

 Secure Data Transmission with Variable File Types

 Hnin Wut Yee Lai, Khin Than Mya

 University of Computer Studies, Yangon

 hninwutyee6@gmail.com

Abstract

 Encryption is used to securely transmit data in

open network. Each type of data has its own features,

therefore different techniques should be used to

protect confidential image data from unauthorized

access. Most of the available encryption algorithms

are mainly used for textual data and may not be

suitable for multimedia data. Cryptographic

algorithms is divided into symmetric key algorithm

and asymmetric key algorithm.. The Ronal Rivest

symmetric key algorithm (RC4) is a fast stream

cipher with variable keylengths I to 256 bytes (8 to
2948 bits). Integrity check algorithm (CRC32) is a

hash function to detect raw data. In this proposed

system, we use Ronald Rivest symmetric key

algorithm (RC4) for confidentiality and Integrity

Check Algorithm (CRC32) for integrity for any

format data such as text, image, sound, video and so

on.

1. Introduction

 Encryption is the process of transforming

plaintext data into ciphertext in order to conceal its

meaning and so preventing any unauthorized

recipient from retrieving the original data.

Cryptography is a tool that can be used to keep

information confidential and to ensure its integrity

and authenticity [18]. Many cryptographic

algorithms use complex transformations involving

substitutions and permutations to transform the
plaintext into the ciphertext. Cryptography

algorithms can be divided into symmetric-key

algorithms and public-key algorithms. Symmetric-

key algorithms mangle the bits in a series of rounds

parameterized by the key to urn the plaintext into the

ciphertext [18]. Public-key algorithms have the

property that different key are used for encryption

and decryption and that the decryption key cannot be

derived from the encryption key.

2. Methods of Encryption

 The two methods of producing ciphertext are
stream cipher and block cipher. The two methods are

similar except for the amount of data each encrypts

on each pass.

2.1. Stream Cipher

 Stream cipher is one of the simplest methods of

encrypting data where each bit of the data is

sequentially encrypted using one bit of the key as

shown in Figure 1. The main advantage of the stream

cipher is that it is faster and more suitable for

streaming application but its main disadvantage is

that it is not suitable in some architecture.

2.2. Block Cipher

 In cryptography, a block cipher is a symmetric

key cipher which operates on fixed-length groups of

bits, termed blocks, with an unvarying
transformation. When encrypting, a block cipher

might take (for example) a 128-bit block of plaintext

as input, and output a corresponding 128-bit block of

ciphertext. The exact transformation is controlled

using a second input the secret key. Decryption is

similar: the decryption algorithm takes, in this

example, a 128-bit block of ciphertext together with

the secret key, and yields the original 128-bit block

of plaintext. To encrypt messages longer than the

block size (128 bits in the above example), a mode of

operation is used.

 Block ciphers can be contrasted with stream
ciphers; a stream cipher operates on individual digits

one at a time and the transformation varies during the

encryption. The distinction between the two types is

not always clear-cut: a block cipher, when used in

certain modes of operation, acts effectively as a

stream cipher.

3. Related Work

Cryptographers prefer using another cipher into that

has been proven secure such as Advanced Encryption

Standard (AES) [16], Block Cipher International

Data Encryption algorithm (IDEA), Triple DES or
SHA-256 as the Pseudo Random Number Generator

(PRNG) in the cryptosystems.

 Lae Lae Khin presented RC4 is a stream cipher,

the key must never to used twice .It had attracted

considerable attention in the research community

since it was first propose [10]. Andrew Roos [2]

developed one of the first such attacks on RC4 a set

of weak keys causing bias in the initial output.

Fluhrer, Mantin and Shamir [7] presented several

weaknesses in the KSA. Knudsen, Mier, Preneel,

Rijimen and Verdoolaege [13] presented the swap

operation makes the recovery of the table S very

difficult. They developed and attack on simplified

version of RC4, where the swap operation occurs less

often. RC4 without the swap operation is useless as a
key stream generator. D.R. Stinson presented the

hash function (CRC32) is CRC calculates a short,

fixed-length binary sequence, known as the CRC

code or just CRC [16]. This proposed system is

combined the stream cipher RC4 algorithm for

confidentiality and integrity check algorithm CRC32

for integrity for texts, images and media files..

4. Background Theory

 The background theory shows the combination of

the stream cipher RC4 algorithm and CRC32

checksum of texts, images and media files.

4.1. RC4 Algorithm

 RC4 is a stream cipher that was designed in

1984 by Ronald Rivest for RSA Data Security. RC4

is used in many data communication and networking

protocols, including SSL/TLS and the IEEE802.11

wireless LAN standard. RC4 is a byte-oriented
stream cipher, symmetric key algorithm, in which a

byte (8 bits) of a plaintext is execlusive-ored with a

byte of key to produce a byte of a ciphertext.

 The same algorithm is used for both encryption

and decryption as the stream is simply XORed with

the generated key sequence .The secrete key , from

which the one-byte keys in the key stream are

generated, can contain anywhere from 1 to 256

bytes.RC4 is based on the concept of a state . At each

moment, a state of 256 bytes is active, from which

one of the bytes is randomly selected to serve as the

key for encryption.

Array of bytes: S[0] S[1] S[2] … S[255]

The elements range between 0 and 255. The content

of each element is also a byte (8 bits) that can be

interpreted as an integer between 0 to 255.

Initialization: Initialization is done in two steps;

(i) In first step, the state is initialized to

 values0,1,…,255. A key arrays,

 K[0],K[1],…,K[255] is also created. If the

 secrete key has exactly 256 bytes, the bytes
 are copied to the K array; otherwise, the

 bytes are repeated until the K array is filled.

 for (i= 0 to 255)

{

 S[i]  i

 K[i]  Key [i mod Key Length]
}

(ii) In the second step, the initialized state goes

 through a permutation (swapping the

 elements) based on the value of the bytes in

 K[i].The key byte is used only in this step to

 define which elements are to be swapped.
After this step, the state bytes are completely

shuffled.

 j  0
 for (i = 0 to 255)

{

 j  (j +S[i] + K[i]) mod 256

 swap  (S[i] , S[j])

}

Key Stream Generation: The keys in the key

stream, the k’s are generated, one by one.

(i) First, the state is permutated based on the

 values of state elements and the values of

 two individual variables, i and j.

(i) Second, the values of two statements in

 positions i and j are used to define the
 index of the state element that serves as k.

 The following code is repeated for each byte

 of the plaintext to create a new key element

 in the key stream.

The variable i and j are initialized to 0 before the first

iteration, but the values are copied from one iteration

to the next.

 i  (i + 1) mod 256

 j  (j + S[i]) mod 256
 swap (S[i] , S[j])

 k  S [(S[i] + S[j]) mod 256]

Encryption or Decryption: After k has been

created, the plaintext byte is encrypted with k to

create the ciphertext byte. Decryption is the reverse

process.

4.2. Integrity Check Algorithm (CRC32)

 A cyclic redundancy check (CRC32) is non-

secure hash function to detect raw computer data and

in digital networks. It is easy to generate message.

CRC calculates a short, fixed-length binary
sequence, known as the CRC code or just CRC. It

accepts data streams of any lengths as input but

always outputs a fixed length code. IEEE-

recommended 32-bit CRC used in Ethernet.

 A Basic Algorithm for CRC Computation

 Let P be the binary representation of the divisor

polynomial, of degree N, and so N+1 bits long. Let

B be a message, with N extra zero bits added. R will

be the remainder, N bits long (really it should be N+1
but it's always safe to ignore the last bit).

(1) let R be 0.

(2) If there are no more bits in B, the answer

 is R. Stop.

(3) Shift R left by one. The new bit 0

 We should be the next bit of the

 Message also shift a bit out of the left of

 R.
(4) If this bit is 0 go back to 2.

(5) Otherwise it is 1. XOR R with the bottom

 N bits of P and go back to step2.

 Its computation resembles a long division

operation in which the quotient is discarded and the

remainder becomes the result, with the important
distinction that the arithmetic used is the carry-less

arithmetic of a finite field. The Length of the

remainder is always less than or equal to the length

of the divisor. CRCs can be constructed any finite

field, all commonly used CRCs employ the finite

field GF(2).

4.3. The Proposed System

 The proposed system combines the symmetric

key algorithm RC4 stream cipher and integrity check

algorithm CRC32 checksum to get more secure data

for variable file types such as text file, image file and
media file. This system can propose variety of file

types text files (.pdf, .doc, .rtf, .ptt, .txt), image files

(.jpeg, .bmp, .png) and media file (mp3) and so on. If

sender send the cipher to the receiver, we will be

defined the shared keys is used as the input to the

RC4 key scheduling-algorithm to initialize RC4’s

internal pseudo-random number generator. The

generator outputs key stream to be used for XOR’ing

with the plaintext. The output is the ciphertext. The
decryption process is vice versa. In order to validate

the authentically of data, a 4-byte value called the

ICV (integrity check value) is added into the

plaintext before going through the encryption

process. The system involves two main parts; sender

side and receiver side.

 On the sender side, the RC4 gets re-initialized

the fixed shared key. The plaintext is hashed by

CRC32 hash algorithm and generates the hash values

with 8 hexacode. And then that plaintext is encrypted

by RC4 encryption algorithm. The output is the

ciphertext. The ciphertext including CRC code that is

beginning of the ciphertext is sent to the receiver.

This process is depicted in Figure 4.1.

Figure 1. The proposed system of Encryption

Process.

 On the receiver side, the receiver receives that

cipher and hash value. Firstly, the receiver computes

the hash value for cipher file by CRC32 algorithm.

And then the cipher is decrypted by RC4 decryption

algorithm. The keys of RC4 are used both the sender

and receiver for RC4 random number generator, and

the same keystreams are generated. The original file

is received by XOR’ing these keystreams with the
cipher file. If the ICV in encryption process is

notequal to the ICV in decryption process, the error

message is appeared. Else if the original file is

obtained. The process is depicted in Figure 2.

Figure 2. The proposed system of Decryption

Process

5. Experimental Results

 This system is tested on the encrypting and

decrypting of text files, image files and media files.

The experimental results show that the performance

Cipher

Text

CRC

32

Code

Cipher

Text

Integrity Check

Algorithm

ICV=ICV

 ?

Receive

Plaintext

RC4 Decryption

 Algorithm

Key

Cipher

Text

CRC

32

Code

Send

 Plaintext

RC4 Encryption
Algorithm

Integrity Check

Algorithm

Key

CRC

32

Code

Cipher

Text

of the combination of RC4 symmetric encryption and

CRC32 Checksum algorithm. The performance of

system is tested on the Desktop computer Intel(R)

Core2Duo CPU 2.80GHZ, 160HDD, 1GB of RAM,

Microsoft Window XP Professional Version 2002

Service Park 2. Following tables is shown before
encryption and after encryption in milliseconds as an

example. The table 1 shows the encryption and

decryption times (in milliseconds) for text

files(pdf).Then, the results of the encryption and

decryption times for image files is shown in table 2

(jpg).

Table 1. The Encryption and Decryption Times

for Text Files (PDF).

File Sizes

Encryption
Times(ms)

Decryption
Times(ms)

10KB 15 15

100KB 62 65

200KB 93 97

300KB 156 162

400KB 187 195

500KB 250270 270

1MB 765 830

Table 2. The Encryption and Decryption Times

for Image Files (JPEG).

File Sizes

Encryption
Times(ms)

Decryption
Times(ms)

10KB 218 237

100KB 343 375

200KB 457 487

300KB 484 531

400KB 4140 4500

500KB 5004 5200

1MB 5580 6109

The table 3 shows the encryption and decryption

times for media files (mp3).

Table 3. The Encryption and Decryption Times

for Media Files (Mp3).

File Sizes

Encryption
Times(ms)

Decrypton
Times(ms)

10KB 45 46

100KB 78 81

200KB 93 103

300KB 156 169

400KB 185 198

500KB 234 254

1MB 672 694

The experimental results of the encryption

times is shown in figure 3.

Figure 3. The Experiential results of the

encryption times for text, image and media files.

The (x) axis is the size of file to be encrypted in kilo

bytes (KB) and (y) axis is the time for encryption in

milliseconds. The figure 4 involves the experimental

result of the decryption times for texts, images and

media files by analyzing with this proposed system.

Time(ms)

File Sizes(KB)

Figure 4. The Experimental results of the

decryption times for text, image and media files.

The (x) axis is the size of file to be decrypted in kilo

bytes (KB) and (y) axis is the time for encryption in
milliseconds. The performance of RC4 is tested

based on the processing time under certain variable

file types.

6. Conclusion

 The symmetric key algorithm RC4 is a shared
key stream cipher algorithm, which requires a secure

exchange of a shared key that is outside the

specification. The algorithm is serial as it requires

successive exchanges of state entire based on the key

sequence. This algorithm process with a key size of

up to 2048 bits (256bytes), to be a relatively fast and

strong cipher. The design of the CRC polynomial

depends on what is the maximum total length of

blocks to be protected (data combine CRC bits). The

performance of system may vary according to the

processor and software used to implement the

system. The performance of the RC4 is tested based
on the processing time under certain variable file

types. By analyzing the experimental results, the

encryption and decryption time of the system are

depends on the file sizes. If file sizes are large, the

processing time is large. The system combines the

stream cipher RC4 for confidentiality and CRC32

checksum for integrity to be more secure for any

format file types.

References

[1] Allam Mouse and Ahmad Hamad, “Evaluation of
the RC4 Algorithm for Data Encryption,” Electrical
Engineering Department Dn-Najah University, Nablus,
Palestine, Systems Engineer Pal Tel Company Nablus
Palestine.

[2] Andrew Roos, “A Class of Weak Keys in the RC4
Stream Cipher” Preliminary Draft, 22 September,1995.

[3] B.A Forouzan, “Cryptography and Network Security”,
International Edition, 2008.

[4] Donghoon Chang , Kishan Chand Gupta and Mridul
Nandi,“RC4_Hash:A New Hash Function based on RC4
(Extended Abstract)” Center of Information Security
Technologies(CIST), Korea University ,Korea, Department
of Combinations and Optimization, University of
Waterloo, Canada, David R. Cheriton School of Computer
Science, University of Waterlo, Canada.

[5] D.R. Stinson, “Cryptography: Theory and Practice
CRC Press ", INC.,Boca Raton , FL, USA ,1993.

[6] Dr. Wen-Ping Ying ,“Key Hopping _ A Security
Enhancement Scheme For IEE802. 11Wep Standards”
Director of Software Development, February 2002.

[7] Fhlurer, I Martin, A Shamir, “Weakness in the key
Scheduling Algorithm of RC4” Selected Areasin
Cryptography, Springer–Verlag, 2001.

[8] Grosul A.L, Wallach D.S, “A related key
cryptanalysisofRC4”, 2000.

[9] http://www. Wikipidea.org.

[10] Lae Lae Khin, “A New Variant of RC4 Stream
Cipher”.

[11] M. Liskov, R.Rivest and D. Wager, ”The weakable
Block Cipher,: Crypto 2002 PDF.

[12] Mantin I. Shamir A. “A practical attack on broadcast
RC4” Proceeding of FSE. 2001.

[13] Mathew E. NcKague, “Design and Analysis of RC4
like Stream Ciphers”, Mathew E.McKague, 2005.

[14] Michael Pseudorandomness and Cryptographic
Applications, Princeton Uni Press, 1996.
[15] Moon K . Chetry and W . B. Vasantha, “A Note
On Self-Shrinking Lagged Fibonacci Generator”

,Department of Mathematics Indian Institute of
Technology , Madras.

[16] Ronalrd Rivest, Email encryption using AES.

[17] Sean Whalen, “Analysis of Wep and Rlike Key
Stream Grnerator”.

[18] W.Stalling, “Cryptography and Network Security”,
Principles and Practices, Fourth Edition, 2006.
.

Time(ms)

File Sizes(KB)

