
An Efficient Grammar Checking System by Using Shallow Parser

Thandar Htay, Myint Myint Khaing

Computer University, Pin Long, Myanmar

thandarhtay.tdh@gmail.com, myintkhaing06@gmail.com

Abstract

Grammar checking is one of the most widely used

tools within natural language processing. Many

word processing systems today include grammar

checker which can be used to point out various

grammatical problem in a text. This paper proposed

a grammar checking system by using shallow parser.

This proposed system consists of five main parts.
Firstly, it can enter any sentence and then this

sentence is split into words such as tokens in second

step. Each token is identified into Part-of-Speech

(POS) tag in third step. In step four, the system can

analyze sentence by using shallow parser. Finally, it

can display correct grammatical sentence by

grammar checker. This system provides description

about the grammar checking software developed for

detecting the grammatical error on English texts and

provides suggestions wherever appropriate to rectify

those errors. A sentence does not have completed to
be checked, instead the software can check the text

while it is being typed and give immediate feedback.

Keywords: Natural Language Processing, Shallow

Parsing, Grammar Checking

1. Introduction

Grammar checking is one of the most common

applications in natural language processing and it is

mostly used in word processors and compilers. Most

of the word processing systems available in the

market incorporate spelling, grammar and style-

checking systems for other English and other foreign

language, one such rule-based grammar checking

system for English is discussed in [6]. Parser is one

of the key components in Machine Translation (MT)

system. To develop an efficient parser, almost

complete sets of grammatical rules containing phrase

structure rules as well as sentence structure rules
have to establish.

Grammar checker needs a parser (or) syntax

analyzer. Syntax analyzer determines whether a sting

of tokens can be generated by a grammar. In this

system, shallow parser method is used for syntax

analysis. Shallow Parsing is the task of recovering

only a limited amount of syntactic information from

Natural Language (NL) sentences. Shallow parser

has proved to be a useful technology for written and

spoken language domain [1]. Shallow parser is a

division of words that together consist of a

grammatical unit.
The rest of the paper is organized as follows:

related work is proposed in section2. Section 3

represents grammar analysis and phrase chunking

with shallow parser. Section 4 describes design and

implementation of the system works with shallow

parser. Section 5 represents performance evaluation

of this system. Finally, conclusion gives in section 6.

2. Related Work

Granska Swedish Grammar Checking is proposed

using rule-based methods and error-correction

methods. It implemented a hybrid system that
combines probabilistic and rule-based methods to

achieve high efficiency and robustness in Swedish

grammar [3]. Tin Muyar Win, Zin Mar Than

described rule-based chunk level grammar checking

with parallel approach and it involves tokenization,

rules-based tagging, and phrase chunking with chunk

level grammar checking and clause segmentation [8].

Daniel Naber described about a rule-based style and

grammar checker that it takes a text and returns a list

of possible errors. To detect errors, each word of the

text is assigned its part-of-speech tag and sentence is
split into chunk, such as noun phrase, verb phrase

etc. Then the text is matched against all the checker’s

pre-defined error rules. If the rule matches, the text is

supposed to contain an error at the position of the

match. The rules describe errors as patterns of words,

part-of-speech tags and chunks [2].

3. Grammar Analysis

Grammar analysis is one of the natural language

processing using a special NLP program that

converts poor writing to acceptable writing. Special

grammar analyzer programs can be used to process

business communications and improve them.

mailto:thandarhtay.tdh@gmail.com
mailto:myintkhaing06@gmail.com

Grammar is traditionally subdivided into inter-related

studies: Morphology and Syntax.

Morphology is the study of how words are formed

out of smaller units called morphemes. Syntax is the

broader study of how words are strung together to

form phrases, clauses, and sentences [4]. Syntax is
concerned with how words are strung together to

expressions from larger units of. In this paper, the

grammar analyzer breaks each sentence down into

parts of speech and shows the relationships among

words using rules-based lexicon, part-of-speech

tagging process, tokenizing and syntax analysis.

3.1. Tokenization

Tokenization is the process of breaking a

sequence into words, punctuations and other

symbols. These words and expression sequences are

called tokens, and the tools performing such

tokenization are tokenizer. The following example

illustrates the basic function of a tokenizer.

Sample input sentence: This is a test.

It gets each token after tokenizing input sentence as

shown in Figure 1.

Figure 1. Each token for sample sentence

Tokenizer breaks a given text into small pieces by

delimiting at both white spaces and punctuations. It

is possible to reassemble these tokens to larger

lexical items.

3.2. Part-of-Speech Tagging

Words are divided into different kind or classes,

called Parts of Speech (POS). POS tagging identifies

the words in a given sentence corresponding to their

parts of speech [2]. These tags depend on definition
and context. POS tagger has two type of tagger;

simple tagger and rule-based tagger. Simple tagger

accepts the equal number of words tokens. Find their

words in the lexicon. Then assign all possible tags

for each word. Rule- based tagger can give multiple

possible tags. But some are more likely than other.

There are eight parts of speech. They are noun,

verb, pronoun, adjective, adverb, preposition,

conjunction and interjection.

 Grammar units POS tagging
1. Noun <NN>

2. Verb <VB>
3. Pronoun <Pro N>
4. Adjective <JJ>, <ADJ>
5. Adverb <ADV>
6. Preposition <PRP>
7. Conjunction <COJ>
8. Interjection <IJ>

In English, many words can be used both as noun

and as verbs. Although there are eight parts of speech

in English grammar, seven are used for pattern rules

in this system. They are noun, verb, pronoun,

adjective, adverb, preposition and conjunction. POS

tagging is thus a typical disambiguation problem: all
possible tags of a word are known and the

appropriate one for a given context needs to be

chosen in figure 2.

He

Pro N
Saw
VBD

the
DT

Big
JJ

dog
NN

Figure 2. Tagging tokenized words to POS

3.3. Syntax Analysis

Syntax analyzer captures structure relationships

between words and phrases. Grammar rules are used

to describe the correct syntax of a language. Syntax
analyzers assign a syntactic structure to a phrase on

the basis of grammar. A syntax analyzer is also

called a parser. There are many methods of parser in

this syntax analyzing step as shallow parser, full

parser, and chart parser, etc.
Shallow parser attempts to provide some machine

understanding of the structure of a sentence. Shallow

parsing involves identification of constituents of a

sentence. A chunker is a division of the text’s

sentence into series of words that together consist of

a grammatical unit [9]. Shallow parsing is also called
partial parsing and then most often to the task of

chunking. These methods can do firstly segmentation

and labeling sequences of characters and then

chunking.

3.3.1. Phrase chunking with shallow parser.
Phrase chunking assigns a tag to word sequence.

Typical chunks are noun phrase (NP) and verb

phrase (VP).

3.3.1.1 Noun Phrase. In grammar, a noun phrase (NP)
is a phrase whose head is a noun or pronoun,

optionally accompanied by a set of modifiers. Noun

phrase typically consist of determiner, adjectives and

noun or pronoun as shown in Figure 3.

3.3.1.2 Verb phrase. A verb phrase (VP) is a syntactic

structure composed of the predicative elements of a

sentence and functions in providing information

about the subject of the sentence. The verb phrase is

a phrase headed by a verb [7]. A verb may be

constructed from a single verb. The verb phrase will

consist of various combinations of the main verb and

auxiliary verbs, complements and adjuncts.

3.3.2. Shallow Parsing Algorithm. Invariantly of

the software of algorithm chosen, a chunker

ultimately has rules that decide where do different

This is a test .

phrase chunk begin and end depending on the text

and POS tag. POS tagging techniques can usually be

adapted for chunking. A common method is to

consider the beginning and continuation of chunk as

special types of tags. To chunk a sentence into NP,

VP and PP chunks that might have the following
tags:

B-X

B word begins a chunk of type X (NP, VP, PP,

and so forth).

I-X

I word belongs to a chunk of type X but does not

begin it.

O

O word does not belong to any chunk.

An O tag would not be used where full chunking

is needed, because every word would belong to some

chunk [5].

3.4. Generating Grammatical Sentence

Generating grammatical sentence is displayed the

correct sentence for output. Then error message is

given by the grammar checker when there is no in
fact no error in the text. Rule-based checking is a set

of rules which is matched against a text which has at

least been POS tagged. A set of rules describes how

sentence are built. Grammar checker uses context of

a sentence. It works on complete sentences but not

on single word. Grammar checking rules that will

identify the correct sentence by matching rules in the

rules directory which depend on POS tags. The

pattern is a sequence of words, POS tags or chunk. If

this sequence pattern is found in pattern matching, it

can be declared as a correct sentence. This system

used thousands of rules. The sample grammar
checking rules are as follows:

NN V JJ PRP NN
NN V JJ PRP POS NN

NN V JJ PRP POS NN PRP NN
NN V PRP DT NN
NN V POS JJ NN
POS NN V ADV PRP NN
POS NN V JJ PRP POS
POS NN V NN NNS
POS NN V Pro N NN
Pro N V PRP ADV
Pro N V PRP DT NN

Pro N V PRP POS NN
Pro N V ProN ADV ADV DT NN
Pro N V ProN DT NN PRP NN
Pro N V POS NN PRP NN
Pro N V JJ DT NN PRP Pro N
DT NN V ADV JJ
DT NN V JJ NN
DT NN V JJ PRP NN

ADV V DT NN
ADV V DT NN PRP DT NN

ADV JJ PRP DT NN V ADV, etc.

4. Proposed System Architecture

The system works by splitting the sentence into

words that can be checking by using simple sentence

English grammar rules as shown in Figure 3.

Figure 3. Proposed System Architecture

In this proposed system, first step is entering a

grammatical sentence or ungrammatical sentence

into the system. And then the system tokenizes input

sentence which is spilt into “token” as words and

punctuations: e.g., white space, punctuation, full

stop, etc. And then the tokenizing words

corresponding to their parts of speech. This step is

syntax analyzing by using shallow parser. It captures

structure relationships between words and phrases.

The tokenized sentence is divided into phrase

chunks; noun phrase as show in Figure 4 and verb
phrase, etc.

Figure 4. Noun phrase chunking with shallow

Parser

Noun Phrase Chunking
NP <DT><JJ><NN>

NP <DT><JJ><NN><NNS>
NP <DT><JJ><NN><NNS><PRP><POS>
NP <Pro N><JJ><NN><NNS>
NP <Pro N><JJ><NN>
NP <PRP><JJ><NNP><NN><NNS>

Start

No Error

Display
Correct
or not ?

Input String

Tokenization

POS tagging

Syntax

Rules
Grammar
Checking

Display

result
End

Yes

dog

NN

 Noun

 phrase

 saw

 VBD

big the

DT JJ

Noun Phrase Noun
Phrase

 dog

 NN Pro N

He

0
2

4
6

8
10

12

25 50 75 100 125 150 175 200

Word Count

T
im

e
 (

s
)

NP <PRP><POS><NN>
NP <POS><JJ><PRP><DT><NN>
NP <JJ><PRP><NN>
NP <JJ><DT><NN><PRP><Pro N>, etc.

Verb Phrase chunking

VP <V>
VP <V><NP>
VP <V><PP>
VP <V><PRP><NP>, etc.

 Finally, grammar checker is designed with error

detection rules to detect potential errors in the

sentence and provide correction to resolve those

errors. It works on complete sentences but not on

single word. Checking rules identify the correct
sentence by matching rules in the rules dictionary

which depend on POS tags. The most important part

of a rule is pattern. If this pattern is found in pattern

matching, it can be displayed as a correct sentence.

For example,

Input sample sentence: He saw big a dog.

Tokenization:

POS Tagging: <Pro N>He<VBD>saw<JJ>big

 <DT>a<NN>dog

Phrase chunking: (B-NP) He (I-VP) saw (B-NP)

 big (I-NP) a (I-NP)dog(O).

Grammar generation: He saw a big dog.

5. Performance Evaluation

In measuring precision and recall, precision is the

ratio of number of patterns which are correctly

patterns to the number of proposed patterns. And

recall is the ratio of patterns which are correctly

tagged to the number of total patterns. The result of
grammatical patterns on testing rules as shown in

Table 1.

Table 1. Result of grammatical patterns on testing

rules

Proposed patterns 3569

Correct patterns 3489

Total patterns 3650

Precision 97.75

Recall 95.58

5.1. Performance Speed of the system

A performance of grammar checking system by

using shallow parser is written in java by using hand

written grammar rules and classification rules. The

performance speed of this system is measured by

execution time in terms of word and second.

Execution time is measured on a system of Pentium

IV, processor speed 3.20 GHZ and Random Access

Memory 256 MB. Execution time is measured as the

time taken from getting input sentence to generating

analyzed sentence. That means it is time spent for the

entire grammar checking system execution. Each
word count level is executed for twenty times and

calculates for that word count level. Word count and

corresponding average time for simple sentence

structure is shown in Table 2 and Figure 5.

Table 2. Execution time and corresponding

word count for simple sentence

Figure 5. Execution time and corresponding

word count for simple sentence

Words Second

 25 3.3451

 50 4.3546

 75 4.6452

 100 6.775

 125 7.6972

 150 9.0641

 175 9.5269

 200 11.0609

Precision =

Recall =

Number of correct patterns

Number of correct patterns

Number of proposed patterns

Number of total patterns

X 100 %

X 100 %

He saw big a dog .

6. Conclusion

This system can perform tokenizing, POS tagging,

phrase chunking with shallow parsing approach. It

can check the whole sentence whether they are

grammatically correct or not. This system can be

built incrementally, starting with just one rule and

then extending it rule by rules. As the operations are
performed, then the time taken by a computation can

be significantly reduced. This system can check the

simple sentences according to the pattern rules. It can

check the sentence spelling error and tenses of

sentence. But the system can’t be able to rewrite

error words. The result of the system can be used not

only in grammar analyzer weather it is rule-based or

shallow parsing but also in machine translation

system, summarization and information extraction

system

References

[1] B. Meryesi, “Shallow parsing with POS taggers and
Linguistic Knowledge”, Journal of Machine Learning
Research, 2002.

[2] D. Naber, “A Rule-Based Style and Grammar

Checker”, 28 August 2003.

[3] J.B. Viggo, “Granska Grammar Checker for Swedish
Second Language Learners” [online document].

[4] J.Galasso, “Analyzing English Grammar: An
Introduction to Feature Theory”, 2002.

[5] L.A. Ramshaw and M.P. Marcus,”Text chunking using
transformation-based learning”, In Workshop on Very
Large Corpora, 1995.

[6] M.S. Gill, G.S. Lehal, “Punjabi Grammar Checker”,
2008.

[7] P.C. WREN and H. MRTIN, “High School Grammar

and Composition”, S.Chand & Company Ltd, Hundred and
Seventeenth Edition, 1986.

[8] T.M. Win, Z.M. Than, “Rule-based Chunk Level
Grammar Checking”, 2008.

[9] S. Abney, “Parsing by Chunk”, Kluwer Academic
Publisher, Dordrecht, 1991.

.

.

