. Long-term reliance is one of RNN's biggest issues. Such long-term dependency

can be avoided using LSTM. A cell, input gate, output gate, and forget gate make up a

standard LSTM unit. The amount of the previous sample that is saved in memory is set

by the input gate. The forget gate governs the rate of loss of stored memory and

establishes what data can be removed from the state of the cell, while the output gate

controls the quantity of data transferred to the following layer. The input gate, forget gate,

and output gate are where the weights of LSTMs are changed, preventing gradient

disappearing or ballooning gradient problems. Figure 3.2 depicts how LSTM cells

function.

Figure 3.2 LSTM network

11

3.2.3.2 Gated Recurrent Unit (GRU)

A streamlined version of the Long Short Term Memory (LSTM) paradigm is the

Gated Recurrent Unit (GRU). [7]. GRU can effectively capture long-term dependencies

between sequences while having fewer parameters. As a result, in terms of effectiveness

and computational efficiency, GRU is similar to LSTM. The two gates known as update

and reset gates, which regulate the information flow via each hidden unit, are calculated

by the Gated Recurrent Unit (GRU). Figure 3.3 depicts how GRU cells function.

Figure 3.3 GRU network

3.2.4 Transformer-based Approach

A revolutionary architecture called NLP's Transformer aims to solve problems

sequentially while resolving long-distance dependencies with ease. It uses only

self-attention and does not use sequence-aligned RNNs or convolutions to compute the

input and output representations.

3.2.4.1 BERT

The BERT (Bidirectional Encoder Representations from Transformers) Natural

Language Processing Model was invented by Google Research researchers and released

in 2018. [5]. In addition to semi-supervised training, OpenAI transformers, ELMo

Embeddings, ULMFit, and Transformers are just a few of the earlier NLP methods and
12

architectures that BERT leverages. BERT is a transformer architecture encoding stack.

An encoder-decoder network using self-attention on the encoder side and attention on the

decoder side is known as a transformer architecture. Pre-training and fine-tuning are the

two stages of BERT. Unlabelled data is utilized to train the model via a variety of

pre-training tasks during pre-training. When fine-tuning, BERT is first initialized with

pre-trained parameters, then all of the parameters are adjusted using labeled data from the

subsequent jobs. Despite being initialized with similar pre-trained parameters, each

downstream task has its own fine-tuned models.

Figure 3.4 BERT Architecture

3.2.4.2 ALBERT

The ALBERT model, which was introduced in ALBERT(A Lite BERT for

Self-supervised Learning of Language Representation), offers two parameter-reduction

strategies to reduce memory usage and speed up BERT training:

● Creating two smaller matrices from the embedding matrix.

● Dividing up using repeating layers into groupings.
13

● As an absolute position embedding model, ALBERT, it is typically recommended

to pad the inputs on the right rather than the left.

● ALBERT employs repeating layers, which reduces its memory footprint, but

because it iterates through the same number of (repeating) levels as a BERT-like

design with the same number of hidden layers, its computational cost is

comparable. [11].

3.2.4.3 RoBERTa

In RoBERTa, A Robustly Optimized BERT Pretraining Approach, the RoBERTa

model was put forth. [9]. It is inspired by the 2018 BERT model from Google. Although

comprehensive comparison across various methods is difficult, language model

pretraining has significantly improved performance. Training is a computationally

intensive process that frequently uses private datasets of various sizes, and the selection

of the hyperparameters has a big effect on the outcomes. They describe a replication

study of BERT pretraining in which the effects of numerous important hyperparameters

and the amount of the training data are extensively examined. They find that BERT was

significantly undertrained, and can suit or surpass the performance of every model

published after it. Their top model produces cutting-edge outcomes on GLUE, RACE,

and SQuAD. These findings cast light on hitherto undervalued design considerations and

cast doubt on the origin of recently reported advances.

3.3 Word Embedding Techniques

Word embeddings are numerical representations of words or phrases in a

lower-dimensional space that capture the semantic and syntactic relationships between

words. There are several types of word embeddings, including:

Count-based embeddings: These embeddings are based on the raw frequency counts of

words in a corpus. Examples include TF-IDF.

14

Predictive embeddings: These embeddings are trained to predict the surrounding context

of words in a corpus, using techniques such as skip-gram or continuous bag-of-words

(CBOW). Examples include word2vec and FastText.

Contextual embeddings: These embeddings are trained to incorporate contextual

information, such as the relationships between words in a sentence or the context of a

word in a document. Examples include BERT and ELMo.

3.3.1 TF-IDF

TF-IDF (Term Frequency-Inverse Document Frequency) is a method of

representing text data as a numerical vector. Each word in a document is represented by a

numerical score that reflects its importance within the document. The score is calculated

as the product of two factors: the term frequency (TF), which reflects the number of times

the word appears in the document, and the inverse document frequency (IDF), which

reflects the rarity of the word across a collection of documents.

The frequency of words in a document determines the TF score. The number of

times a word appears in the files is counted. The total frequency (TF) of a word is

determined by dividing its frequency I by the total number of words (N) in the document

(j).

3.5𝑇𝐹 (𝑖) = 𝑙𝑜𝑔 (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑖,𝑗))
𝑙𝑜𝑔 (𝑁 (𝑗))

Where TF means term frequency, i means word and j means the document.

The rarity of the terms is determined by the IDF score. It is significant since TF

prioritizes terms with higher frequency of occurrence. Words that are infrequently used in

the corpus, however, could contain important information. This data is gathered by the

IDF. One way to determine it is to divide the total number of documents (N) by the

number of documents that include the word (i).

3.6𝐼𝐷𝐹 (𝑖) = 𝑙𝑜𝑔 (𝑁 (𝑑)
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑑,𝑖))

Where IDF means inverse term frequency, d means document and i means word.

15

3.3.2 Word2vec

It was created in 2013 by Google researchers Tomas Mikolov and others. [8]. An

advanced NLP problem-solving method called Word2Vec uses word embedding. To

discover word dependencies or correlations, it can repeatedly read through a vast corpus

of text.

Word2Vec uses the cosine similarity metric to identify word similarities. Words

are overlapping if the cosine angle is 1. In the case of a cosine angle of 90, words are

autonomous or lack contextual resemblance. Similar vector representations are given to

related words by this system

Continuous Bag of Words (CBOW) and Skip-gram are two neural network-based

variations that Word2Vec offers. Using a variety of words as input, the neural network

model in CBOW predicts the target word that is highly related to the input words'

context. The Skip-gram architecture, on the other hand, uses one word as input and

predicts all of the closely associated context words.

Figure 3.5 Word2vec Representation Illustration

16

CHAPTER 4

Methodology

Methodology Overview

Methodology Overview contains explanation of the transformer, BERT and

RoBERTa architecture, description of the transfer learning, learning rate scheduler and

loss function, visualization algorithms explanation of PCA and word2vec, and the system

architecture.

4.1 Explanation of the Transformer, BERT and RoBERTa Architecture

The transformer neural network is a novel architecture that solves

sequence-to-sequence issues while expertly handling long-range relationships. It was first

proposed in the article "Attention Is All You Need," and it is currently an innovative

technique in the field of NLP research [9]. This section provides an explanation of the

transformer-based architecture.

4.1.1 Transformers

The Transformer architecture follows an encoder-decoder structure but does not

rely on recurrence and convolutions in order to generate an output.

Encoder: The encoder is made up of N = 6 unique layers stacked together. Two

sublayers make up each layer. The first is a multiple-head self-attention mechanism, and

the second is a straightforward feed-forward network that is fully coupled according to

position. Around each of the two sub-layers, a residual connection is used, and then layer

normalization. In other words, each sub-output layer is LayerNorm(x + Sublayer(x)),

where Sublayer(x) is the function that the sub-layer itself implements. All model

sub-layers as well as the embedding layers generate outputs with dimension model = 512

to assist these residual connections.

17

Decoder: Decoder: A stack of N = 6 consecutive layers also makes up the

decoder. The decoder in bert is responsible for generating the output sequence of words

or tokens based on the encoded representation of the input text it does this by using a

combination of attention mechanisms and multi-headed self-attention to process the

encoded representation and generate the output sequence in most cases the output

sequence is generated one word or token at a time starting from the first word and

proceeding sequentially until the end of the sequence is reached the output sequence is

generated based on the encoded representation of the input text and the previous words or

tokens in the output sequence so that the output is coherent and semantically meaningful

Attention : A query and a set of key-value pairs can be mapped to an output by

an attention function, where the output, the keys, and the values are all vectors. The result

is calculated as a weighted sum of the values, with the weights assigned to each value

determined by how well the query matches the key in question. Multi-Head Attention

and Scaled Dot-Product Attention are two different kinds of attention mechanisms.

18

Figure 4.1 Transformer Architecture

4.1.2 BERT

By concurrently conditioning on both left and right context in all layers,

Bidirectional Encoder Representations from Transformers is intended to pretrain deep

bidirectional representations from unlabeled text. Two unsupervised tasks, Masked

Language Modeling and Next Sentence Prediction, are used to pre-train BERT.

19

4.1.2.1 Masked Language Modeling

Word sequences are changed with a [MASK] token for 15% of the words in each

sequence before being fed into the BERT. Based on the context offered by the other,

non-masked, words in the sequence, the model then makes an attempt to forecast the

original value of the masked words.

Figure 4.2 Masked LM (MLM) Approach

4.1.2.2 Next Sentence Prediction

A task known as Next Sentence Prediction (NSP) is used to train and test the

effectiveness of natural language processing algorithms. The NSP challenge asks a model

to determine if the second sentence in a pair is connected to or follows from the first

statement. The goal of this job is to evaluate the model's comprehension of the context

and relationships between phrases in a text as well as its capacity to produce coherent and

semantically relevant outputs. The input is handled as follows before entering the model

to aid the model in differentiating between the two sentences during training:

1. The first sentence has a [CLS] token at the start, and each subsequent sentence

has a [SEP] token at the end.

20

2. Each token has a sentence embedding that designates Sentence A or Sentence B.

Token embeddings with a vocabulary of 2 and sentence embeddings share a

similar notion.

3. Each token receives a positional embedding to denote its place in the sequence.

The Transformer paper presents the theory and practice of positional embedding.

Figure 4.3 Next Sentence Prediction Approach

4.1.2.3 Multi-Head Self Attention

Self-attention can encode (understand) each word based on the words that are

present in the context of the current word. One word might have distinct meanings in

different sentences (context).

● “The boy ate the apple” defines an apple as a fruit.

● “The boy went to Apple” defines Apple as a brand or store.

● “ပနး်သီး ဆုိ အစိမ်းမှ ကြုက်တာ” defines an ပနး်သီး as a fruit.

● “ကျွနတ်ော်က ပနး်သီး မဟတ်ုရင် မကုိင်ဘူး” defines ပနး်သီး as a

brand.

21

The attention mechanism refers to a weighted average of (sequence) elements,

where the weights are dynamically determined using the keys of the elements and an

input query.

● Query : The input word vector for the token is the query, which is a feature

vector.

● Keys: Here is a key, which is also a feature vector, for each input element. This

feature vector provides a general description of the element's "offering" or

potential significance. Designing the keys in such a way that the element is

defined to pay attention based on the query is recommended.

● Values: A value vector exists for each input element. The feature vector over

which the average should be calculated is this one.

In math, the dot product attention is calculated as follows:

4.1𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇
𝑑𝑘

)𝑉

Where Q means query, K means key, V means value and d means dimension.

A network can watch over a sequence with the scaled dot product attention.

However, a sequence element frequently wishes to focus on several distinct issues, so a

single weighted average is not the best solution for it. In order to address numerous

query-key-value triplets on the same features, or several heads, the attention methods are

expanded.

4.2𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑
1
, .., ℎ𝑒𝑎𝑑

ℎ
)𝑊𝑄

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑
𝑖

= 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊
𝑖
𝑄, 𝐾𝑊

𝑖
𝐾, 𝑉𝑊

𝑖
𝑉)

Where Q means query, K means key, V means value and i means the number of the

attention head.

4.1.3 RoBERTa

RoBERTa (Robustly Optimized BERT Pre-Training Approach) includes the

following steps:

● training the model longer, with bigger batches, over more data

22

● removing the next sentence prediction objective

● training on longer sequences and

● dynamically changing the masking pattern applied to the training data.

4.1.3.1 Static vs. Dynamic Masking

Prior to training the model, specific words or tokens in the text are hidden or

obscured, and the masking is maintained during training. This implies that, regardless of

the context or input that the model gets, the same words or tokens are always masked in

the same way. Static masking is frequently used to assess a model's capacity to discover

patterns and correlations in the data as well as its capacity to produce outputs that are

coherent and have semantic significance.

Different words or tokens in a text are obscured or hidden throughout the training

process with dynamic masking, and the masking might change based on the input the

model gets. This implies that depending on the context or input that the model is

analyzing, distinct words or tokens may be masked in various ways. Dynamic masking is

frequently used to assess a model's flexibility in responding to various scenarios and

settings as well as its capacity to provide consistent and semantically significant outputs

under various circumstances. The decision of which type of masking to utilize depends

on the individual aims, and both static and dynamic masking are frequently used in

natural language processing to assess the effectiveness of machine learning models.

The initial BERT implementation only used a single static mask because masking

was only done once during data preprocessing. Training data was copied 10 times,

resulting in each sequence being masked 10 different ways throughout the course of the

40 training epochs. This was done to prevent utilizing the same mask for every training

instance in every epoch. As a result, each training session was observed four times while

wearing the same mask. We refer to this as dynamic masking.

23

4.2. Description of the Transfer Learning

A machine learning approach called transfer learning entails training a model on a

big dataset and then utilizing the trained model as a starting point to optimize it on a

smaller dataset for a related job. Transfer learning aims to enhance the model's

performance on the smaller dataset by utilizing the information and patterns that the

model has learnt from the bigger dataset. Transfer learning may be especially helpful

when a smaller dataset is inadequate to train a model from start or when it is impossible

to collect a big enough dataset for the particular purpose. The information and patterns

discovered by the model on the bigger dataset may be used by applying transfer learning.

There are several different approaches to transfer learning, including fine-tuning

the entire model, fine-tuning only certain layers of the model, or using the trained model

as a feature extractor. The choice of which approach to use depends on the specific goals

and characteristics of the dataset and the task.

Transfer learning is widely used in a variety of machine learning applications. It

can be a powerful tool for improving the performance of ML models on a wide range of

tasks.

Answers to the following questions are essential for the transfer learning

technique.

● Which knowledge may be conveyed from the source to the target to enhance the

effectiveness of the target task?

● When should a transfer be made and when shouldn't it be made so as to enhance

rather than impair the performance or outcomes of the target task?

● How can one apply the information that learned from the source model to the

current domain or task?

Fine-tuning: The concept of fine-tuning and transfer learning are very closely

related. Transfer learning happens when someone transfers the information they learned

from addressing one challenge to another that is unrelated but nonetheless challenging.

For instance, the ability to identify vehicles might be used to solve the difficulty of

24

identifying trucks.

Applying or using transfer learning requires some adjusting. Specifically,

fine-tuning is the act of improving or modifying a model that has already been trained to

carry out a single, specified job in order to have it carry out a second, related task. Using

a previously developed and trained artificial neural network to take use of what the model

has learned without having to create it from scratch, providing that the original. The

following method have to choose in fine-tuning :

○ Number of layers

○ Types of layers

○ Order of layers

○ Number of nodes in each layer

○ How much regularization to use

○ Learning rate

4.3. Learning rate scheduler and loss function

A machine learning and statistical optimization strategy that selects the step size

at each iteration while attempting to minimize a loss function using the learning rate as a

tuning parameter.

4.3.1 Learning Rate Scheduler

The amount of change or update to model weights throughout the

backpropagation training process is described as the learning rate (or step-size). The

learning rate is often defined as a positive value less than 1.0 as a customizable

hyperparameter.

The algorithm learns quickly when the learning rate is high (on the right), but it

also runs the risk of oscillating or perhaps jumping over the minima. Even worse, a high

learning rate results in huge weight changes, which could lead to an overflow of the

weights.

25

Figure 4.4 Understanding the optimal learning rate

On the other hand, a lower learning rate (on the left) results in small updates to

the weights, which will gradually lead the optimizer to the minima. However, the

optimizer could take too long to converge or could become trapped in an unfavorable

local minima or plateau.

A good learning rate strikes a balance between overshooting and coverage rate (in

the middle). It is just the right size to allow the method to converge quickly while also

preventing backtracking and skipping over the minima.

As the training develops, a learning rate schedule is a predetermined framework

that modifies the learning rate between epochs or iterations. The two most popular

methods for learning a rate schedule are:

● Constant learning rate: as the name suggests, during training, a learning rate is

initialized and remains constant,refers to the process of choosing an initial

learning rate and then gradually lowering it in line with a scheduler.

● After a warm-up period during which it climbs linearly from 0 to the initial lr set

in the optimizer, the Linear Learning Rate Scheduler generates a schedule with

a learning rate that falls linearly from the initial lr set in the optimizer to 0.

26

4.3.2 Loss Function

Cross-entropy loss, also described as log loss, is a measure of how well a ML

model performs when its outcome is a probability value between one and zero. It occurs

when the predicted probability deviates from the labeled probability. Making a forecast

with a probability of 0.12 when the observation label is really 1 would be bad and have a

large loss value because cross-entropy loss develops. An ideal model would have a log

loss of 0.

Figure 4.5 Cross-entropy loss

4.4. Visualization algorithms explanation of PCA and word2vec

To make data easier for the human brain to understand and draw conclusions from

data visualization is the process of providing information into a visual context such a map

or graph data visualizations major goal is to make it clearer to see patterns trends and

outliers in big data sets in order to examine the nature of the class over the sentences the

distribution of sentences is visualized with PCA and word2vec in this part.

4.4.1 Principal Component Analysis (PCA)

Reducing the dimension is a standard method, and PCA, an unsupervised learning

algorithm, is frequently employed for this. Data visualization is also crucial, and when

data has multiple dimensions, it is much harder to store vast amounts of data, run
27

computations, and visualize. Dimensions are therefore decreased. The real goal is to

make the model simpler and less complex while maintaining its usefulness and

performance. Measures for PCA:

● Data can be standardized or normalized as a way to modify numbers to a common

or defined scale. The "process" involves dividing by the range of values

(max-min) and removing each value from the mean of that characteristic. When

the standard deviation is used as the denominator, that is standardization.

● Get the covariance matrix. If it's positive, the two variables increase or decrease

together (correlated). If it's negative, one variable rises as the other falls (Inversely

correlated).

● Find the Eigenvalue and Eigenvector from the covariance or correlation matrix.

● Get the index by sorting the Eigenvalue now in decreasing order.

● Sorting Eigenvalue and Eigenvector simultaneously

● To convert the sorted Eigenvector matrix, use the n components dimension.

● Are a product of Equivalent Eigenvector Matrix Transpose with n Component

Mean normalized matrix with a resultant transposition.

28

Figure 4.6 PCA Visualization

4.4.2 Word2vec

Individual words are converted into a numerical representation of the word using

a process called word embeddings (a vector). Each word is converted into a single vector,

which is then trained in a manner resembling a neural network. The vectors make an

effort to depict multiple aspects of the word in relation to the whole text. The word

semantic relationship, definitions, context, and other elements can be included in these

characteristics. These numerical representations make it possible to determine how

similar or dissimilar two words are.

The ability of Word2Vec to assemble vectors of related words gives it its

effectiveness. Word2Vec can provide accurate predictions about a word's meaning based

on its usage in the text when given a sizable enough dataset. With other words in the

corpus, these estimations produce word associations. Words like "King" and "Queen," for

instance, sound quite similar to one another. One can find a good approximation of word

similarity by performing algebraic operations on word embeddings. As an illustration, the

vector produced by multiplying the two-dimensional embedding vectors of "king,"

"man," and "woman" is extremely similar to the vector produced by the two-dimensional

embedding vector of "queen." Please take note that the values below were selected at

random.

29

4.5 Pooling Approaches

Main contributions of this research can be summarized as follows:

● Two pooling approaches - LSTM pooling and weighted pooling

● Two pre-trained models - language specific MyanBERTa and multilingual

XLM-RoBERTa-base

4.5.1 Baseline approach

The baseline approach utilizes the CLS token of the final layer.

4.5.2 LSTM pooling approach

Depiction of hidden states An abstract-to-specific sequence, hCLS is distinct from

other sequences. All intermediate representations of the [CLS] token are connected using

the LSTM network, which is inherently suited to processing sequential information. The

output of the final LSTM cell is then used as the final representation.

4.3

Where CLS means the first token of the sentence and L means the layer of the RoBERTa

model.

4.5.2.1 LSTM Architecture

Long short-term memory networks, or LSTMs, are employed in deep learning.

Many recurrent neural networks (RNNs) are able to learn long-term dependencies,

particularly in tasks involving sequence prediction. Aside from singular data points like

photos, LSTM has feedback connections, making it capable of processing the complete

sequence of data. This has uses in machine translation and speech recognition, among

others. A unique version of RNN called LSTM exhibits exceptional performance on a

wide range of issues.

A memory cell known as a "cell state" that preserves its state over time plays a

key role in an LSTM model. The horizontal line that passes through the top of the

30

diagram below represents the cell state. It can be pictured as a conveyor belt across which

data simply and unaltered passes.

Figure 4.7. LSTM Architecture

Gates in LSTMs control the addition and removal of information from the cell

state. These gates may allow information to enter and exit the cell. It has a sigmoid neural

network layer and a pointwise multiplication operation that help the mechanism.

Between zero and one, the sigmoid layer outputs a number, with zero denoting "nothing

should be let through" and one denoting "everything should be let through."

4.5.3 Weighted pooling approach

Intuitively, attention operations can learn the contribution of each CLS. A weighted

average module is used to dynamically combine the last four intermediates.

4.4

Where i means the layer of the RoBERTa, X means the weight of the RoBERTa and w

means the weighted sum of the vector.

Finally, the pooled output o is passed to a fully connected layer for label prediction:

31

4.5

Where o means the pooled output o to a fully connected layer.

4.6 The System Architecture

RoBERTa is capable of being utilized as a feature extraction model, however the

fine-tuning method is preferred. Three alternative pooling techniques are used to enlarge

the XLM-RoBERTa and MyanBERTa in order to compare them.

Each word's contextualized embedding vectors produced by RoBERTa are fed

through one of the poolers; the architecture with the baseline pooler is shown in Figure

4.8. The weighted pooler for each word from the intermediary layer is calculated to create

the feature vector. The final reduced vector is then classified using softmax. Connecting

the intermediate representations created by RoBERTa's Transformers is the responsibility

of the pooling module.

32

Figure 4.8 Baseline Pooler Architecture

33

Figure 4.9 LSTM Pooler Architecture

34

Figure 4.10 Weighted Pooler Architecture

35

CHAPTER 5

EXPERIMENTS AND RESULTS

The activities that constitute the RoBERTa representation and pooling approaches

analysis for Myanmar Sentiment Dataset are described in this chapter. It contains the

preprocessing, experimental setup and the results.

5.1 Experiments

The methods for RoBERTa based model fine-tuning on the datasets are

presented. To show the generality, the experiments are also conducted on the Myanmar

Language Specific model and the Multilingual Model.

5.1.1 DataSet

The first phases in this categorization job were data collection and labeling. The

social media data was meticulously tagged. The manual labeling was approved by a

subject matter expert. The information was gathered from the Facebook comments on the

Myanmar Celebrity page. The positive, neutral, and negative tags are manually added to

this dataset after it has been crawled. The sample of the sentiment dataset is shown Table

5.1. The dataset contains 72K.

Table 5.1 Sample sentences before preprocessing

36

5.1.1.1 Data Preprocessing

In machine learning based classification, data preparation is crucial since the

model's performance is highly reliant on the quality of the input data. The following steps

are used for the data preprocessing :

1. Dropping the None row

2. Deleting duplicate row based on the sentence column

3. Removing white-space character

4. Removing emoji

5. Deleting link

6. Cleaning the punctuation

7. Removing the numeric sentence [like phone number]

8. Detect and change into the unicode

9. And finally Deleting duplicate row based on the preprocessed sentence column

Table 5.2 Sample sentences after preprocessing

5.1.1.2 Word Tokenization

The trained word break model is used to tokenize the preprocessed sentences. The

word break model is trained with word2vec, LSTM and CRF. This is an in-house model

and the accuracy is 90%. In order to train and distribute cutting-edge sequence labeling,

text classification, and language models, FLAIR, an NLP framework, is employed.

Additionally, the system employs common model training and hyperparameter selection

procedures.

37

Before word tokenization - ဖြူစင်တယ်စကားပြောကြည့်တာနဲသိ့တယ်
After word tokenization - ဖြူစင်, တယ်, စကားပြော, ကြည့်, တာ, နဲ ့, သိ, တယ်

Figure 5.1 A Sample for Word Tokenization

5.1.1.3 Name Normalization

The trained NER model is used to get the person name from the tokenized

sentences. The NER model is trained with word2vec, flair, LSTM and CRF. This is an

in-house model and the accuracy is 95%. For the NER model, the same open-source

framework FLAIR is used as the word break model. A "model zoo" of pre-trained models

is also included with FLAIR so that academics may employ cutting-edge NLP models in

their applications. First, the NER is parsed to obtain the person's name, and then, for the

sake of normalization, the name is substituted with the "NAME" tag.

Before name normalization - အမြနဆ်ုံး နေကောင်း ပါစေ ကုိစုိင်း
After name normalization - အမြနဆ်ုံး နေကောင်း ပါစေ NAME

Figure 5.2 A Sample for Name Normalization

5.1.1.4 Data Analysis

Data analysis is the process to drive intuition and begin to formulate testable

hypotheses. This process typically makes use of descriptive statistics and visualizations.

DataSet Class Visualization

The class frequency is plotted with the seaborn module to get better understanding

of data. The number of samples can be looked for each class. If the sample of one class

is considerably higher than the rest, then the model will learn to predict that class more

often than others and hence leading to overfitting. The distribution shows the dataset has

the normal distribution of the Myanmar Celebrity Facebook Page Comments. The dataset

contains 72K sentences.

38

Figure 5.3 Sentiment Class Frequency

DataSet Sentence Visualization

The nature of the dataset distribution over class .i.e. negative , positive and

neutral. One approach is selected to visualize the data distribution. The techniques

employed are PCA and word2vec embedding. Principal component analysis is a

statistical approach which allows us to compress the information content in huge data

tables by using a smaller collection of "summary indices" which are simpler to show and

analyze. The underlying data may consist of measurements specifying the 2-dimensional

and 3-dimensional characteristics of the classes.

The three classes are each represented by a different 1K phrase. To comprehend

the nature of the data, the entire dataset of 3K is used. With the use of a neural network

model, the word2vec technique (context-independent word embeddings) learns word

associations from a substantial body of text. PCA serves as a dimension reduction

technique and serves as the foundation for multivariate data analysis based on projection

methods. In order to identify trends, leaps, clusters, and outliers, PCA's most crucial use

is to summarize multivariate data into a smaller number of variables (summary indices).

This overview may reveal the connections between the variables in the

context-independent word embeddings and the observations.
39

To analyze the nature of the dataset, word2vec and PCA (Principal component

analysis) is used. The 1K sentences are selected from each class and the amount of

information from word2vec 100 dimension feature space reduces with PCA components

3. The classes are separated with colors; yellow as positive, green as negative and purple

as neutral.

Figure 5.4 Visualization with Word2vec embedding into PCA over the selected

sentiment dataset

40

5.2 Representation from the Pretrained Model

The data set is ready for training after preprocessing, word tokenization, and

normalization. Two primary processes are present in the pre-trained RoBERTa model.

Tokenization is the initial step, followed by transformation. The results from the

tokenizer are shown in Figure 5.5 and Figure 5.6. The data is transformed into the format

that the RoBERTa model requires in order to function. The output representation from the

model, which is part of the pre-trained RoBERTa model, is presented in Figures 5.7.

Table 5.3 The Explanation of RoBERTa Default Token

Token Index Use

<s> 0 Beginning of sequence (BOS) or classifier (CLS) token

</s> 2 End of sequence (EOS) or separator (SEP) token

<unk> 1 Unknown token

<pad> 3 Padding token

Tokenizer Result : MyanBERTa
__
Example sentence :
အောင်မြင် ပါစေ သမီး ပြော တဲ ့အတိင်ုး သာ လပ်ု အောင်မြင် ရ မယ် အားပေး တယ်

After parsing MyanBERTa tokenizer :
['áĢ¡', 'áĢ±áĢ¬', 'áĢĦ', 'áĢº', 'áĢĻ', 'áĢ¼', 'áĢĦ', 'áĢº', 'ĠáĢķ', 'áĢ«', 'áĢħ', 'áĢ±', 'ĠáĢŀáĢĻ', 'áĢ®áĢ¸',
'ĠáĢķ', 'áĢ¼áĢ±áĢ¬', 'ĠáĢĲ', 'áĢ²áĢ·', 'ĠáĢ¡áĢĲ', 'áĢŃáĢ¯', 'áĢĦ', 'áĢºáĢ¸', 'ĠáĢŀ', 'áĢ¬', 'ĠáĢľ',
'áĢ¯', 'áĢķ', 'áĢº', 'ĠáĢ¡', 'áĢ±áĢ¬', 'áĢĦ', 'áĢº', 'áĢĻ', 'áĢ¼', 'áĢĦ', 'áĢº', 'ĠáĢĽ', 'ĠáĢĻáĢļ', 'áĢº',
'ĠáĢ¡', 'áĢ¬áĢ¸', 'áĢķ', 'áĢ±áĢ¸', 'ĠáĢĲáĢļ', 'áĢº']

After changing decoded token into Myanmar characters :
['အ', 'ော', 'င', '်', 'မ', 'ြ', 'င', '်', ' ပ', 'ါ', 'စ', 'ေ', ' သမ', 'ီး', ' ပ', 'ြော', ' တ', 'ဲ'့, ' အတ', 'ိ'ု, 'င', '်း', '
သ', 'ာ', ' လ', 'ု', 'ပ', '်', ' အ', 'ော', 'င', '်', 'မ', 'ြ', 'င', '်', ' ရ', ' မယ', '်', ' အ', 'ား', 'ပ', 'ေး', ' တယ',
'်']

After padding token into index :
[0, 317, 277, 269, 263, 287, 272, 269, 263, 292, 303, 288, 267, 437, 313, 292, 326, 282, 309, 353, 271, 269,
275, 293, 265, 297, 266, 283, 263, 284, 277, 269, 263, 287, 272, 269, 263, 294, 434, 263, 284, 291, 283,
306, 347, 263, 2]

Figure 5.5 The transformed process of the word into index using MyanBERTa

41

Tokenizer Result : XLM-RoBERTa-base

Example sentence :
အောင်မြင် ပါစေ သမီး ပြော တဲ ့အတိင်ုး သာ လပ်ု အောင်မြင် ရ မယ် အားပေး တယ်

After parsing XLM-RoBERTa-base tokenizer :
['▁', 'အောင်မြင်', '▁ပါ', 'စေ', '▁', 'သမီး', '▁', 'ပြော', '▁', 'တဲ'့, '▁', 'အတိင်ုး', '▁', 'သာ', '▁လပ်ု', '▁', 'အောင်မြင်',
'▁ရ', '▁', 'မယ်', '▁အား', 'ပေး', '▁', 'တယ်']

After changing decoded token into Myanmar characters :
['', 'အောင်မြင်', 'ပါ', 'စေ', '', 'သမီး', '', 'ပြော', '', 'တဲ'့, '', 'အတိင်ုး', '', 'သာ', 'လပ်ု', '', 'အောင်မြင်', 'ရ', '', 'မယ်',
'အား', 'ပေး', '', 'တယ်']

After padding token into index :
[0, 6, 205907, 40843, 31782, 6, 53156, 6, 37079, 6, 4674, 6, 154421, 6, 9806, 51861, 6, 205907, 21035, 6,
82701, 59057, 12077, 6, 38258, 2]

Figure 5.6 The Transformed Process of the Word into Index using XLM-RoBERTa

The RoBERTa model requires two tensors, therefore the next step can be to create them.

● input ids: our token ids with 15% of the tokens masking with mask>

token.

● The position of "actual" tokens/padding labels—token ids without

masking—are indicated by the attention mask, a tensor of 1s and 0s.

tensor([[[0.3354, 1.4686, -0.2191, ..., -0.0976, 1.2770, -1.3788],
[-1.0617, 1.0412, 0.3350, ..., 1.5748, 2.0985, 1.0544],
[-0.4626, 1.2569, -1.0778, ..., -0.9197, -0.9546, -1.2346],
...,
[0.2952, 0.3133, -0.6785, ..., -1.7023, 0.5148, 1.3101],
[-1.6553, 0.5398, -1.0872, ..., -0.6277, -0.7761, 0.0071],
[-0.0169, 0.7438, 0.4398, ..., 0.3911, 0.0814, -0.3744]]],

grad_fn=<NativeLayerNormBackward0>)

Figure 5.7 The Representation from the Pre-trained Model

42

5.3 Experiment Setting

In experiment setting, the overview design of the system, the hyperparameters of

the models and the training hyperparameters are described.

5.3.1 System Design

After data collection and tagging, the data underwent pre-processing that included

feature extraction, dimension reduction, noise removal, missing value removal, and

spelling correction. The entirety methodology of this research is shown in Figure 5.8. The

data set was then split into training and test parts using an 8:2 ratio.

The model is trained and evaluated using supervised learning. The trained model

was then fed the testing data, and the prediction accuracy was compared to the ground

truth. The whole methodology of this work has been depicted in Figure 5.8. All

experiments are conducted with MyanBERTa and XLM-RoBERTa-base with different

pooling strategies. In order to compare the different models, the dataset is divided 20%

on a test set and the same training set and testing set is used for all experiments. For

training parameters, Adam optimizer and linear learning rate scheduler are set up.

43

Figure 5.8 The Overview Design of the System

44

5.3.2 Experimental Setup

According to the research, the six models are created during the model training

procedure. Only the upper-level models introduced for a particular job are learned during

the first phase, during which the parameters of the pre-training model are fixed. The same

hyperparameters used with the pretrained models are used for fine tweaking. Table 5.3

first displays the two RoBERTa model hyperparameters. The huge training process'

hyperparameters were then configured.

The hyperparameters for MyanBERTa and XLM-RoBERTa are displayed in Table

5.4. The same layers, hidden size, attention heads, dropout, and learning rate exist in both

models. The batch size, dataset size, and number of languages are the main distinctions

between XLM-RoBERTa and MyanBERTa.

Table 5.4 The Hyperparameters of the two RoBERTa Model

Hyperparameters MyanBERTa XLM-RoBERTa-base

Number of Layers 12 12

Hidden Size 768 768

Attention Heads 12 12

Dropout 0.1 0.1

Attention Dropout 0.1 0.1

Batch Size 8 8192

Learning Rate Decay 1e-5 1e-5

Dataset Size 2.1G 2.5T

Number of Languages 1 100

45

The experimental setting is set up before training the model in order to obtain

reliable results from the model comparison. There are three pooling algorithms and two

pretrained models in Table 5.5. Depending on the pooler, different layers are employed,

and the LSTM pooling strategy only uses all of the embedding model's layers. The

weighted pooling approach uses the final four layers, with the final layer's CLS

embedding serving as the baseline.

Table 5.5 The Parameters of the Six Models

Adam is chosen as the optimizer and linear scheduler to modify the training's

learning rate. The five epochs and cross entropy are chosen as the loss function based on

the type of fine-tuning. At the first and last epochs of the training process, the

representation weight is saved into the files. The confusion matrices and evaluation report

are saved for later analysis.

5.4 Experiment Results

In order to visualize how different pooling strategies benefit from sequential

representations of final layers. The weight of the training dataset is saved. The principal

component analysis (PCA) is used to visualize the intermediate representations of the

[CLS] token to show how the different pooling strategies benefit from sequential

representations of intermediate layers. Because the task-specific information is primarily

extracted from the last layers of RoBERTa, the layer is depicted that gets from the pooler.

The initial epoch and final epoch are compared to make it visible the effect of the transfer

learning ability with a small amount of epoch. It is simple to conclude that the model

46

divides distribution into three sentiment classes. The following figures are the trained

model weight comparison for first epoch 1 and last epoch 5.

In Figure 5.9, MyanBERTa and baseline approach does not well separate the

training dataset into the sentiment classes in epoch 1. But the model well clusters the

training instance into the labels at epoch 5 the right side of the figure.

The advantage of the LSTM is shown in Figure 5.10, the distribution is slightly

dense into the classes in epoch1. The LSTM layer learns the RoBERTa embedding to

separate the label at the first epoch. At the final epoch 5, the model obviously

discriminates the instance into the classes.

The weighted model tells us another assumption. In Figure 5.11, the initial epoch

is not special but the distribution at the epoch 5 shows us the model learns the label

without being noticeably dense into the cluster.

Figure 5.9 MyanBERTa + Baseline Pooling Approach

47

Figure 5.10 MyanBERTa + LSTM Pooling Approach

Figure 5.11 MyanBERTa + Weighted Pooling Approach

48

Figure 5.12 XLM-RoBERTa-base + Baseline Pooling Approach

Figure 5.13 XLM-RoBERTa-base + LSTM Pooling Approach

49

Figure 5.14 XLM-RoBERTa-base + Weighted Pooling Approach

The XLM-RoBERTa models' initial distribution reveals the various clustering. In

Figure 5.12, the clustering completely scatters the instance at epoch 1, which prevents

learning for the XLM-RoBERTa and baseline models at the beginning. However, the

model was denser than the MyanBERTa model at the most recent period. As the

MyanBERTa model, the XLM-RoBERTa and LSTM model start to learn at the first

epoch that is shown in Figure 5.13.

The weighted approach is obviously different in clustering at the initial stage. In Figure

5.14, the distribution shows us the model starts to learn the label at the first epoch and

then well clusters into the classes in the final epoch.

50

5.5 Performance Criteria

The training dataset is splitted 20% on testset and the models are evaluated with

the same training set and test set to get the consistent results .To evaluate the performance

of the models, accuracy, recall, precision and F1-score are used. The formula of the

evaluations are as follow:

5.1

5.2

5.3

5.4

Where TP - True Positive TN - True Negative, FP - False Positive, FN - False Negative.

5.6 Evaluation

To validate the generality of the methods, the experiments are conducted on

sentiment dataset and apply the different pretrained models and pooling strategies. The

results are shown in Table 6.1 and Figure 5.15, from the results, the baseline performs

better than the LSTM and weighted pooling strategies with the MyanBERTa.

Furthermore, the xlm-RoBERTa-base weighted pooling outperforms the others. The

pooling strategies generally improve with the xlm-RoBERTa-base model. The benefits

appear to be negligible, and the adaptability of the approach makes it simpler to use for a

range of other tasks.

51

Table 6.1 The Classification Results of the Models on Accuracy, Recall, Precision and F1-score

Figure 5.15 Comparison on the Classification Matrices

The proposed LSTM and weighted pooling are compared with the baseline and all

models use two RoBERTa models as the backbone and are trained separately for

comparison. Results are shown in weight visualization and evaluation tables. The effect

of the RoBERTa model is analyzed in the generalization and the pooling strategies are

determined to make the model perform better. The different evaluation methods are

52

shown to get better analysis of the models. The LSTM pooling method improves the

language specific RoBERTa than the multilingual model. One possible reason for this

phenomenon is that the bigger model multilingual RoBERTa and LSTM pooling can

overfit. For baseline approach, the results increase just slightly with the both RoBERTa

models.By examining the evaluation table, the xlm-RoBERTa-base and weighted pooling

strategies outperform the others.

5.7 User Interface Design of the System

The system includes the main dashboard, model selection and loading, live

prediction, static evaluation dashboard, record dashboard and dynamic analytic

dashboard. The main page of the system is shown in Figure 5.16.

Figure 5.16 Main Dashboard of the system

After the model is trained, the classification report includes accuracy, precision, recall

and F1-score is saved. In Figure 5.17, the comparison of the confusion matrices and

accuracy score is shown.

53

Figure 5.17 Evaluation Result Comparison

Figure 5.18 Model Selection and Loading

Figure 5.18 offers options for the system models. The MyanBERTa and

XLM-RoBERTa models can be chosen from the pretrained model column. Selecting the
54

baseline, LSTM, and weighted radio buttons will bring up the pooling type in the left

column. After pressing the button, the selected model's flask service is loaded in the

backend and prepared for model prediction.

Figure 5.19 shows a dropdown row where the text file can be chosen. Once the

predict button has been pressed, the loaded model is parsed to load the selected file,

which is then loaded, and the loaded model predicts the data to determine the Precision,

recall, and F1-score.

Figure 5.19 Real Time System Testing with the 100 Random Selected Sentences Text File

In the Figure 5.20 prediction dashboard, the left side is the sentence input column

and the right side is the result predicted by the model in the backend. A clear button and a

submit button are located on the left. The clear button deletes the sentence in the input

text box and the submit button calls and predicts the loaded model to get the result that is

shown on the right column. The probability distributions across the classes are examined

in the right column, and the interpret button will re-index the text. The prediction is

depicted with a neutral sentence in Figure 5.21. Figure 5.22 illustrates the prediction

using a negative sentence.

55

Figure 5.20 Real Time System Testing with Positive Sentence

Figure 5.21 Real Time System Testing with Neutral Sentence

56

Figure 5.22 Real Time System Testing with Negative Sentence

The record that was chosen from the mySQL database is shown in Figure 5.23.

The most recent record is updated if the refresh button is hit. The four bar plot, which

represents the label frequency, model frequency, and pooling type frequency across the

sentence count and the pooling type and pretrained model frequency, is part of the

dynamic analytical dashboard seen in figure 5.24.

Figure 5.23 Dynamic Record Dashboard

57

Figure 5.24 Dynamic Analytic Dashboard

58

CHAPTER 7

CONCLUSION

Sentiment analysis involves identifying and extracting subjective information

from text data. It is often used to determine the overall sentiment of a piece of text,

whether it is positive, negative, or neutral. Sentiment analysis has a wide range of

applications, including social media analysis, customer service, and market research.

However, there are also limitations to the technique, including the subjectivity of

language and the difficulty in accurately identifying the sentiment of more nuanced or

complex text.

Overall, sentiment analysis is a useful tool for extracting subjective information

from text data, but it is important to carefully consider the limitations of the approach and

the specific requirements of the task at hand when using it. There are many approaches to

performing sentiment analysis, including rule-based systems, machine learning models,

and deep learning models.

In this research, the pretrained contextualized language models are used and

analyzed with different evaluation matrices. This approach compares and contrasts the

utilization of the intermediate representation of the RoBERTa model. The transfer

learning and fine tuning effects on the classification mode are explored. Many researches

have shown that transformer models such as BERT with proper fine-tuning can play a

crucial role in sentiment analysis.

This method is to explore the effectiveness of the intermediate layer of the

RoBERTa model and compare the results on the RoBERTa models and fine tuning

approaches. Finally, the conclusion can be drawn that generalized pre-trained language

models do not require the explicit construction of extraordinarily complicated networks.

The outcome of this experiment suggests that using deeper layers may be a more

effective strategy to boost accuracy.

59

7.1 Future Work

With the little dataset, this study is applicable to any classification issue. The

transformer models such as RoBERTa with proper fine-tuning can play a crucial role in

sentiment analysis by training minimal epochs. The various fine-tuning layers (poolers)

are examined in this study to see which works best. A technique for assessing the

suggested model's performance in real-world applications is offered. This method seeks

to apply it for more occupations after analyzing its possibilities. The sequence labeling

task is planned to train using the approach. Making generation on the minimal dataset

using fine-tuning advantage is the goal of the research.

60

Publication

[1] Eaint Thet Hmu Soe, Win Pa Pa, “Utilizing RoBERTa Intermediate Layers

and Fine-Tuning for Sentence Classification”, published in the ICCR 2022, Korea

61

References

[1] Aye Mya Hlaing, Win Pa Pa. MyanBERTa: A Pre-trained Language Model For

Myanmar. 2022 International Conference on Communication and Computer Research.

ICCR Korea. 2022

[2] Conneau, Alexis, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary,

Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and

Veselin Stoyanov. “Unsupervised Cross-lingual Representation Learning at Scale.”

Annual Meeting of the Association for Computational Linguistics, 2019.

[3] Hay Mar Su Aung, Win Pa Pa. Analysis of Word Vector Representation

Techniques with Machine-Learning Classifiers for Sentiment Analysis of Public

Facebook Page’s Comments in Myanmar Text. 18th International Conference on

COmputer Application (ICCA 2020), Yangon, Myanmar, 2020

[4] Hongchan Li, Yu Ma, Zishuai Ma, Haodong Zhu*. Weibo Text Sentiment

Analysis Based on BERT and Deep Learning. Applied Sciences. 2021; 11(22):10774.

2021

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv

preprint arXiv:1810.04805, 2019

[6] M.D. Devika, Sunitha C, Amal Ganesh. Sentiment Analysis: A comparative

Study on Different Approaches, Procedia Computer Science, Volume 87, 2016

[7] Prajval Sudhir, Varun Deshakulkarni, Suresh. Comparative study of various

approaches, applications and classifiers for sentiment analysis, Global Transitions

Proceedings, Volume 2, Issue 2, 2021

[8] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. Efficient Estimation of

Word Representations in Vector Space. arXiv preprint arXiv:1301.3781, 2013

[9] Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob and

Jones, Llion and Gomez, Aidan N and Kaiser, Lukasz and Polosukhin, Illia. Attention Is

All You Need . arXiv preprint arXiv:1706.03762, 2017

62

[10] Xin Li1, Lidong Bing2, Wenxuan Zhang1 and Wai Lam1. Exploiting BERT for

End-to-End Aspect-based Sentiment Analysis arXiv preprint arXiv:1910.00883, 2019

[11] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. RoBERTa: A Robustly

Optimized BERT Pretraining Approach, ArXiv abs/1907.11692, 2019

[12] Youwei Song, Jiahai Wang ∗, Zhiwei Liang, Zhiyue Liu, Tao Jiang. 2020.

Utilizing BERT Intermediate Layers for Aspect Based Sentiment Analysis and Natural

Language Inference, ArXiv abs/2002.04815, 2020

[13] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, Radu Soricut. ALBERT:A Lite BERT for Self-supervised Learning of Language

Representations, International Conference on Learning Representations, 2020

[14] https://www.kdnuggets.com/2021/11/guide-word-embedding-techniques-nlp.html

[15] https://intellipaat.com/blog/what-is-lstm/

[16] https://towardsdatascience.com/bert-explained-state-of-the-art-language-

Model-for-nlp-f8b21a9b6270

[17] https://github.com/Rabbit-Converter/Rabbit

[18] https://en.wikipedia.org/wiki/Deep_learning

63

