

1

Value-Based Predicate XML Filtering System

Yi Mon Thet
University Of Computer Studies, Yangon, Myanmar

yimonthet.ucsy@gmail.com

Abstract

Nowadays, information dissemination
applications are very popular and much of the
data exchange over the Internet. Existing XML
filtering techniques based on a
publish/subscribe model on highly structured
data marked up with XML tags. These
techniques are efficient in filtering the
documents of data centric XML but are not
effective in filtering value-based predicates of
document centric XML. In this paper, we
propose a technique which does semantic
matching of XML data and also handles value-
based predicates. User Profiles are specified as
XPath Twig queries. A query node is checked in
OWL classes, if a node is found it is returned
with its semantically related data. On the other
hand, incoming XML document is parsed by
SAX parser and a tree is built. After then
matching XML document and user profiles.
Therefore, the proposed method intends to
provide not only exact match information but
also semantic matched information from XML
documents.

Keywords: XML document, value-based
predicate, publish/subscribe model.

1. Introduction

XML has been used extensively in
many applications as a de facto standard for
information representatation and exchange over
the internet. Publish-Subscribe system based on
XML documents are evolving. XML document

filtering plays an important role in Internet
applications by enabling selective dissemination
o f information [15]. In a typical publish-
subscribe (pub-sub) system, whenever new
content is produced, it is selectively delivered to
interested subscribers. This has enabled new
services such as alerting and notification
services for user interested. There are many
filtering mechanisms exist, they can provide
semantic data and match the structure but most
of these mechanisms can support value-based
predicate processing especially equality
operator. These existing mechanisms cannot or
limit support for value-based predicate
processing such as logical operators.

In this paper, we propose a method for
value-based predicate processing (logical
operators). In propose method, a user profiled
specifies his/her interest through he/she
subscribes. These subscriptions are then
converted into XPath queries. A query node is
checked in an ontology class, if the node is
found in the class, then semantically related data
i.e its sibling nodes are returned. These queries
are then transformed into twig patterns. On the
other hand, XML documents are parsed by SAX
parser. SAX is the simple API for XML,
originally a Java-only API. The parser converts
the XML document into a tree structure.
Matching of twig node and tree node takes place
and only the matched information is delivered or
displayed to the user. The value-based
predicates are handled differently according to
the operators in the twig patterns. We propose a
method to provide logical operators such as
AND, OR and NOT operators.

2

The key contribution of this paper is
summarized as follows:

The most existing filtering methods
focus on structure matching. There are some
methods that focus on structure matching as
well as value-based predicate selections, but
they can provide value-based predicate such as
equality operator. In real world, there are many
queries with various operators such as equality
operator, non equality operators, logical
operators etc. In this paper, we propose a value-
based predicate filtering method (divide and
conquer strategy) for processing logical
operators such as OR and NOT. In this
approach, the first divide a twig query with OR
predicate into multiple twig queries without OR
predicates and then combines their intermediate
results to get final results. For AND predicate,
we divide twig query at AND node and
processing individually and then combine their
intermediate results in order to get final result.
To evaluate twig query with NOT predicate is to
divide it into multiple simple path queries
(without not predicate) and evaluate each of the
path queries individually and final result is
derived by combing theirs individual results. For
getting semantic, we follow the existing XML
Filtering framework.

The rest of this paper is organized as
follows. In the next section, we discuss the
related papers with our work. In section 3, we
present background of ontology and XML. We
explain how to perform semantic query
transformation processes using ontology with
xml filtering system is depicted in section 4.
Finally, section 5 we conclude our paper.

2. Related Work

We introduce some existing XML
filtering methods. The earliest work of XML
filtering was XFilter proposed by M. Altinel and
M.J, Franklin in [9]. The XFilter engine was a
Finite State Machine which used a sophisticated
index structure and a modified finite state
machine approach to quickly locate and examine

relevant profiles. Y.Dia et al. [14] pointed out
the weakness of XFilter that maked no attempt
to eliminate redundant processing for similar
queries. To address this problem, all path queries
were represented as a single NFA and shared the
common prefixes of the paths. In addition, they
also proposed two methods for value-based
predicate processing: Inline and Selection
Postponed (SP). Inline performed early
predicate evaluation before knowing if the
structure was matched, and this early predicate
evaluation did not prune future work. In
contrast, SP performed structure matching to
prune the set of queries for which predicate
evaluation needed to be considered. C.Y. Chan
et al. [2] proposed a novel index structure, called
XTrie that provided the efficient filtering of
XML documents based on XPath expressions
(XPE). They also described the XPE
decompositions and matching algorithms. In
their approach, they firstly derived each path
queries into sub-strings and indexed sub-strings
by a trie-based data structure. This method could
support both ordered and unordered matching of
XML data. K. S. Candan, et al. [8] developed
Adaptable XML Filtering, namely AFilter, with
prefix-caching and suffix-clustering. Prefix
catching was used to eliminate the redundant
traversals of the StackBranch pointers. XPush
[1] proposed the use of a modified deterministic
pushdown automaton to simulate the execution
of XPath filters and could handle predicates.
XSQ [13] exploited the pushdown transducer to
share the atomic predicates. This technique
enabled the sharing of numeric and string
constants. GFilter proposed in [11] was based on
a novel Tree-of-Path (TOP) encoding scheme,
which compactly represented the path matches
for the entire documents. TOP encodings could
be efficiently produced via shared bottom-up
patch matching. MFilter proposed in[4] system
not only improved filtering time by transforming

3

the multiple queries into prefix tree with node
relation lists for the parent-child or ancestor-
descendent relationship of query’s elements but
also provided semantic data by using ontology.
Efficient processing of XML Twig Queries with
OR-Predicates was proposed by H. Jiang, H. Lu
and W. Wang [5]. They presented a merge-based
algorithm for sorted XML data and an index-
based algorithm for indexed XML data. They
also presented that using indexes could
significantly improve the performance for
matching twig queries with OR-predicates,
especially when the queries had large inputs but
relatively small outputs.

3. BACKGROUND

 Web Ontology Language (OWL) is
used for semantic matching. Ontology defines
the basic terms and relations comprising the
vocabulary of a topic area as well as the rules
for combining terms and relations to define
extensions to the vocabulary (Neches and
colleagues, 1991). In recent years the
development of ontologies has been moving
from the realm of Artificial-Intelligence
laboratories to the desktops of domain experts.
Ontologies have become common on the World-
Wide Web.
 Ontologies are usually expressed in a
logical-based language, so that detailed,
accurate, consistent, sound, and meaningful
distinctions can be made among the classes,
properties, and relations. The element required
for the semantic web is the web ontology
language (OWL), which can formally describe
the semantics of classes and properties used in
Web documents. It is designed for use by
applications that need to process the content of
information instead of just presenting
information to humans. OWL can be used to
explicitly represent the meaning of terms in

vocabularies and the relationships between those
terms. OWL adds more vocabulary for
describing properties and classes, relations
between classes, cardinality, equality, richer
typing of properties, characteristics of
properties, and enumerated classes.
 An XML database is essentially a tree
database. Accordingly, XML queries specify
tree-shaped search patterns, called twig patterns,
which may be accompanied by additional
predicates imposed on the contents or attribute
values of the data tree node, XML queries are
thus called twig queries.
 User profiles can also have value-
based predicates. Examples of value-based
predicate are given in following figures.

 Q1: // market/stock [code=”IBM”]

Figure 1: Query with equality based
predicates

 Q2: //market/stock[sell price>25]

Figure 2: Query with non-equality operators

 Q3: //market/stock [(code=”IBM” and sell
price>25) or code=”HP”]

Figure 3: Query with logical OR operator

 The use of value-based predicate is
that a user can also specify exact information
he/she needs from the system. Existing filtering
approaches can be broadly classified into the
following categories namely (1) Automaton-
based approaches, (2) Sequence-based
approaches, (3) Stack-based approaches and (4)
Other approaches. The existing XML filtering
systems can be categorized as follows:

Table1. Existing XML Filtering Systems

Filtering
System

Filtering
Name

Filtering
Mechanism

Characteristi
cs

Twig
Support

Automat
a-based
System

XFilter FSM
based

- No

4

Automat
a-based
System

YFilter NFA/DF
A

Detection
of
Common
Prefix

Yes

Sequenc
e-based
System

FiST Subseque
nce
Matching

Ordered
Matching

Yes

Stack-
based
System

AFilter Stack Exploitatio
-n of
Prefix-
Suffix
commanali
t-ies

No

Other
Approac
h-es

XTrie Indexing Ordered
Matching,
Substring
Indexing

Yes

4. FILTERING MECHANISM

Figure 1: Architecture of Filtering Engine

 In our proposed system, user specifies
interest by logging into the system and then
subscribing for the content. The user interests
are then converted into XPath queries. The
query is checked in the ontology (OWL) class
and if it is present, its sibling elements are
returned by using class-subclass relationship of
the OWL class. Thus a single query gets
converted into multiple transformed queries.
The queries are then converted into twig pattern.
On the other hand, XML document is parsed by

SAX parser and built a tree. Finally, matching
twig node and tree node is performed. Then
matching results (semantic and exact matched
results) are then produced to particular users.

5. Conclusion

 In this paper, we present a XML
document filtering system for multiple queries,
which is based on ontology for getting semantic
information. By using predicate user queries and
ontology, our system provides exact matched
information and the semantic matched
information.

6. References

[1] A.K Gupta, D. Suciu, Stream processing of
XPath queries with predicates, in: Proceedings
of the 2003 ACM-SIGMOD Conference, ACM
Press, San Diego, CA, 2003, pp. 419-430.

[2] B. Ludascher, P. Mukhopadhay, Y.
Apakonstantinou, A transducer-based XML
query processor, in: Proceedings of the 28th
VLDB Conference, Hong Kong, China 2002,pp.
227-238.

[3] C. Chan, P. Felber, M. Garofalakis, & R.
Rastogi (2002). Efficient Filtering of XML
Documents with XPath Expressions, In Proc.
IEEE Int. Conf. Data Engineering, pp. 235

[4] E. Chaw Htoon, Thi Thi Soe Nyunt. 2009.
M-Filter: Semantic XML Data Filtering System
for Multiple Queries. Eight IEEE/ACIS
International Conference on Computer and
Information Science (1-3June2009), 1167-1171.
DOI=10.1109/ICS.2009.

[5] H. Jiang, H. Lu and W. Wang, “ Efficient
Processing of XML Twig Queries with OR-
Predicates “, 2004.2

[6] J. Kwon, P. RaoB. Moon, S. Lee (2005)
FiST: scalable XML document filtering by

5

sequencing twig patterns, in: Proceeding of the
31st VLDB Conference, Trondheim, Norway, pp.
217-228

[7] J. Kwon, P. Rao, B. Moon, S. Lee. 2007.
Value-based Predicate Filtering of Streaming
XML Data. International Conference on
Multimedia and Ubiquitous Engineering,
(2007), 289-293 DOI=10.1109/MUE.2007.216.

[8] K. Selcuk Candan, Wang-Pin Hsiung,
Songting Chen, Jun’ichi Tatemura and
Divyakant Agrawal (2006). AFilter: Adaptable
XML Filtering with Prefix-Caching and Suffix-
Clustering, ACM.

[9] M. Altinel and M.J. Franklin. Efficient
Filtering of XML Documents for Selective
Dissemination of Information. In VLDB, 53-
64,2002.s

[10] N. F. Noy and D. L. McGuinness, Ontology
Development 101: A Guide to Creating Your
First Ontology.

[10]P. Silvasti, “XML Document Filtering
Automaton”, VLDBA, ACM, New Zealand,
2008, pp.1666-1671.

[11] S. Chen, H. G. Li and J. Tatemura, GFilter:
“Scalable Filtering of Multiple Generalized-
Tree-Pattern Queries over XML Streams “,
IEEE Transactions on Knowledge and Data
Engineering 2008.

[12] S.R. Cho, “T-SIX: An Indexing System for
XML Siblings”, 8th International Workshop on
Web and Databases, Maryland, June, 2005.

[13] T.R. Gruber: A Translation Approach to
Portable Ontology Specifications. in:
Knowledge Acquisition. Vol. 6, no.2,
1993.pp199-221.

[14] Y. Diao, M. Altinel, M. J. Franklin, H.
Zhang, & P. Fischer (2003).Path Sharing and
Predicate Evaluation for High-Performance

XML Filtering, ACM Trans. Database Systems,
Vol. 28, Issue 4, pp. 467-516.

[15] Y. Diao, M. J. Franklin (2008). XML
PUBLISH/SUBSCRIBE.

[16] Y.Diao, H. Zhang, M.J. Franklin, “NFA-
based Filtering for Efficient and Scalable XML
routing.” 2002.

