
DATA DEDUPLICATION FOR MYANMAR

LANGUAGE STORAGE BY USING SECURE HASH

ALGORITHM

THAE NU AYE

M.C.Sc. JANUARY 2023

DATA DEDUPLICATION FOR MYANMAR

LANGUAGE STORAGE BY USING SECURE HASH

ALGORITHM

By

THAE NU AYE

B.C.Sc.

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Master of Computer Science

M.C.Sc.

University of Computer Studies, Yangon

JANUARY 2023

i

ACKNOWLEDGEMENTS

To complete this thesis, many things are needed like my hard work and the

supporting of many people who gave a lot of idea to me.

I would like to express very special thanks to Dr. Mie Mie Khin, Rector of

the University of Computer Studies, Yangon, for her kind permission to submit this

dissertation.

I would like to express my deepest gratitude to my thesis supervisor, Dr. Tin

Thein Thwel, Professor and Head of Faculty of Information Science, University of

Computer Studies, Yangon, for her close supervision, proper guidance, valuable

suggestions, advice and encouragement during the course of this work.

I would like to thank course coordinators, Dr. Si Si Mar Win, Professor,

University of Computer Studies, Yangon and Dr. Tin Zar Thaw, Professor,

University of Computer Studies, Yangon for their superior suggestions and

administrative supports during my academic study.

I would like to express my respectful gratitude to Daw Aye Aye Khine,

Associate Professor and Head of English Department, for her valuable supports from

the language point of view and pointed out the correct usage in my dissertation.

I also like to acknowledge my thanks to all my dear teachers who taught me

from childhood to the master’s degree course.

I wish to express my gratitude to my grandparents, my beloved parents, my

elder brother, my younger brother and my younger sister who supported and

encouraged me not to give up my course and their endless love, invaluable support

and encouragement to fulfill my wish.

Finally, I am grateful to my colleagues and all my friends for their cooperation

and help. I once again extend my sincere thanks to all of them.

ii

STATEMENT OF ORIGINALITY

I hereby certify that the work embodied in this thesis is the result of

original research and has not been submitted for a higher degree to any other

University or Institution.

 Date Thae Nu Aye

iii

ABSTRACT

There is a vast amount of duplicated or redundant data in storage systems. The

existing data deduplication attempted to reduce the storage spaces in file-level, sub-

file-level data storage in terms of byte-level. There is also a need to reduce content

level data deduplication, especially in Myanmar language contents. This study aims

to deduplicate the data for sentences written in Burmese. The system accepts

Myanmar sentences as input and uses Text Splitter to segment the input file into

chunks according to the whitespace. Input the separated chunks into the ChunkID

generator to generate the ChunkID by applying the Secure Hash Algorithm (SHA1).

The system will search for duplicate phrases, and then it will work on reducing those

duplicate phrases. The system is implemented with python in Visual Code IDE.

According to the tested result, the system can dedupe the duplicated data which are

written in Myanmar language with the file type .txt and .docx, especially, it is work

well in .txt file for both deduplication and reconstruction process.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. i

STATEMENT OF ORIGINALITY .. ii

ABSTRACT .. iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES ... vi

LIST OF TABLES ... viii

LIST OF EQUATIONS ... ix

CHAPTER 1 INTRODUCTION

1.1 Concepts of Data Deduplication ..1

1.2 Data Deduplication Techniques ...2

1.2.1 Inline Method ...2

1.2.2 Post-Processing Method...2

1.3 Related Work ...3

1.4 Objectives of the Thesis ...4

1.5 Organization of the Thesis ...4

CHAPTER 2 BACKGROUND THEORY

2.1 Data Deduplication ...5

2.2 Block vs. File-level Data Deduplication ..6

2.3 File Chunking Approaches ..6

2.3.1 Fixed Size Chunking ..7

2.3.2 Content Defined Chunking ..7

2.4 Data Deduplication Benefits ..8

2.5 Classification of Deduplication ..8

 2.5.1. Inline Data Deduplication ..9

v

 2.5.2 Post process Data Deduplication ..10

2.6 File Level Deduplication..11

2.7 Sub-File Level Deduplication ..11

2.8 Metadata ...12

2.9 Secure Hash Algorithm (SHA-1) ...12

2.9 Performance Evaluation ...16

CHAPTER 3 SYSTEM ARCHITECTURE

3.1 Overview of the Proposed System ...18

3.2 System Component Descriptions ...20

3.3 Data Deduplication Procedure ...21

3.4 File Chunker (Text Splitter) ...21

3.5 ChunkID Generator ..22

3.6 Duplicate Finder...23

3.7 Reconstruction ...25

3.8 Summary ..26

CHAPTER 4 SYSTEM IMPLEMENTATION

4.1 Experimental Setup ..27

4.2 System GUI ..27

4.3 Performance Results and Discussions ...32

4.4 Experimental Findings ...38

4.5 Summary ..38

CHAPTER 5 CONCLUSION AND FURTHER EXTENSIONS

5.1 Advantages and Limitation of the System ...40

5.3 Further Extensions ...41

AUTHOR’S PUBLICATIONS ..42

REFERENCES ..43

vi

LIST OF FIGURES
Page

Figure 2.1 Classification of Data Deduplication... 9

Figure 2.2 Left and Right shift operation .. 15

Figure 2.3 Data Deduplication Ratio .. 16

Figure 3.1 Overview of the Proposed System .. 19

Figure 3.2 Data Deduplication Procedure ... 21

Figure 3.3 Text Splitter ... 22

Figure 3.4 Flowchart for ChunkID generator ... 23

Figure 3.5 Duplicate Finder Algorithm .. 24

Figure 3.6 Flowchart for Duplicate Finder ... 24

Figure 3.7 Flowchart for Reconstructor process ... 25

Figure 4.1 Main page of Myanmar language Data Deduplication System 28

Figure 4.2 File selections to dedupe ... 28

Figure 4.3 Deduplicated file result, first time store process ... 29

Figure 4.4 Deduplicated file result, second time store process... 30

Figure 4.5 File Reconstruction .. 31

Figure 4.6 File selection to reconstruct ... 31

Figure 4.7 File reconstructed result .. 32

Figure 4.8 Deduplication for 100% duplicate file (.docx) .. 33

Figure 4.9 Deduplication for 100% duplicate file (.txt).. 34

Figure 4.10 Deduplication for 50% duplicate file (.docx) .. 34

Figure 4.11 Deduplication for 50% duplicate file (.txt).. 35

Figure 4.12 Deduplication for 25% duplicate file (.docx) .. 36

Figure 4.13 Deduplication for 25% duplicate file (.txt).. 36

Figure 4.14 Deduplication time comparisons ... 37

Figure 4.15 Reconstruction time comparisons.. 38

vii

LIST OF TABLES

Page

Table 2.1 Comparison of x and y .. 14

Table 2.2 Operation of XOR ... 14

viii

LIST OF EQUATIONS

Page

Equation 2.1 SHA-1 Iterations 16-79 Formula ... 13

Equation 2.2 Circular Shift Operation Equation ... 14

Equation 2.3 SHA-1 Iterations 80 Formula .. 15

Equation 2.4 Logical operator Equation ... 16

Equation 2.5 Deduplication Ratio ... 16

Equation 2.6 Space Reduction Ratio .. 16

1

CHAPTER 1

INTRODUCTION

The amount of storage needed by servers grows along with the amount of

internet usage, raising the possibility of duplicate data, especially in situation where

persistent storage must be kept for a long time. As a result, the storage environment

presents an intriguing research topic for data deduplication. Deduplication is the

method for reducing storage space by removing redundant data copies kept in various

spaces. This method decrease the amount of data stored on each individual device

while also decreasing storage costs.

There is currently a significant amount of redundancy and redundant data in

storage devices. Data duplication happens both within and between versions of the

same file. These vast quantities of duplication of data require more storage space and

power, which significantly reduces storage utilization. Data deduplication can get rid

of duplicated sections or whole files as well as multiple copies of the same data.

Unique data chunks are found, and by replacing redundant chunks with new ones

using the right strategy, duplicate data is removed. Users of the Burmese language

typically use space however they see fit. In order to reduce data, the Myanmar

Language Deduplication in this thesis tries to use String Tokenizer and the Data

Deduplication method. It is aimed to remove redundant data in order to reduce storage

space.

1.1 Concepts of the Data Deduplication

Data deduplication, also known as intellectual compaction or single-instance

storage, tries to search for duplicated content in data. At its most basic, this identifies

duplicates of the same file, but deduplication only functions for identical data, so two

files that differ by a few bits still need to be considered unique. With today's data

deduplication, it is possible to search for repetitive components or bytes much more

extensively, which results in much better storage savings. Only the first instance of

the data is actually committed to disk when it is decided to move to a backup, archive,

or reproduction platform. The only indication for subsequent instances is a tiny stub

that makes a reference to the saved iteration. The input data can first be divided into

individual chunks, entire files, or streams. This chunking process is important, as it

allows for data to be identified by size and shape rather than the actual content.

2

Data Deduplication techniques that make sure on storage media like disk,

flash, or tape, only one distinct instance of the data is kept. Data deduplication can

help reduce storage costs and increase efficiency by lowering the amount of storage

space required to keep a single instance of data. A pointer to a unique data copy is

used to replace redundant blocks of data. Data deduplication can significantly reduce

storage capacity by trying to get rid of duplicate data.

1.2 Data Deduplication Techniques

Data Deduplication can be performed either as part of the data processing

process (the in-line method) or after the data has been written to the medium (the

post-processing method).

1.2.1 Inline Method

The type of data deduplication being used has no bearing on in-line data

deduplication. The fact that the data is only processed once and is not processed again

after the backup window is a benefit of in-line data deduplication. Since native data is

not stored before data deduplication, in-line data deduplication uses less disk space.

In-line data deduplication has the drawback of potentially slowing down the backup

data stream, depending on how it is implemented. Data deduplication algorithms can

be CPU-intensive, and if the index is disk-based, data deduplication may require

additional read or write access.

1.2.2 Post-processing Method

When using a post-processing data deduplication technique, data is first

backed up, and then the deduplication is carried out after the backup window has

ended. The benefit of this approach is that neither the backup window nor the initial

backup streams are delayed.

The following are some drawbacks of the post-processing approach:

 Enhanced I/O to the storage device in both directions. Since the data is written

during the backup, reads must be performed to check for duplicate data, and if

any are found, the pointer(s) must be changed. The overall data deduplication

cycle will most likely be longer than if it were done in-line.

 It takes more disk space than an in-line approach since all the data must be

stored before deduplication.

3

It may happen that the data deduplication process is not finished before the

beginning of the next backup window if the post-processing data deduplication period

goes on for too long.

1.3 Related Work

The researchers M.Lillibridge et al.[14] explained Chunk-lookup disk

bottleneck/full chunks indexing encountered in in-line deduplication. This paper

proposed to solve using sampling and sparse index and chunk locality. However, they

based on assumption that if two segment share one chunk, it is likely to be shared

other chunks only limited number of segments are deduplicated and can‘t do fully

deduplication as sometimes can store duplicate chunks.

The researchers May Thu Win et al.[11], Myanmar Natural Language

Processing Lab described ―Burmese Phrase Segmentation‖ posed to express how to

segment phrases in a Burmese sentence and how to formulate rules. Described how

the system can segment sentences into phrases with noun markers, verb markers, zero

markers and other techniques in this paper. This has two phases. The first one is

encoding phase and the second one is decoding phase. In encoding phase, at first, they

collect and normalize raw text from online and offline journals, newspapers and e-

books. Next, they train these sentences decoding with CRF++ tool to get Burmese

phrase model. The system has been tested by developing a phrase segmentation

system using CRF++.

The researcher Walter Santos and Thiago Teixeira [23] explained ―A Scalable

Parallel Deduplication Algorithm‖. This paper proposed to identify the replication of

data in database with parallel deduplication algorithm using filter-stream model. They

considered for databases and not for sub-file level of the file which have their

respective secure hash code.

4

1.4 Objectives of the Thesis

The major aim of this thesis is to develop a completely automated data

deduplication system that requires less indexing time and less duplicate data storage

space and other major objectives are as follows:

 To remove redundant data in order to reduce storage space.

 To identify the same data by using the advantage of cryptographic

technology.

 To obtain the efficient mechanism for searching identical data in the existing

storage for Myanmar language.

1.5 Organization of the Thesis

The thesis is divided into five chapters and is structured as follows:

Chapter 1 introduces the purpose of this thesis as well as the principles of

data deduplication, methodologies, and related work.

Chapter 2 explains background theory for data deduplication and Secure

Hash Algorithm. The Evaluation method used in this system is also explained in this

section.

Chapter 3 describes the design of the Data Deduplication for Myanmar

Language Storage using Secure Hash Algorithm. This section includes a full

explanation of a step-by-step procedure and a system design diagram. It is followed

by a description of the suggested algorithms that are a part of this study.

Chapter 4 provides a thorough case and the benefits of using Python. The

outcomes of the research, which have collected for the thesis, are also provided.

System implementations are shown with the relevant figures in this section.

Last but not least, in Chapter 5, it concludes with the proposed system and

discusses its limits as well as suggested directions for further study.

5

CHAPTER 2

BACKGROUND THEORY

This chapter intends to point the background theory applied in this research

work. It explains data deduplication, secure hash algorithm and evaluation methods

used in this work.

Data Deduplication is a process that eliminates excessive copies of data and

significantly decreases storage capacity requirements. Deduplication can be run as an

inline process as the data is being written into the storage system and/or as a

background process to eliminate duplicates after the data is written to disk.

Deduplication operates eliminating duplicate data blocks and storing only unique data

blocks. In this proposed system, Myanmar Language Deduplication was emphasized.

Data Deduplication working mechanism is as follow: Deduplication segments

an incoming data stream, uniquely identifies data segments, and then compares the

segments to previously stored data. If the segment is unique, it's stored on disk.

However, if an incoming data segment is a duplicate of what has already been stored,

a reference is created to it and the segment is not stored again.

2.1 Data Deduplication

An advanced type of data compression is data deduplication. The application

of this technology has the potential to revolutionize data protection, speeding up disk-

based methods for backup and recovery as well. Data deduplication is essentially a

way to save storage space, to put it another way. It functions by removing redundant

data and making sure that only one distinct instance of the data is really kept on the

storage medium, such as a disk or tape. A pointer to the original copy of the data is

used to replace redundant data. Data deduplication, also known as single-instance

storage or efficient compression, is frequently used in combination with other data

reduction techniques. Traditional compression has been used to reduce big or

repetitive data sets for almost three decades now by using mathematical techniques to

the data. Data deduplication does something similar by finding redundancies within

the data and deleting them, allowing only one unique instance of a piece of data to

remain.

6

2.2 Block vs. File-level Data Deduplication

Data deduplication is frequently carried out either at the block or file level.

Duplicate files can be removed using file deduplication, although this approach is not

particularly efficient. A file that has to be archived or backed up is compared with

copies that already exist as part of data deduplication at the file level. By contrasting

its characteristics with an index, this is achieved. Only a link to the existing file is

stored unless the file is unique, in which case it is saved and the index is modified. As

a result, only one duplicate of the file is saved, and any other copies are swapped out

for stubs that refer to the original.

Block-level Deduplication means that a file's unique iterations of each block

are sought for and saved via deduplication. The blocks are divided into identical-

length sections. Each block of data is processed using a hash algorithm like MD5 or

SHA-1. By using this technique, each component is given a special number that is

then entered into an index. When a file is updated, just the modified data is saved,

even if the content or presentation has only undergone minor changes. No new file is

created as a result of the changes. This behavior makes block deduplication

considerably more efficient. On the other side, block deduplication uses a

significantly bigger index and more processing resources to track each individual file.

Variable-length Deduplication is a method for dividing a file system into

pieces of different sizes, offering greater data reduction ratios than fixed-length

blocks. Cons are that it produces more information and moves more slowly. With

deduplication, hash collisions may be a problem. A piece of data is assigned a hash

number, which is then compared to the index of other hash numbers that already exist.

If the hash value is already in the index, which has a better data reduction ratio than

fixed-length blocks, the data is considered redundant and doesn't need to be saved

again. Cons are that it produces more information and moves more slowly. With

deduplication, hash collisions may be a problem. A hash number is compared to the

index of any existing hash numbers.

2.3 File Chunking Approaches

Deduplication techniques separate an input object (or stream of files) into

smaller pieces known as "chunks," such as blocks or segments, and store only the

distinct chunks. Traditionally, there are several ways to chunk an object, including

7

content-dependent fingerprinting, fixed size chunks (where each chunk is the same

length), and others. One drawback of these chunking techniques is that deduplication

performance (compression ratio) is better with smaller chunk sizes, regardless of the

10 chunking techniques used. The costs of metadata depend on how many chunks are

generated for a file, regardless of the metadata scheme used. The smaller the chunk

size, the more effective the data deduplication. It indexes the chunks and raises the

overhead of those chunks' hashes.

2.3.1 Fixed Size Chunking

A file is divided into fixed size units, such as 8 KB blocks, in fixed size

chunking. It is easy to use, quick, and inexpensive to compute. Chunking moves at the

same speed as IO and is not constrained by the CPU. For backup applications and

massive file systems, fixed-size chunking has been used in a number of subsequent

works. It has one flaw, though. Even though the majority of the file's content is still

present, the fixed size chunking may produce a different set of chunks when a small

amount of content is added to or removed from the original file. Even so, it is helpful

when files are not frequently updated.

Fixed blocks may be 8 KB in size or even 64 KB; the difference is that the

likelihood that a chunk is redundant increases with decreasing size. As a result,

reductions will be even greater as less data is stored. The only drawback is that, if a

file is modified and the deduplication tool uses the same fixed blocks from the

previous inspection, it might fail to identify redundant segments because, as blocks

are changed in a file, they change downstream from the transformation, offsetting the

other comparisons.

2.3.2 Content Defined Chunking

Data deduplication, an effective method of data reduction, has grown in

popularity and attention among large-scale storage systems as a result of the

exponential growth of digital data. The redundant data is removed at the file or chunk

level, and duplicate contents are recognized by their cryptographically secure hash

signatures (e.g., SHA1 fingerprint). Because it locates and eliminates redundancy at a

finer granularity, chunk-level deduplication is generally more popular than file-level

deduplication. The simplest chunking method for chunk-level deduplication involves

dividing the file or data stream into equal, fixed-size chunks, also known as "fixed-

8

size chunking" (FSC). Approaches based on Content-Defined Chunking (CDC) are

suggested as a solution to the FSC approach's boundary-shift issue. To be more

precise, CDC establishes chunk boundaries based on the data stream's byte contents.

Content-Defined Chunking typically consists of two distinct and sequential

steps:

(1) Hashing, which produces fingerprints of the data contents, and

(2) Hash judgment, which compares fingerprints to a preset value to determine

and declare chunk cut-points. The proposed system used contend-defined chunking.

2.4 Data Deduplication Benefits

Deduplication systems have resource-saving advantages. Savings on various

levels are possible. The main advantage is a significant reduction in the amount of

disk space needed to store a certain amount of data.

Deduplication also makes it possible to enhance service-level agreements for

recovery, which is another major benefit. In order to lessen the impact of backups on

production activities, backups to disk can increase backup windows and enable

production resources to quickly resume normal operations.

Deduplication can therefore reduce restore times because it increases the

likelihood that a restore request can be fulfilled from a disk copy rather than a slower

access medium like tape or optical. This is because the larger a disk's capacity to store

data is, the more likely it is that a restore request can be satisfied from a disk copy.

2.5 Classification of Deduplication

According to the information in Figure 2.1, which illustrates a straightforward

relationship between these elements, data deduplication can be categorized

technologically.

9

Figure 2.1 Classification of Data Deduplication

2.5.1 Inline Data Deduplication

In inline systems, data is duplicated as it enters the system and before it is

written to disk. It is quicker, easier, and safer than post-process deduplication systems,

and it can store data on disk. Due to the slower performance, the increased risk, and

the management complexity, the storing data to disk first and deduplication it later as

a post-process loads backup and recovery.

As part of a larger stream of data from a backup, a block of data enters the

appliance. The appliance works its magic to determine whether it has seen that block

before while it is in RAM. If it has already seen it, it places a pointer somewhere

indicating that it has. It writes the new block of data if it has never seen the previous

block of data. The task is finished. With this approach, the bulk of the labor-intensive

work can be completed in RAM, reducing I/O overhead. The hash lookup is the only

disk operation that is always performed. Some systems also need to read the block,

and in order to do so, the new block appears to match.

10

2.5.2 Post process Data Deduplication

It is a procedure where the data is first gathered in a holding area on the disk

and then deduplicated in batch mode. The original data must be written, read, checked

for redundancies, and if any are found, one or more pointers must be written. In other

words, it can be explained as follows:

An entire block of data is written to disk when it enters the appliance as part of

a larger stream of data from a backup. Then, a different process reads the block of

data and performs its magic to determine if it has ever seen that block of data before

(possibly running sequentially and possibly from another appliance accessing the

same file). If so, it replaces the redundant block of data with a pointer instead of

deleting it. It makes no difference if they have not seen it. Compared to the inline

method, this one requires a lot more I/O—roughly 40. It completely writes all fresh

blocks to disk. Then it reads all the new blocks from the disk in their entirety.

Post-process deduplication involves first storing new data on the storage

medium, followed by an analysis step to check for duplicates. The advantage is that

data can be stored right away without having to wait for the hash calculations and

lookups to finish, protecting store performance. Users of implementations with

policy-based operation may be able to process files according to type and location

while deferring optimization on "active" files. One possible drawback is that users

might unnecessarily store duplicate data for a brief period of time, which is

problematic if the storage system is almost at capacity. The inability to accurately

predict when a process will be finished is probably the biggest problem in the real

world.

Post-processing has the following benefits:

i. There are no worries about incoming backup speed slowing down;

ii. Dedupe implementation can be staggered;

iii. Users can copy last night's backups in their original format; and

iv. Post-processing permits a forward-referencing approach (if desired).

The following are some drawbacks of post-processing: It requires more

configuration than an inline approach due to the following reasons:

i. It requires a lot more I/O work;

ii. It requires the landing zone disk;

11

iii. Data must be processed twice during ingesting and subsequent deduplication;

and

iv. It requires additional disk space to store data that has not yet been

deduplicated.

In contrast to the inline method, which can only apply one process per backup

stream, users can use more parallel processes (and processors) to solve the problem.

This strategy has two drawbacks. Prior to deduplication, the backup must first be

stored, necessitating the availability of temporary storage space. Second, there is a

requirement for a lot of disk bandwidth because backup files must be read, duplicated,

and the new deduplicated backup written to disk. Inline data deduplication is used in

the proposed system.

2.6 File Level Deduplication

File-level data deduplication, also known as Single-Instance Storage (SIS),

compares a file that needs to be deduplicated with those that have already been stored

by comparing its attributes to an index. Only a pointer to the existing file is stored if

the file is not unique; otherwise, it is stored and the index is updated. As a result, only

one copy of the file is saved, and any additional copies are swapped out for "stubs"

that point to the original file. Read-only data can benefit from file level deduplication,

but read-write data necessitates greater granularity. It is quick and easy, but it does not

deal with the issue of duplicate content found in various files.

2.7 Sub-File Level Deduplication

The file is typically divided into chunks or blocks, as suggested by their

names, and each one is checked for duplication with respect to previously saved data.

The most common method for finding duplicates is to give a piece of data a unique ID

or "fingerprint," such as by using a hash algorithm, which creates a unique ID. A

central index is then used to compare the unique ID. The data segment has already

been processed and stored if the ID is present. So, all that needs to be saved is a

pointer to the previously saved data. The block is unique if the ID is brand-new. The

unique chunk is stored, and the unique ID is added to the index.

12

2.8 Metadata

There are two different types of data produced when storing data in a

deduplication system. First, there are protected objects like Word documents,

databases, and Exchange message stores. The proposed system will deduplicate these

files, and for the simplicity, it will refer to this as "actual storage." Metadata is the

second category of data that is produced. The deduplication software uses this data to

identify redundancies and may rehydrate data in the event of restoration. These two

categories of data are essential and frequently necessary for both writing data to the

system and possibly reading data.

Metadata are facts about other facts. The term "metadata" in this system refers

to the details about files and the chunks that make up each file. As a result, it can be

referred to as chunk metadata. Understanding how the storage system is set up to

safeguard this data is crucial. Since running out of metadata space is essentially the

same as running out of object space, allocating storage for metadata can be crucial. As

a result, metadata is a crucial component of the deduplication process, and its loss or

corruption can cause serious problems. Key elements of every deduplication

algorithm are the creation, management, and handling of metadata.

2.9 Secure Hash Algorithm (SHA-1)

Another important use of cryptograph is protecting data integrity by using

hashes. A hash is a checksum that is unique to a specific file or piece of data. A hash

value is used to verify that a file has not been modified after the hash was generated.

Creating a hash is a one-way operation. Hashes are often used to be enable passwords

(keys) to be verified without storing the password (key) itself. After the hash of the

password (key) has been stored, the application can verify the password (key) by

calculating the hash of the password (key) and comparing it with the stored hash. The

two hash values will match if the user has provided the same password (key).

The National Institute of Standards and Technology and the National Security

Agency created the Secure Hash Algorithm 1, a message digest algorithm. The 160-

bit (20-byte) message digest generated by SHA1 is used to create unforgivable digital

signatures. The algorithm is slower than MD5, but the message digest is bigger,

making it more resistant to brute force attacks, which attempt to generate the same

message, digest by picking messages at random. As one-way hash functions, they are

13

unable to calculate the original data. Additionally, they can serve as signatures. The

proposed system makes use of this function to locate duplicate chunks among the

various chunks of different files.

Suppose the message ‗abc‘ was to be encoded using SHA-1, with the message

‗abc‘ in binary being

01100001 01100010 01100011

And that in hex being

616263

Step (1) the first step is to initialize five random strings of hex characters that will

serve as part of the hash function (shown in hex):

H0= 67DE2A01

H1= BB03E28C

H2= 011EF1DC

H3= 9293E9E2

H4= CDEF23A9

Step (2) the message is then padded by appending a 1, followed by enough 0s until

the message is 448 bits. The length of the message represented by 64 bits is then

added to the end, producing a message that is 512 bits long.

Step (3) the padded input obtained above, M is then divided into 512-bit chunks, and

each chunk is further divided into sixteen 32-bit words, . In the case of

‗abc‘, there‘s only one chunk, as the message is less than 512-bits total.

Step (4) for each chunk, begin the 80 iterations, necessary for hashing (80 is the

determined number for SHA-1), and execute the following steps on each chunk, :

For iterations 16 through 79, where 16≤ i ≤ 79, perform the following operation:

W (i) = ((W (i−3) ⨁ W (i−8) ⨁ W (i−14) ⨁ W (i−16)), (2.1)

Where XOR, or ⨁, is represented by the following comparison of inputs x and y.

https://brilliant.org/wiki/padding/

14

Table 2.1 Comparison of x and y

X y Output

0 0 0

1 0 1

0 1 1

1 1 0

For example, when is 16, the words chosen are W(13), W(8), W(2), W(0)

and the output is a new word, W(16), so performing the XOR, or ⊕, operation on

those words will give this:

Table 2.2 Operation of XOR

W(0) 01100001 01100010 01100011 10000000

W(2) 00000000 00000000 00000000 00000000

W(8) 00000000 00000000 00000000 00000000

W(13) 00000000 00000000 00000000 00000000

 ⊕

 W(16) 01100001 01100010 01100011 10000000

Circular Shift Operation

Now, the circular shift operation () the word by bits, being an

integer between 0 and 32, is defined by:

 () () () (2.2)

where, is the left-shift operation, obtained by discarding the leftmost bits

of and padding the result with zeroes on the right.

X >> 32-n is the right-shift operation obtained by discarding the

rightmost bits of and padding the result with zeroes on the left. Thus () is

equivalent to a circular shift of by positions, and in this case the circular left-shift

is used. The operation of left and right shift is as shown in the following Figure 2.2.

15

Figure 2.2 Left and Right shift operation

So, a left shift (W (i)), where W (i) is 10010, 10010, would produce 01001, as the

rightmost bit 0 is shifted to the left side of the string. Therefore, W (16) would end up

being:

11000010 11000100 11000111 00000000

Step (5) now; store the hash values defined in step 1 in the following variables:

A =

B =

C =

D =

E =

Step (6) For 80 iterations, where , compute

 () () () () (2.3)

See below for details on the logical function, and on the values of (). Reassign

the following variables:

 ()

Step (7) Store the result of the chunk‘s hash to the overall hash value of all chunks, as

show below, and proceed to execute the next chunk:

H0=H0+A

H1=H1+B

H2=H2+C

16

H3=H3+D

H4=H4+E

Step (8) as a final step, when all the chunks have been processed, the message digest

is represented as the 160 bits string comprised of the OR logical operator, ⋁ , of the 5

hash values.

 () ⋁
 () ⋁

 () ⋁
 () ⋁ (2.4)

So, the string ‗abc‘ becomes represented by a hash value to

‘a9993e364706816aba3e26727850c26c9cd0d89d’.

If the string changed to ‗abc‘, for instance, the hashed value would be

drastically different so attackers cannot tell that it is similar to the original message.

The hash value for 'abc' is ‗81fe8bfe87576c3ecb22426f8e57847382917acf’.

2.10 Performance Evaluation

Understanding how well a storage system performs is essential until placing it

into use. The ratio of input bytes to output bytes in a data deduplication process is

known as the data deduplication ratio over a given time period. The formula for

calculating the data deduplication ratio, which accounts for all complementary

capacity optimization technologies actually employed, is given in Equation (2.5) and

(2.6):

Figure 2.3 Data Deduplication Ratio

Deduplication Ratio (%) = Bytes In/Bytes Out (2.5)

Space Reduction Ratio (%) = [1-(1/Deduplication Ratio)]*100 (2.6)

17

Figure 2.3 shows the space reduction ratio relevant in most situations, which

reflects all of the complementary capacity optimization technologies actually used.

The chunkID‘s in our implementation are generated using the SHA1 hash algorithm.

Internally, the data is saved as files. A data deduplication ratio over a particular time

period is the number of bytes input to a process divided by its output. This ratio

provides an indication of how well the deduplication process has worked and thus

gives us a valuable insight into how much disk space those are able to save. With the

use of the SHA1 hash algorithm to generate chunkID‘s, it can achieve an efficient

data deduplication ratio over any given period. By taking advantage of the fact that

data is typically composed of multiple copies and that each file contains similar

information, the system can use deduplication technology to detect and store only one

copy of each block of data.

18

CHAPTER 3

SYSTEM ARCHITECTURE

Data deduplication is the method of storing and/or sending only unique data

after examining a set of data or byte stream at the sub-file level. The approach taken

to assess, identify, track, and prevent duplication is the fundamental basis for

understanding the term the sub-file level deduplication. The deduplication procedure

entails updating tracking data, storing and/or sending new and unique data and

ignoring any duplicate data.

Data is compressed by being encoded in order to use less storage space. While

loss data compression methods permanently discard some of the original data, lossless

data compression techniques enable exact reconstruction of the original data from the

compressed data. Data deduplication is a process that gets rid of extra copies of data

and drastically reduces the amount of storage space needed. Deduplication can be

implemented as a background process to remove duplicates after the data has been

written to disk or as an inline process to remove duplicates as the data is being written

into the storage system. By removing duplicate data blocks and storing only unique

data blocks, deduplication works. In this proposed system, Myanmar language

deduplication was emphasized in this work. Data deduplication's mechanism of

operation: Deduplication divides an incoming data stream into distinct data segments,

then uniquely identifies the segments and compares them to previously saved data.

The segment is saved on disk if it is distinct. However, a reference is made to the

incoming data segment, and it isn't stored if the segment is a duplicate of what has

already been stored.

3.1 Overview of the Proposed System

Figure 3.1 illustrates the layout of the proposed system. The following are the

principal parts of the system: The text splitter, ChunkID generator, duplicate finder,

metadata, and storage are the system's major components. Txt and docx are two

possible file types for input in the Burmese language. File Chunker splits input files

into chunks of variable length. The File clunker‘s output chunks are used by the

ChunkID Generator to generate ChunkID by applying the secure hash function SHA1,

which is renowned for its resistance to hash collisions. Duplicate Finder uses the

19

chunk ID to determine whether or not that chunk ID is already present in the

metadata.

Figure 3.1 Overview of the Proposed System

Text Splitter

ChunkID

Generator

Duplicate Finder

Dedupe Process

Storage

Input File

 Metadata

Chunk

Metadata

File

Metadata

Reconstruction

Output File

20

The metadata maintains the hash code of the already stored file information,

including ChunkID. Filename, chunk serial number, Chunk_ID, and

Number_of_Chunk are all part of the file information. The storage space contains the

contents of the data chunk. After deduplication the data or files, the system uses

Reconstructor to restore the files or folders to their original state. It can reconstruct

the desired file from the original file. When the reconstructed file has been deleted,

the Reconstructor can reconstruct it again from the metadata and chunks. This means

that the system can also recover a file that the user has accidentally deleted.

3.2 System Components Description

 Input File

o Enter Burmese sentences file as input.

 Text Splitter

o In order to segment the input file as the chunks according to the

whitespace, the split () method that splits a string into a list is used.

 ChunkID Generator

o To generate the ChunkID, the ChunkID Generator uses SHA1 which

produces 160 bits signature for each chunk.

 Duplicate Finder

o The Duplicate Finder finds the duplicate ChunkID in the existing hash

code with the incoming ChunkID.

 Metadata

o The metadata maintain the hash code of the already stored files

information including ChunkID, file information.

o File information includes Filename, Chunk serial number, Chunk_ID,

and Number_of_Chunk.

 Storage

o In the storage space, the content of the chunk data is stored.

 Reconstruction

o After the input files are deduplicated, it needs to reconstruct in order to

obtain the original input files.

21

3.3 Data Deduplication Procedure

The efficient data deduplication procedure for the proposed data deduplication

process contains six steps. They are shown in the Figure 3.2.

Figure 3.2 Data Deduplication Procedure

As illustrated in Figure 3.2, after accepting the input files that written in

Myanmar language in S1, these files‘ content are separated into chunks by using Text

Splitter in S2. After that, the resulted chunks are applied by SHA1 in order to generate

hash code for each chunk, which is called ChunkID, in S3. Then in S4, the ChunkID

is used to check whether the duplicated chunks exist or not. If the ChunkID has

already existed, then append it to the existing metadata in S5. If the ChunkID does not

exist, then insert that ChunkID into the metadata and store the chunk data in

secondary storage were done in S6.

3.4 File Chunker (Text Splitter)

 A file is split into segments or chunks by the process of "chunking". Python's

split method can be used to break down text and make it easier for computers to

understand. Almost every word written in Myanmar language documents is already

formatted and segmented with spaces. This process, which makes text analysis easier,

is called tokenization. In this system, a simple split () method that splits a string into a

list is used.

22

Figure 3.3 Text Splitter

In the above Figure 3.3, a file is segmented or chunked deterministically by

text splitter. Smaller segments produce better deduplication, but they produce more

chunks and metadata because there are more of them. On the other hand, large chunks

can reduce the chance of discovering duplicate data.

3.5 ChunkID Generator

A hashing algorithm can be used to find the identical chunks and produce the

Chunk ID. The Chunk ID Generator in this system employs SHA1, which generates a

160-bit signature for each chunk and also features a collision-resistant feature. It can

lessen the possibility of identical information being found in the file. The flowchart

for the ChunkID Generator procedure is shown in Figure 3.4.

23

Figure 3.4 Flowchart for ChunkID Generator

3.6 Duplicate Finder

After making each chunk respectively, ChunkIDs generated form ChunkID

Generator are used by Duplicate Finder for further processes. Firstly, the Duplicate

Finder checks the ChunkID that is already presented or not in ChunkLib. If there is, it

gets Address of that chunkID‘s content and updates the metadata with ChunkIdIndex

and ChunkIdMetadata. If not, it updates the Chunklib with new ChunkID and the

metadata concerned with the chunk and then store that new Chunk. The algorithm and

flowchart for the Duplicate Finder is demonstrated in Figure 3.5 and Figure 3.6.

24

Figure 3.5 Duplicate Finder Algorithm

Figure 3.6 Flowchart for Duplicate Finder

25

3.7 Reconstruction

Once the data, that is, files have deduplicated, the system uses Reconstructor

to restore the files or folder as original. It can reconstruct the desired file as the

original file. When the reconstructed file has been deleted, the Reconstructor can

construct that file again from the metadata and chunks. This means that the system

can also make recovery from the accidental delete file from the user as shown in

Figure 3.7.

Figure 3.7 Flowchart for Reconstructor Process

Yes

No

Select File to reconstruct

Retrieve File Metadata

Search in chunklib using

Metadata

Fetch Chunk‘s content using

Metadata

Reconstruct File

More

Reconstruct?

Output Reconstructed File

26

3.8 Summary

 In this chapter, the detailed descriptions and explanation for the design and

implementation of the proposed system are explained. Firstly, it mentioned the overall

architecture of the proposed framework. The flow diagrams for the process of each

component in proposed framework have been described. The processes for each

component are explained. In addition, for checking the integrity of the reconstructed

files from the system, the detailed implementation for the integrity checker and the

process of the integrity checker have also been explained. And the discussion

concerned with the results and performance of the proposed system appears in the

next chapter.

27

CHAPTER 4

SYSTEM IMPLEMENTATION

In this chapter, the implementation of this system is presented with step by

step processes. For improving the user understandability when presenting this system,

this chapter collects and shows the results with full screen shots. After reviewing all

sections in this chapter, the user will be able to know how the system setup and how

to process the analysis task.

4.1 Experimental Setup

The experiment is conducted on:

 Hardware configurations

o CPU: at least Core i3 M 560 @ 2.67 GHz 40

o Memory (RAM): at least 4 GB

o Hard disk: at least 85GB

 Software requirements

o Window 10 64bit and above

o Python IDE

The types of deduplication data (that is, files‘ types) chosen by users to the

deduplication system may be arbitrarily complex in the types of desired files such as

portable document format Microsoft Word Document (.doc, .docx), and Text

Document(.txt). The proposed system is tested with two file types as shown in the

next section. The sizes of the files which are involved are varied between 1 KB and

635 KB and 80 numbers of files involved in these testing.

4.2 System GUIs

 The implemented system includes two main parts. They are data deduplication

and reconstruction. The graphical user interface for the implemented system‘s main

window is shown in the following Figure 4.1.

28

Figure 4.1. Main page of Myanmar language Data Deduplication System

Figure 4.2 File selections to dedupe

29

In the above figures, if the user wants to store the text file contained Myanmar

language have to click the ‗Browse File to Deduplicate‘ button, then select the desired

file from the file explore dialog box as in Figure 4.2. It will show the original file size

of the selected file. Then, click ‗Deduplicate‘ button to process. The output result will

be shown as the following Figure 4.3.

Figure 4.3 Deduplicated file result, first time store process

In the first time store process, if the deduplication is successful, the size of the

selected file and the size of the metadata and chunk, which increased when the first

deduplication was done, will be found in the text box. Then, the amount of

deduplicated time is also shown.

In the second time store process, when saving the same file that has already

been deduplicated, the metadata and chunk size do not increase. Also, the file size

remains the same and the deduplication time is also faster. The output result will be

shown as the following Figure 4.4.

30

Figure 4.4 Deduplicated file result, second time store process

After storing the desired files to the data deduplication system, if the user

wants to retrieve the stored file from the system, it needs to use ‗Reconstruction‘ part.

In reconstruction, the user can choose the desired file to reconstruct from the

deduplicated file list as shown in Figure 4.5 at reconstruction phase.

31

Figure 4.5 File Reconstruction

Figure 4.6 File selections to reconstruct

32

The above figure has shown that you can select the file you want to

reconstruct from among the already deduplicated files. Then, click ‗Reconstruct‘

button to process. The output result will be shown as the following Figure 4.7.

Figure 4.7 File reconstructed result

The above Figure 4.6 shows the reconstructed file. It is found out that the file

size remained the same and the reconstruction time was faster when deduplication.

4.3 Performance Results and Discussions

This section illustrates the experimental result for the proposed system. It

represents the performance in comparison bar charts for 1
st
 time storage, 2

nd
 time

storage and 3
rd

 time storage for the same content and also depicts the space reduction

percentage according the evaluation method that is mentioned in section 2.10.

For 100% duplicate file (.docx, .txt): Tested results for the 100% deduplicate

.docx and .txt files are shown in Figure 4.8 and Figure 4.9 below. File1 contains text

content that has never been saved, and File2 and File3 contains the same content as

File1.After duplicating the File1 for the first time, the storage of the ChunkLib

increased and the storage of metadata increased. This means that no matter how many

times you duplicate them, the storage size of ChunkLib and its metadata will not

33

increase. The size of files 1, 2 and 3 is the same as the contents of File1, so it is not

necessary to worry about increasing file sizes.

Figure 4.8 Deduplication for 100% duplicated file (.docx)

The space reduction ratio for 100% duplicate files is 50% for the first time

deduplication. The calculation formula for the ratio is mentioned in section 2.10.

Bytes In= 17 KB (Original File size)

Bytes Out= 8 KB (Stored File size)

Space Reduction Ratio=17/8 = 2.12

Space Reduction %= [1- (1/ 2.12)]*100 = 53 %

For the second time deduplication and above will get fully deduplication and

the storage space reduction ratio will become 100%. This means that the system can

save storage space almost 100%. Even for metadata, it will only utilize very few

bytes.

34

Figure 4.9 Deduplication for 100% duplicated file (.txt)

The space reduction ratio for the above deduplication process is calculated as

the following.

Bytes In= 11 KB (Original File size)

Bytes Out= 5 KB (Stored File size)

Space Reduction Ratio=11/5 = 2.2

Space Reduction %= [1- (1/ 2.2)]*100 = 55 %

For the second time deduplication and above will get fully deduplication and

the storage space reduction ratio will become 100%.

For 50% duplicate file (.docx, .txt): Tested results for the 50% deduplicate

.docx and .txt files are shown in Figure 4.10 and Figure 4.11 below.

Figure 4.10 Deduplication for 50% duplicated file (.docx)

35

The space reduction ratio for the 50% deduplication is calculated as follow:

Bytes In= 17 KB (Original File size)

Bytes Out= 5 KB (Stored File size)

Space Reduction Ratio=17/5 = 3.4

Space Reduction %= [1- (1/ 3.4)]*100 = 71 %

And the space reduction ratio for 50% redundant .txt file deduplication

experiment is as mentioned below:

Bytes In= 11 KB (Original File size)

Bytes Out= 3 KB (Stored File size)

Space Reduction Ratio=11/3 = 3.67

Space Reduction %= [1- (1/ 3.67)]*100 = 73 %

Figure 4.11 Deduplication for 50% duplicated file (.txt)

The size of ChunkLib and its metadata is only slightly increased when

compared to a file tested in the lab. Figures show that the file tested here is half the

size and contains the same content as previously saved and duplicated files, so the

weight savings are significant.

For 25% duplicate file (.docx, .txt): Tested results for the 25% deduplicate

.docx and .txt files are shown in figure below.

Since the content of this file is a quarter of the previously duplicated file, it

can be seen that the chunks in the file have been decreased in size to one-fourth of

36

their original size in this image. Less than half of the total has been increased by

ChunkLib.

Figure 4.12 Deduplication for 25% duplicated file (.docx)

 The space reduction ratio for the above deduplication process is calculated as

the following.

Bytes In= 17 KB (Original File size)

Bytes Out= 12 KB (Stored File size)

Space Reduction Ratio=17/12 = 1.42

Space Reduction %= [1- (1/ 1.42)]*100 = 30 %

Figure 4.13 Deduplication for 25% duplicated file (.txt)

The space reduction ratio for 25% redundant .txt file deduplication experiment

is as mentioned below:

37

Bytes In= 11 KB (Original File size)

Bytes Out= 7.2 KB (Stored File size)

Space Reduction Ratio=11/7.2 = 1.52

Space Reduction %= [1- (1/ 1.52)]*100 = 35 %

Time comparison for deduplication and reconstruction are shown in the

following figure 4.14 and figure 4.15.

Figure 4.14 Deduplication Time Comparisons

Deduplication time for the first time store of 100% duplicated file is seen to be

decreased for the second and third time store. But deduplication time for

Deduplication time for files that are 50% and 25% duplicates increases significantly

with subsequent deduplication compared to the first.

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

first time second

time

third time

D
ed

u
p

li
ca

ti
o

n
 t

im
e

in
 s

ec
o

n
d

Number of Deduplication

Deduplication Time Comparison

100% Duplicated

File

50% Duplicated File

25% Duplicated File

38

Figure 4.15 Reconstruction Time Comparisons

According to the above figure, it is found that the time to reconstruct a file

with 100% deduplicated data is longer than the time to reconstruct a file for 50% and

25% deduplicated data. According to the findings, the more deduplicated data, the

longer the reconstruct time.

4.4 Experimental Findings

If the user saves the same files for the first time, ChunkLib and metadata

increase. If the files containing only one quarter duplicated data, ¾ storage space will

increase. Moreover, if the user saves files that are half the same data as the previously

stored file, the storage space will increase in only half of that file with metadata.

Then, if the user tries to store the same contents as the previously stored file, the

storage space will not increase, but only for metadata.

4.5 Summary

The Secure Hash Algorithm is used the experimental data deduplication of this

chapter for Myanmar language storage, which measures the system's overall degree of

completeness. The chosen test deduplication procedure is first demonstrated in this

chapter for two different file types. These illustrate how chunk size and metadata

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

25%

Duplicated File

Reconstruct

50%

Duplicated File

Reconstruct

100%

Duplicated File

Reconstruct

R
ec

o
n

st
ru

ct
io

n
 t

im
e

in
 s

ec
o

n
d

Reconstructed Files

Reconstruction Time Comparison

Reconstruction time

39

affect the deduplication time. The results of a few test deduplication experiments

show that a deduplication system based on the secure hash algorithm (SHA1) and the

duplicate finder algorithm can remove redundant data from a variety of file types

while also using less storage.

40

CHAPTER 5

CONCLUSION

 In this thesis, the proposed system can be used effectively by using data

deduplication to store files written in Burmese language contents. It can reduce the

storage space as its potential purpose. Eliminating redundant data can significantly

shrink storage requirements and improve bandwidth efficiency. Due to the advantages

of proposed ChunkID based Segmentation mechanism in this work, even the

reconstructed file is deleted by the user; it can restore that file whenever it is needed

as it retains the concerned metadata in permanent matter. Because of using effective

Hash Algorithm for creating Chunk_ID to check duplicate data, it can be more

effective in finding duplicate data in the existing storage.

5.1 Advantages of the System

 It can remove redundant data so that the storage space is reduced depending

on how much duplicated data involved.

 It can obtain the efficient mechanism for searching identical data in the

existing storage for Myanmar language by using ChunkID in terms of

cryptographic hash function.

 The most interesting advantage is the recovery feature. Since the split contents

are stored with ChunkID to the data deduplication system, even the original

was deleted after storing in the system, it can reconstruct from the proposed

system.

 Once the storing is done for the specific file, whenever the user want to get

that file, it can be reconstructed from this system even after using the

reconstructed file and delete again and again as it is permanently stored in the

data deduplication system.

5.2 Limitation of the System

As the proposed system is based on content level data deduplication, it cannot

work on other file types such as .pdf, .jpeg, .mp4 and so on. Such kind of data

deduplication can only be done by using byte-level data deduplication.

41

5.3 Further Extension

 In the proposed system, the duplicate checker is implemented with SHA1 to

find out the identical contents in the text file, it can improve to Myanmar Language

Plagiarism checker system with using additional technology such as centralized

database technology which all academic publication papers are stored.

42

AUTHOR’S PUBLICATIONS

[1] Thae Nu Aye, Tin Thein Thwel, ―Data Deduplication for Myanmar Language

Storage by Using Secure Hash Algorithm‖, National Journal of Parallel & Soft

Computing, Yangon, Myanmar, January, 2023.

43

REFERENCES

[1] A.H.F. Laender, Altigran Soares da Silva,‖ Learning to deduplicate‖, In

Proceedings of 8th ACM/IEEE-CS Joint Conference on Digital libraries (JCDL), pp.

41-50, Association for Computing Machinery (ACM), New York, USA, 2006.

[2] A Technical White Paper: ―Data DeDuplication Background‖.

[3] "Collisions for 72-step and 73-step SHA-1: Improvements in the Method of

Characteristics".

[4] "Cryptanalysis of MD5 & SHA-1" (PDF).

[5] "Crypto++ 5.6.0 Benchmarks". Retrieved 2013-06-13.

[6] C. Liu et. al, ―ADMAD: Application-Driven Metadata Aware De-duplication

Archival Storage System‖, In Proceedings of Fifth IEEE International Workshop on

Storage Network Architecture and Parallel I/Os (SNAPI), pp.29- 35, IEEE Computer

Society, Los Alamitos, CA, USA, 2008.

[7] Dirk Meister, ―Advanced Data Deduplication Techniques and their application‖,

Dissertation Johannes Gutenberg University Mainz, March 2013.

[8] Hla Hla Htay, Kavi Narayana Murthy (2008), ―Myanmar Word Segmentation

Using Syllable Level Longest Matching‖, the 6th Workshop on Asian Language

Resources 2008, pp. 41- 48.

[9] K. Eshghi et. al., ―High Performance Scalable Data Deduplication‖, Storage

Systems Research Center: University of California, 2008.

[10] Matthew Brise, Quantum Gideon Senderow, ―Data Deduplication methods for

Achieving Data Efficiency‖, Journal of SNIA Education Committee.

[11] May Thu Win Moet Moet Win Moh Moh Than, ―Burmese Phrase

Segmentation‖, Conference on Human Language Technology for Development,

Alexandria, Egypt, 2-5 May 2011.

[12] M. Jaehong, Y. Daeyoung, W. Youjip, ―MUCH: Multithreaded Content Based

File Chunking for Many Core Architecture‖, In Journal of Parallel and Distributed

Computing, Elsevier, Jan, 2010.

44

[13] Myanmar Education Research and Learning Portal.

[14] M.Lillibridge et al, ―Chunk-lookup disk bottleneck/full chunks indexing

encountered in in-line deduplication‖.

[15] Myanmar NLP, Myanmar Unicode Reference Documents and Research Papers

(2006). Available at: http:// www.myanmars.net/unicode/doc/index.htm (accessed 1

January 2007).

[16] Myintzu Phyo Aung, Aung Lwin Moe, ―New Phrase Chunking Algorithm for

Myanmar Natural Language Processing‖.
[17] Qinlu He, Zhanhuai Li, Xiao Zhang, ―Data Deduplication Techniques‖,

Department of Computer Science North-western Poly technical University Xi'an, P.R.

[18] Raaed K. Ibrahim et al, ―Implementation Of Secure Hash Algorithm SHA-1 By

Lab view‖, International Journal of Computer Science and Mobile Computing, Vol.4

Issue.3, March- 2015, pg. 61-67.

[19] SHA-1 hash function under pressure – heist Security.

[20] Tun Thura Thet, Jin-Cheon Na and Wunna Ko Ko, ―Word segmentation for the

Myanmar language‖, Journal of Information Science, 34 (5) 2008, pp. 688–704.

[21] Tom Sas – Hewlett-Packard, ―Understanding Data Deduplication‖, and SNIA

Program in Storage Networking Industry Association, 2010.

[22] Tin Thein Thwel, Ni Lar Thein, ―Data Deduplication using B+ Tree Indexing‖,

Research in University of Computer Studies, Yangon, 2010.

[23] Walter Santos, Thiago Teixeira, ―A Scalable Parallel Deduplication Algorithm‖..

[24] Wikipedia. 2019. Burmese language Wikipedia page. [Online; accessed 18-July-

2019].

[25] Y. Tsuruoka and K. Tsujii (2005) ―Chunk parsing revisited‖, in Proceedings of

the Ninth International Workshop on Parsing Technologies. Vancouver, Canada.

45

[26] Yadanar Oo, ―JOINT WORD SEGMENTATION AND STEMMING FOR

MYANMAR LANGUAGE‖, Research in University of Computer Studies, Yangon,

October, 2019.

[27] Z. Htut, Myanmar-Thai Co-workshop on Myanmar Language Implementation,

Input Methods and Basic Encoding in Myanmar Language. Available at:

http://www.myanmars.net/unicode/doc (accessed 1 January 2007).

