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ABSTRACT 

 

Nowadays, it is difficult for us to imagine a life without devices that is 

controlled by 
software

. Software quality has become the main concern during the 

software development. Software quality is a field of study and practice that describes 

the desirable attributes of software products. Software quality prediction is a process 

of utilizing software metrics such as code-level measurements and defect data to build 

classification models that are able to estimate the quality of program modules. The 

major problem that affects the quality of datasets is high dimensionality and class 

imbalanced. A more useful and efficient mechanism is k Nearest Neighbor method, 

where Nearest Neighbor classify classes of testing dataset based on k nearest neighbor 

of training dataset. Another mechanism is Class Based Weighted k Nearest Neighbor 

with BINER Algorithm for classifying classes of testing dataset. By using BINER 

Algorithm, it narrows down the training dataset range instead of whole training 

dataset that has the maximum likelihood of occurrence and then CBW k-NN classifies 

classes of testing dataset based on this range. This thesis is the comparison of two 

classification methods by classifying classes of testing dataset focuses on NASA 

MDP (PC1, CM1 and JM1) datasets. The comparison results of two methods based on 

Accuracy, Reliability, Mean Absolute Error and Root Mean Squared Error. 
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CHAPTER 1 

INTRODUCTION 

 

Software industry has been trying to find out ways for developing software 

product within time and according to the needs of customers. Software quality is 

software functional and structural quality in software engineering. Functional quality 

reveals functional requirements whereas structural quality highlights non-functional 

requirements. Software quality and reliability have become the main concern during 

the software development. The desirable attributes of software products are software 

quality that is a field of study and practice. The performance of the software products 

must be perfect without any defects. A subset of software metrics, software quality 

metrics depend on the quality aspects of product, process, and project. 

Software life cycle is a human activity, so it is difficult to create software 

without defects but is possible to prevent the injection of defects. In software life 

cycle, software requirements, software design, software coding and software testing 

are the important aspects for detecting software defects [14]. During the stages of 

software requirements, software design and software testing, software defects can 

evoke and affect in software source codes. Therefore, prediction software defect is the 

most popular method for software industry to detect software defect by using software 

source codes. The abstract expressions of software source codes complexity are size 

and complexity metrics which are line of code, design and cyclomatic complexity and 

so on.  

A large portion of the project budget is the finding and fixing the defects after 

delivery. Therefore, detection software defect before delivery can wake up the success 

of project quality and cost. A software defect is an incorrect or unexpected result and 

unintentional outcomes by using software and is also called an error, fault, flaw, or 

failure in a computer system or program [3]. The software defect is the main software 

quality characteristic. During software development and maintenance, the most 

expensive activity is the finding and correcting software defects. Therefore, the key 

element for a creative and successful software project is the development high quality 

software within the assigned time and budget. A panel at IEEE Metrics 20022 also 

concluded that manual software reviews can find only 60 percent of defects. In the 
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software engineering field, software defect prediction has been an important research 

topic, especially to solve the inefficiency and ineffectiveness of existing 

manufacturing approach of software testing and reviews.  

The reduction number of faults in the delivered code is the main goal of 

software developers to create the better software. Therefore, they need to fix the faults 

as early as possible, in order to ensure the reliability of software systems. Moreover, 

the earlier an error can identify, the better and more cost effectively can be fixed. 

Therefore, the need and high demand in software industry is to predict software 

defects across the stages of software development process. The machine learning is 

becoming an important field of computer science. The machine learning is associated 

the number of core algorithms for pattern recognition and data mining. The 

classification, clustering and prediction are the useful machine learning algorithms. 

Classification algorithms have been successfully used in several areas and different 

applications have their own related issues. The amount of data in our lives appears the 

increasing more and more and there is no end in sight. 

 

1.1 Objectives of the Thesis 

The primary objectives of this thesis are to find out the way that can identify 

the software defects and compare classification methods on imbalanced software 

defect datasets. The other objectives are 

• To provide the effective method for classification software defect datasets  

• To study basic concepts of classification methods with the purpose of to be 

applied as software defect classification techniques 

• To identify defects and non-defects using k Nearest Neighbor and Class Based 

Weighted k Nearest Neighbor with BINER Algorithm  

• To classify class label on imbalanced software defect datasets using both 

methods 

• To provide comparison of two methods of their abilities of software defect 

classification using Accuracy, Reliability, Mean Absolute Error (MAE) and 

Root Mean Squared Error (RMSE) 
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1.2 Motivation of the Thesis 

In the data mining field, a series of challenges have recently developed and 

rapidly triggered from academic to the resulting needs of real-life applications and 

applied science. This thesis is concerned with classification tasks and related issues. 

They are not complete and not relevant records and redundant pieces of the 

information, imbalanced class distribution and error costs of software [18]. 

Today, usage of software is increasing very rapidly so it becomes very 

difficult to create software without defect. It is necessary for developers to classify 

features of software defect by using module metrics of the better software. Therefore, 

developers need to know characteristics of defect for developing software. In the field 

of machine learning, classification has been a valuable and energetic of research. In 

classification, the goal is to classify class value for testing data and to separate a given 

lots of data items into groups. Classification can develop the performance of retrieval 

on features of software. 

 

1.3 Organization of the Thesis 

This thesis is mainly composed of five chapters. Chapter 1 introduces the 

basic information about the thesis and motivation including the scope and objectives. 

Chapter 2 describes the literature of the classification methods that pointed out some 

systems offering important knowledge and background history for the understanding 

of the following chapters. Chapter 3 presents the theoretical background of the system 

and about software defect datasets. Chapter 4 describes overview design and 

implementation of the system that implemented by using PHP Hypertext Processor 

Language (PHP) and includes the experimental result of the thesis. Chapter 5 

discusses conclusion and the directions for further development and deals with 

problems for future research. 
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CHAPTER 2 

BACKGROUND THEORY  

 

This chapter presents   data mining with functionalities and application area, 

data preparation and cleaning, classification methods, classification rules and 

challenges and evaluation methods. Firstly, this chapter describes the meaning of data 

mining that is important to analyze a large amount of data. Secondly, it explains how 

to use data mining methods in many application areas. Thirdly, it describes about a 

several of classification methods and classification rules and challenges. Finally, it 

presents   evaluation methods in order to compare and evaluate between classification 

methods with calculation equations. 

 

2.1 Data Mining 

Data mining is about solving problems by analyzing data already presented in 

databases. In highly competitive business growth, the customer-centered, service-

oriented economy, data is the raw material is need. It is also defined as the process of 

discovering patterns in data that must be automatic or semiautomatic. The patterns 

discovered must be meaningful that lead to an economic advantage. The nontrivial 

predictions on new data are used to make useful patterns. The data patterns are used 

by economists, statisticians, forecasters, and communication engineers to seek 

automatically, identified, validated, and used for prediction. 

Data mining refers to extracting or “mining” knowledge from large amounts 

of data. The synonym for another popularly used term for data mining is, Knowledge 

Discovery from Data, or KDD. Knowledge discovery consists of an iterative sequence 

of the following steps: 

1. Data cleaning- it is use to remove inconsistent and noise data. 

2. Data integration- it is use to combine multiple data sources. 

3. Data selection- it is use to retrieve data relevant from the database to the                                

analysis task. 

4. Data transformation- it is use to transform or consolidate into forms by 

performing summary or aggregation actions. 

5. Data mining- it is use to extract data patterns by applying intelligent 

methods. 
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6. Pattern evaluation- it is use to identify truly interesting patterns representing 

knowledge based on some incorrect measures. 

7. Knowledge presentation- it is use to present the mined knowledge to the 

user based on visualization and knowledge representation techniques. 

 

2.1.1 Data Mining Functionalities 

 The functions of data mining are used to identify the kind of patterns to be 

found in data mining tasks. In general, data mining tasks can be classified into two 

categories such as descriptive and predictive. Descriptive mining tasks characterize 

the general properties of the data in the database. Predictive mining tasks perform 

inference on the current data in order to make predictions [23]. 

 

Descriptive Function 

The descriptive function deals with the general properties of data in the 

database. The list of descriptive functions − 

(i) Class/Concept Description 

(ii) Mining of Frequent Patterns 

(iii) Mining of Associations 

(iv) Mining of Correlations 

(v) Mining of Clusters 

 

 (i)  Class/Concept Description 

Class/Concept refers to the data associated with the classes or concepts. For 

example, in a company, the classes of items for sales include computer and printers, 

and concepts of customers include big spenders and budget spenders. These 

descriptions can be derived by the following two ways − 

 Data Characterization − It refers to summarizing data of class under study 

that is called as target class. 

 Data Discrimination − It refers to the classification of a class with some 

predefined group or class. 
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 (ii)  Mining of Frequent Patterns 

Frequent patterns are those patterns that occur frequently in transactional data. 

The list of kind of frequent patterns are- 

 Frequent Item Set − It refers to a set of items that frequently appear together, 

e.g. milk and bread. 

 Frequent Subsequence − A sequence of patterns that occur frequently such 

as purchasing a camera is followed by memory card. 

 Frequent Sub Structure − Substructure refers to different structural forms, 

such as graphs, trees, or lattices, which may be combined with item-sets or 

subsequences. 

 (iii)  Mining of Association 

Associations are used in retail sales to identify data patterns that are 

frequently purchased together. This process refers to the process of determining 

association rules and uncovering the relationship among data. 

(iv)  Mining of Correlations 

Correlation is a kind of additional analysis that performs to uncover 

interesting statistical correlations between associated-attribute-value pairs or between 

two item sets to analyze positive, negative pair or no effect on each other. 

(v)  Mining of Clusters 

Cluster refers to a group of similar kind of objects. Cluster analysis analyses 

group of objects that are very similar to each other in same cluster but are highly 

different from the objects in other clusters. 

 

Classification and Prediction 

Classification is the process of finding a model that describes the data classes 

or concepts. The purpose of classification is to use this model to predict the class of 

objects whose class label is unknown. This derived model is based on the analysis of 

sets of training data i.e. the data object whose class label is well known. The derived 

model can be presented as Classification (IF-THEN) Rules, Decision Trees, 

Mathematical Formulae and Neural Networks.  



7 
 

Prediction is used to predict missing data or unavailable numerical data values 

rather than class labels. Regression Analysis is generally used for prediction. 

Prediction can also be used for identification of distribution trends based on available 

data. Outlier Analysis refers to the data objects that do not comply with the general 

behavior or model of the data available. Evolution Analysis refers to the description 

and model regularities or trends for objects whose behavior changes over time. 

 

2.1.2 Application Areas of Data Mining  

 Data mining is a process that analyzes a large amount of data to find new and 

hidden information that improves business efficiency. Many industries have been 

implementing data mining to their critical business processes to gain competitive 

advantages and help business grows [21]. 

In Sales/Marketing, data mining supports businesses to understand the hidden 

patterns inside historical purchasing transaction data [22]. It can help planning and 

launching new marketing campaigns in a prompt and cost-effective way. Retail 

companies identify customer‟s behavior buying patterns by using data mining 

techniques. Data mining is used for market basket analysis to provide information on 

what product combinations were purchased together and in what sequence. In 

addition, it encourages customers to purchase related products that they may have 

been missed or overlooked.  

In Banking/ Finance, several data mining techniques as distributed data 

mining have been researched, modeled and developed to help credit card fraud 

detection [22]. To help the bank process retaining credit card customers, data mining 

is applied.  By analyzing the past bank information data, data mining can help banks 

to predict customers that likely to change their credit card affiliation. So, they can 

plan and launch different special offers to recall those customers. Data mining can 

identify credit card spending by customer groups.  

In Education, there is a new emerging field, called Educational Data Mining 

(EDM) concerns with developing methods that discover knowledge from educational 

environments data originating. The goals of EDM are identified as predicting 

students‟ future learning behavior, studying the effects of educational support, and 

advancing scientific knowledge about learning methods. Data mining can use by an 
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institution to take accurate decisions and can also predict the results of the student 

focus on what to teach and how to teach. Learning pattern of the students can be 

captured and used to develop techniques to teach them by using data mining. 

In Research Analysis, history data shows that researchers have witnessed 

revolutionary changes in research. Data mining is helpful in data cleaning, data pre-

processing and integration of databases. By using data mining, researchers can find 

any similar data from the database that might bring any change in the research. Data 

visualization and visual data mining provide them with a clear view of the data. 

In Lie Detection, this filed includes text mining also. Apprehending a criminal 

is easy whereas bringing out the truth from him is difficult. Law enforcement can use 

mining techniques to investigate crimes, monitor communication of suspected 

terrorists. This process seeks to find meaningful patterns in data which is usually 

unstructured text. The data samples collected from previous investigations are 

compared and a model for lie detection is created. 

In Telecommunication, today the telecommunication industry is one of the 

most emerging industries providing various services such as fax, pager, cellular 

phone, internet messenger, images, e-mail, web data transmission, etc. Due to the 

development of new computer and communication technologies, the 

telecommunication industry is rapidly expanding. This is the reason why data mining 

becomes very important to help and understand the business. Data mining in 

telecommunication industry helps in identifying the telecommunication patterns, 

catch fraudulent activities, make better use of resource, and improve quality of 

service. The list of examples for which data mining improves telecommunication 

services are multidimensional analysis of telecommunication data, fraudulent pattern 

analysis, identification of unusual patterns, multidimensional association and 

sequential patterns analysis, mobile telecommunication services, and use of 

visualization tools in telecommunication data analysis. 

 

2.2 Data Preparation and Cleaning 

Data pre-processing is the important step in the data mining process. The 

phrase “Garbage In, Garbage Out” is particularly applicable to data mining and 

machine learning. Data collecting methods are often loosely controlled, resulting in 
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out-of-range values such as Income value is (-100), impossible data combinations 

such as Gender is Male and Pregnant is Yes, missing values, etc. Analyzing data has 

been carefully separated for such problems to prevent producing misleading results. 

Thus, the demonstration and quality of data is first and foremost before processing an 

analysis. The irrelevant and redundant information present noisy and unreliable data 

for knowledge discovery during the training phase is more difficult. Data preparation 

and filtering steps can be sizeable amount of processing time. The product of data pre-

processing is the final training dataset. Data pre-processing is one of the most critical 

steps in a data mining process to prepare and transform the initial dataset [25]. It is an 

important issue for both data warehousing and data mining, as real-world data tends to 

be incomplete, noisy, and inconsistent. It includes data cleaning, data integration, data 

transformation, and data reduction.  

Data cleaning can be used to fill missing values, smooth noisy data, identify 

outliers, and correct data inconsistencies. Data integration combines data from 

multiples sources to form a coherent data store. Data transformation conform the data 

into appropriate forms for mining methods. Data reduction techniques can be used to 

obtain a reduced representation of the data, while minimizing the loss of information 

content. They are data cube aggregation, dimension reduction, data compression, 

numerosity reduction, and discretization. Noisy data is a random error or variance in a 

measured variable. The data smoothing techniques are binning methods, clustering, 

combined computer and human inspection, regression. Binning methods smooth a 

sorted data value by consulting the neighborhood, or values around it. Data can be 

smoothed by fitting the data to a function, such as with regression. Using regression to 

find a mathematical equation to fit the data helps smooth out the noise.  

 

2.3 Classification Methods 

Classification is the process of finding a model (or function) that describes 

and distinguishes data classes or concepts, for the purpose of being able to use the 

model to predict the class of objects whose class label is unknown. The derived 

model is based on the analysis of a set of training data (i.e., data objects whose class 

label is known). Classification predicts categorical (discrete, unordered) labels.  

The classification learning is sometimes called supervised learning because 

the method operates under supervision by being provided with the actual outcome for 
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each of the training examples. The success of classification learning can be decided 

by trying out the concept description that is learned on an independent set of test data. 

The success rate on test data gives an objective measure of how well the concept has 

been learned. In many practical data mining applications, success is measured more 

subjectively in terms of how acceptable the learned description. Many classification 

and prediction methods have been proposed by researchers in machine learning, 

pattern recognition, and statistics.  

 

2.3.1 Decision Tree (C4.5) 

Decision Tree is the process of learning a tree from pre-classified training 

examples [16]. A decision tree is like a flowchart tree structure, where each internal 

node called non-leaf node denotes a test on an attribute. Each branch represents an 

outcome of the test, and each leaf node or terminal node holds a class label. The 

topmost node in a tree is the root node. Decision tree algorithms transform from the 

raw data to rule based mechanism. 

C4.5 is an improved version of ID3 (Iterative Dichotomizer 3 algorithm), an 

inductive learning method developed by John Ross Quinla at 1989. C4.5 can accept 

input values as both symbolic and numeric, and generates a classification tree for 

output. It employs a splitting procedure which recursively partitions a set of examples 

into disjointed subsets. C4.5 accepts both continuous and discrete features, handles 

incomplete data points, solves over-fitting problem by bottom-up technique and can 

be applied different weights that comprise the training data. For example, in the 

training phase, the gain ratio of each attribute is adjusted by a factor which depends 

on the number of complete records (in that attribute) in the training set. Input/output 

(activation) functions are continuous and differentiable. The output is a classification 

tree where the leaves contain class assignments determined by majority rule. 

A decision tree is a special case of a state-space graph. It is a tree in which 

each internal node corresponds to a decision that has a sub tree for each possible 

outcome of the decision. Decision trees can be used to model problems in which a 

series of decisions leads to a solution. Its programs construct a decision tree from a set 

of training cases and are used to improve the prediction and classification accuracy of 

the algorithm. It is widely applied in various areas since it is robust to data scales or 

distributions by comparing to other data mining techniques, 
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2.3.2 Naive Bayesian Classification 

Naive is a statistical classifier that can predict class membership probabilities 

such as the probability a given example belongs to a particular class [10]. Naive 

Bayes classifier is a probabilistic classifier that produces probability estimates based 

on the Bayes theorem rather than predictions. For each class value, they estimate the 

probability that a given instance belongs to that class by using a small amount of 

training data to estimate. It assumes that the effect of an attribute value on a given 

class is independent of the values of the other attributes. Bayesian classifiers have also 

exhibited high accuracy and speed when applied to large database. 

 The Naive Bayes classifier technique is based on Bayes‟ theorem and is 

particularly appropriate when the dimensionality of the feature space is high. For 

example, a vector x=(x1,x2,….,xn) of n features is associated with each observation 

and Naive Bayes learns the class conditional probabilities p(xi|yi) of each categorical 

variable i, i=1,2,….,n, given the class label yi. A new observation with feature vector 

x is classified by using the Bayes‟ rule to compute the posterior probability of each 

class yi given the vector of attributes. The basic assumption of Naive Bayes‟ classifier 

is that the variables are conditionally independent given the class label.  

 

2.3.3 Neural Network (NN) 

A neural network (NN) can be defined as reasoning model based on the 

human brain [11]. A NN consists of a number of interconnected processors called 

neurons. Firstly, a neuron receives input signals from its input links, computes an 

output signal and transmits this signal through its output links. An input signal can be 

raw data or the outputs from other neurons. The output signal can be either a final 

solution to the problem or an input to other neurons. A NN is set through repeated 

adjustments of these weights. A neural network model, the branch of artificial 

intelligence is generally referred to as Artificial Neural Networks (ANNs). ANN 

constructs the system to execute task, instead of programming computational system 

to do definite tasks. 

Neural Networks are capable of predicting new observations from existing 

observations. The neurons within the network work together, in parallel, to produce 

an output function. Since the computation is performed by the collective neurons, a 

neural network can still produce the output function even if some of the individual 
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neurons are malfunctioning (the network is robust and fault tolerant). Neural 

Networks (NN) are important data mining tool used for classification and clustering 

[21]. It is an attempt to build machine that can mimic brain activities and be able to 

learn. Basic NN consists of three layers such as input, output and hidden layer. Each 

layer can have number of nodes and nodes are connected from input layer to hidden 

layer and hidden layer‟s nodes are connected to the nodes from output layer. Those 

connections represent weights between nodes. Back Propagation Neural Network 

(BPNN), one of the most popular NN algorithms need a very large number of training 

samples and need a lot of time to gradually approach good values of the weights. 

 

2.3.4 Support Vector Machine (SVM) 

The concept of decision planes to define decision boundaries is Support 

Vector Machine (SVM) that supports both regression and classification. A decision 

plane is the one that separates between a set of objects having different class 

membership [17]. SVM performs classification task by constructing hyper plane in a 

multidimensional space that separates cases of different class labels. It uses a 

nonlinear mapping to transform the original training data into a higher dimension. 

Within this new dimension, it searches for the linear optimal separating hyper plane. 

SVM was first proposed by Vapnik at 1995 as learning systems for binary 

classification [11]. It is trained using an algorithm from optimization theory and 

statistical learning theory to derive a separating hyper plane in a high dimensional 

feature space. SVMs are based on a nonlinear mapping of the problem data into a 

higher dimension feature space. However, the learning algorithm may be inefficient 

and SVMs may be difficult to implement as a large number of 17 parameters is 

required. In addition, small training samples can result in over fitting, with poor 

generalization ability. The original model proposed by Vapnik was a linear classifier, 

but other types were later proposed in order to improve the accuracy of the original 

model. The main difference of the new models compared to the initial model is the 

function used to map the data into a higher dimensional space. New functions were 

proposed, namely: polynomial, Radial Basis Function (RBF) and sigmoid. All these 

functions transform the original data into a higher dimensional space and then the 

linear classifier is used subsequently. 
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2.3.5 Genetic Algorithms  

Genetic Algorithms attempt to incorporate ideas of natural evolution [6]. 

Genetic algorithms are used to discover classification rules for data that can be used 

for predictions. The genetic algorithms are adaptive techniques that can be 

successfully used to solve complex search and optimization problems. They are based 

on the principles of genetics and Darwin‟s natural selection theory (“the one that is 

best endowed, survives”). In data mining, genetic algorithms have been effectively 

used in order to determine classification rules and to search for appropriate cluster 

centers, to select the attributes of interest in predicting the value of a target attribute 

and so on. By using some hybrid algorithms, classification of instances was 

performed such as Genetic Algorithms and Particle Swarm Optimization, respectively 

Naive Bayes and k-Nearest Neighbors. A few applications in which genetic 

algorithms were effectively applied to solve classification problems are prints‟ 

classification, heart disease classification, classification of emotions on the human 

face. 

The fitness functions of the genetic algorithms used for mining classification 

rules may contain metrics concerning predictive accuracy, rule comprehensibility as 

well as rule interestingness [19]. Diverse studies suggest genetic algorithms with 

fitness functions that take into consideration in different ways. Genetic algorithms are 

a type of optimization algorithm, meaning they are used to find the maximum or 

minimum of a function [5]. These algorithms are far more efficient and powerful than 

random and exhaustive search algorithms. In data mining, the advantage of Genetic 

algorithm becomes more obvious when the search space of a task is large. Genetic 

algorithm is a search technique used in computing to find exact or approximate 

solution to optimization and search problems.  

 

2.4 Classification Rules and Challenges 

The process of assigning each element in a population to one of the pre-

defined classes is defined by classification rules. A perfect classification process is 

such that every element in the dataset is assigned to the class it really belongs to (High 

Accuracy classification). An imperfect classification process is such that some errors 

appear like false negatives or false positives. Statistical analysis is then applied to 

analyze the efficiency of the classification algorithm [17].  
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2.5 Evaluation Methods 

Classification methods can be compared and evaluated according to following 

criteria: 

Accuracy- The accuracy of a classifier refers to the ability to correctly predict the 

class label of new or previously unknown data. 

Speed- This refers to the computational costs involved in generating and using the 

given classifier or predictor.  

Robustness: This is the ability of the classifier or predictor to make correct 

predictions given noisy data or data with missing values. 

Scalability: This refers to the ability to construct the classifier or predictor efficiently 

given large amounts of data. 

Interpretability: This refers to the level of understanding and insight that is provided 

by classifier or predictor. 

  The reliable estimate of predictor accuracy is measured in terms of error. For 

example, D
T 

be a test set of the form (X1, y1), (X2,y2), …. , (Xd, yd), where the Xi are the 

n-dimensional test tuples with associated known values, yi, for a response variable, y, 

and d is the number of tuples in D
T
. The accuracy of a predictor is estimated by 

computing an error based on the difference between the predicted value and the actual 

known value of y for each of test tuples, X. Loss functions measure error between 

actual value, yi and predicted value, yi’. The most common loss functions can be 

executed in Equation 2.1 and 2.2. 

Absolute error :  | yi -, yi’ |       (2.1) 

 

Squared error  : (yi -, yi’)2  

     

     (2.2) 

 

  Based on the above, the test error (rate), or generalization error, is the average 

loss over the test set. The most popular evaluation metric to measure the prediction 

accuracy is Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean 

Squared Error (RMSE). 
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 The Mean Squared Error exaggerates the presence of outliers, while the mean 

absolute error does not. Root Mean Squared Error can accomplish by taking the 

square root of the Mean Squared Error. This is useful in that it allows the error 

measured to be of the same magnitude as the quantity being predicted. MAE, MSE 

and RMSE can range values from 0 to ∞. The lower the error values, the better the 

model is. If the square root of the mean squared error is taken, this is useful to allow 

the error measured of the same magnitude as the quantity being predicted. 

 

 

 

 

 

 

 

 

 

 

 



16 
 

CHAPTER 3 

METHODS OF THE PROPOSED SYSTEM 

 
This chapter presents the background theory of k nearest neighbor method, 

class based weighted k-NN method, BINER algorithm and software defect datasets 

and imbalanced dataset. Firstly, this chapter describes about software defects that is 

important to develop and maintain software. Secondly, it explains how to applied data 

mining methods for software defect detection. Thirdly, it describes about the nature of 

software defect dataset and their characteristics. Finally, it presents   background 

theories such as k-NN method and CBW k-NN method with BINER algorithm with 

flowchart figures. 

 

3.1 Software Defect 

During software development and maintenance, the costs of finding and 

correcting software defects have been the most expensive activity. A panel at IEEE 

Metrics 20022 also decided that manual software reviews can find only 60 percent of 

defects [23]. Therefore, software defect prediction became an important research topic 

in the software engineering field. Especially, it is to solve the inefficiency and 

ineffectiveness of existing industrial approach of software testing and reviews. The 

accurate prediction of defect prone software modules can help direct test effort, 

reduce costs, improve the software testing process, and identify refactoring candidates 

that are predicted as fault-prone. Software fault prediction approaches are much more 

efficient and effective to detect software faults compared to software reviews. 

Various machine learning classification algorithms have been applied for 

software defect prediction, including Logistic Regression, Decision Trees, Neural 

Networks and Naive-Bayes. The software defect prediction remains a largely 

unsolved problem that is the comparisons and benchmarking result of the defect 

prediction using machine learning classifiers. There is a need of accurate defect 

prediction model for large-scale software system. Two common aspects of data 

quality that can affect classification performance are class imbalanced and noisy 

attributes of data sets. Software defect datasets have an imbalanced nature with very 

few defective modules compared to defective ones. Imbalanced can lead to a model 
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that is not practical in software defect prediction, because most instances can be 

predicted as non-defect prone.  

 

3.2 Software Defect Dataset 

The real time defect datasets are taken from the NASA‟s MDP (Metric Data 

Program) data repository, created by NASA MDP [13, 20]. For example, PC1 dataset 

which is collected from flight software for an earth orbiting satellite coded in C 

programming language, containing 1109 modules. And CM1 dataset which is 

collected from NASA spacecraft instrument, containing 402 modules and JM1 dataset 

which is collected from Real-time predictive ground system, containing 1096 

modules. These datasets are coded in C programming language. All these datasets 

varied in percentage of defect modules, with PC1 dataset containing the least number 

of defect modules. 

 The metrics in NASA MDP datasets describe vary in size and complexity, 

programming languages, development processes, etc. [20]. When reporting a fault 

prediction modeling experiment, it is important to describe the characteristics of the 

datasets. Each dataset contains twenty-one software metrics, which describe product‟s 

size, complexity and some structural properties. Also the product metrics and product 

module metrics available in dataset which can also be use are the product requirement 

metrics are as follows: 

 Module 

 Action 

 Conditional 

 Continuance 

 Imperative 

 Option 

 Risk_Level 

 Source 

 Weak_Phrase 
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The product module metrics are as follows: 

Table 3.1 List of Product Module Metrics 

Number Module Metrics Name 

1. Module 

2. Loc_Blank 

3. Branch_Count 

4. Call_Pairs 

5. LOC_Code_and_Comment 

6. LOC_Comments 

7. Condition_Count 

8. Cyclomatic_complexity 

9. Cyclomatic_Density 

10. Decision_Count 

11. Edge_Count 

12. Essential_Complexity 

13. Essential_Density 

14. LOC_Executable 

15. Parameter_Count 

16. Global_Data_Complexity 

17. Global_Data_Density 

18. Halstead_Content 

19. Halstead_Difficulty 

20. Halstead_Effort 

21. Halstead_Error_EST 

22. Halstead_Length 

23. Halstead_Prog_Time 

24. Halstead_Volume 

25. Normalized_Cyclomatic_Complexity 

26. Num_Operands 

27. Num_Operators 

28. Num_Unique_Operands 

29. Num_Unique_Operators 

30. Number_Of_Lines 

31. Pathological_Complexity 

32. LOC_Total 
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The attribute nature taken from NASA MDP software projects are shown in 

Table 3.1. Among of NASA MDP datasets, this thesis uses three datasets. They are 

PC1, CM1 and JM1. The PC1, Flight software for earth orbiting satellite used C 

language has 1109 modules and 22 attributes. The CM1, NASA spacecraft 

instrument, also used C language has 402 modules and 22 attributes. The JM1, Real-

time predictive ground system, also used C language has 1096 modules and 22 

attributes. 

These three datasets have 22 attributes that was measured based on metrics of 

McCabe and Halstead [2]. The McCabe metrics are a collection of four software 

metrics. They are essential complexity, cyclomatic complexity, design complexity and 

LOC, Lines of Code. The Halstead falls into three groups such as the base measures, 

the derived measures, and lines of code measures. The following is explanation of 22 

attributes. 

1. loc (McCabe's line count of code) – it is straightforward to measure line of 

code because it counts blanks, comments, etc. 

2. v(g) (McCabe "cyclomatic complexity") – it measures the number of linearly 

independent paths through flowgraph of a given program. Its formula is v(g) = 

number of decision statements + 1. 

3. ev(g) (McCabe "essential complexity") – it is the measure of the 

unstructuredness of a program. Its formula is ev(G) = v(G) – m where m is 

number of one-entry one-exit program‟s flowgraph. 

4. iv(g) (McCabe "design complexity") – it is the cyclomatic complexity of a 

module's reduced flowgraph. According to McCabe, this complexity 

measurement reflects the modules calling patterns to its immediate 

subordinate modules. 

5. N (Halstead total operators + operands) – it sums number of total occurrence 

operators and operands in program.  

6. V (Halstead "volume") – it is a count of the number of mental comparisons 

required to generate a program. Its formula is V=N x log2(n) where V is the 

Volume, N is the number of words in the program and log2(n) is the minimum 

number of bits required to represent all unique words in the program. 

7. L (Halstead "program length") – it represents a program written at the highest 

possible level. Its formula is
D

L
1

 . 
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8. D (Halstead “difficulty") – it is related to the difficulty of the program to write 

or understand. Operands and operators that are used repeatedly can tend to 

increase the Volume and the program Difficulty. Its formula is

2

2

2

1

n

Nn
D  .  

9. I (Halstead "intelligence") – The intelligence content is correlated highly with 

the potential volume. Its formula is VLI  . 

10. E (Halstead "effort") – The effort measure translates into actual coding time 

by selecting each word to be used in the implementation. Its formula is

VDE  . 

11. B (Halstead “number of delivered bugs") – Halstead's delivered bugs (B) is an 

estimate for the number of errors in the implementation. Its formula is

3000

V
B  . 

12. T (Halstead's time estimator) – it is an estimate of the amount of time it took a 

programmer to write a program. Its formula is
18

E
T  . 

13. lOCode (Halstead's line count) – it measures line of code in a program. 

14. lOComment (Halstead's count of lines of comments) – it measures count of 

comment line in a program. 

15. lOBlank (Halstead's count of blank lines) – it measures count of blank line in 

a program. 

16. lOCodeAndComment – It measures count of code with comment in a 

program. 

17.  uniq_Op (unique operators) – it counts number of unique operators (not 

count duplicated) in program. 

18. uniq_Opnd (unique operands) – it counts number of unique operands (not 

count duplicated) in program. 

19. total_Op (total operators) – it counts number of total operators (count 

duplicated) in program. 

20. total_Opnd (total operands) – it counts number of total operands (count 

duplicated) in program. 

21. branchCount – it counts number of branches for program. 
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22. Defects (false or true) – it is class value attribute that describe non-defect or 

defect for a program. 

 

Imbalanced Data  

 Building data mining models with unreliable or abnormal datasets can be a 

significant challenge to classifier construction [7]. Numerous studies dealing with 

classification problem shows training dataset‟s errors presence lower than testing 

data‟s predictive accuracy. There are many different dimensions of data quality that 

included class noise or labeling errors, attribute noise, and missing values. The 

occurrence of class imbalance is another commonly encountered challenge in data 

mining applications. Imbalanced data set problem occurs in classification, where the 

number of instances of one class is much lower than the instances of the other classes. 

 

Figure 3.1 Two Classes’ Imbalance Solve 

 Figure 3.1 shows an example of two-class imbalance problem to classify new 

query instance. In this figure, the majority class “A” represented circles and the 

minority class “B” represented triangles. The new data instance is cross symbol. The 

data instance has been classified as the majority class “A” by a regular k-NN 

algorithm using threshold (k) value 7. But, if the algorithm had taken into account the 

imbalance class distribution around the neighborhood of the data instances. Finally, 

the new data instance has been classified as minority class “B”, which is the desired 

class. 
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3.3 k Nearest Neighbor Classifier 

k Nearest Neighbor Classifier (k-NN) is a method for classifying objects based 

on closest training dataset [10], [17]. The k-NN is an instance-based algorithm for 

approximating real valued or discrete-valued target functions, assuming instances 

correspond to points in an n-dimensional Manhattan space. The target function value 

for a new query is estimated from the known values of the k nearest training 

examples. When a new query instance is encountered, a set of similar related 

instances is retrieved from memory and used to classify the new query instance. 

Instance-based methods can use more complex, symbolic representations for 

instances. The most basic instance-based method is the k-Nearest-Neighbor 

algorithm. The nearest neighbors of an instance are defined in terms of the standard 

Manhattan distance. Then the distance between two instances xi and xj is defined to be 

d (xi, xj), where in nearest-neighbor learning the target function may be either 

discrete-valued or real-valued. 

Nearest-neighbor classifiers are based on learning by analogy, that is, by 

comparing a given test tuple with training tuples that are similar to it [24]. The 

training tuples are described by n attributes. Each tuple represents a point in an n-

dimensional space. In this way, all of the training tuples are stored in an n-

dimensional pattern space. When given an unknown tuple, a k-nearest-neighbor 

classifier searches the pattern space for the k training tuples that are closest to the 

unknown tuple. These k training tuples are k “nearest neighbors” of unknown tuple. 

“Closeness” is defined in terms of a distance metric, such as Manhattan distance [10]. 

The Manhattan distance between two points or tuples, say, X1 = (x11, x12, : : : , x1n) 

and         X2 = (x21, x22, : : : , x2n), is 

                       )   ∑|       |

 

   

       (3.1) 

For each data point in the target dataset, the distance metric between target 

data and all training data are calculated and sorted. The threshold value (k) has to 

eliminate all distance values depend on threshold value (k) and taken into account 

based on classes of selected distance values to classify target data. If the threshold 

value k = 1, then the 1-Nearest Neighbor Algorithm where xi is the training instance 

nearest to x. For larger values of k, the algorithm assigns the most common value 
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among the k nearest training examples. The advantages of k Nearest Neighbor 

algorithm [4] are 

 very fast training 

 Simple and easy to learn 

 Robust to noisy training data 

 easy to implement to classify data point 

 Effective if training data is large 

Figure 3.2 is k Nearest Neighbor algorithm, is a method for classifying objects 

based on closest training dataset. For each data in the testing dataset, it calculates 

distance metrics between testing data and all training data by using Equation 3.1. And, 

it sorts all distance values and eliminates distance values depend on threshold value 

(k). Then, it taken into account based on classes of selected distance values to classify 

testing data. 

Algorithm 1: k Nearest Neighbor Algorithm  

Input: X, C, k, x 

Output: class label for testing data x 

1. For all distances between testing data and training dataset do 

.         )   ∑ |      |
 
    

2. End for 

3. Sort d (Xj, x) by ascending order  

4. For iteration <= k-value do 

 Dx
k 
= d (Xj, x)

 
 

5. iteration++  

6. End for 

7. Taken into account imbalanced classes in training data 

8. Classify testing data by Dx
k
 

9. Output class label of x 

Figure 3.2 k Nearest Neighbor Algorithm 
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Table 3.2 reveals the meaning of various symbols used in k Nearest Neighbor 

algorithm. This table is used to form better understanding of the algorithm. 

Table 3.2 List of Symbols Used in the k Nearest Neighbor Algorithm 

Symbol Meaning 

X Training dataset 

Xj Each data of Training dataset 

C Class labels of X 

k Threshold value 

x Each data of testing dataset 

d(X, x) Manhattan distance between one testing data and training dataset 

Dx
k
 Eliminated Distance values based on k value 

  

3.4 Class Based Weighted k-NN 

One obvious refinement to the k- Nearest Neighbor Algorithm is to weigh the 

contribution of each of the k neighbors according to their distance to the query point 

x, giving greater weight to closer neighbors [12, 24]. The approximates discrete-

valued target functions, we might weigh the vote of each neighbor according to the 

inverse square of its distance from x. Class based Weighted k Nearest Neighbor 

classifier calculate a weight is assigned to each of the class based on how its instances 

are classified in the neighborhood of query instance. The only disadvantage of 

considering all examples is that our classifier can run more slowly. If all training 

examples are considered when classifying a new query instance, it calls the algorithm 

a global method 

The distance-weighted k-Nearest Neighbor Algorithm is a highly effective 

inductive inference method for many practical problems [12, 15]. It is robust to noisy 

training data and quite effective when it is provided a sufficiently large set of training 

data. By taking the weighted average of the k neighbors nearest to the query point, it 

can smooth out the impact of isolated noisy training examples. The distance between 

neighbors can be dominated by the large number of irrelevant attributes that is 
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sometimes referred to as the curse of dimensionality. Nearest-neighbor approaches are 

especially sensitive to this problem. 

Distance value is to weigh each attribute differently when calculating the 

distance between two instances. This corresponds to stretching the axes in the 

Manhattan space, shortening the axes that correspond to less relevant attributes, and 

lengthening the axes that correspond to more relevant attributes. To see how, it is 

chosen to minimize the true classification error of the learning algorithm. Second, 

note that this true error can be estimated using cross validation. An algorithm is to 

select a subset of the available data to use as training that lead to the minimum error 

in classifying the remaining examples. By repeating this process, the estimate for 

these weighting factors can be made more accurate. The advantages of Class-Based 

Weighted k Nearest Neighbor algorithm are - 

 Overcomes limitations of k-NN of assigning equal weight to k 

neighbors implicitly 

 Uses all training samples not just k 

 Defines the threshold value k (maximum) and (minimum) 

 Does not need large memory according to partition of training dataset 

 Makes the algorithm global one 

 Figure 3.3 is algorithm for Class Based Weighed k Nearest Neighbor with 

BINER algorithm. It finds the nearest range of training dataset where the testing data 

has the maximum likelihood of occurrence by using BINER algorithm as shown in 

Figure 3.4. Then, it calculates distance metrics between testing data and nearest range 

of training data by using Equation 3.1. And, it sorts all distance values and eliminates 

distance values depend on threshold value (k). Then, it calculates weight values for 

eliminated distances and total weight values for each class. Finally, it compares final 

weight values to classify testing data. 

Algorithm 2: Class Based Weighted k Nearest Neighbor Algorithm 

Input: X, C, k, x 

Output: class label for testing data x  

1. Find nearest range by using BINER algorithm 
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2. For all distances between testing data and sub range training dataset do 

.         )   ∑ |      |
 
    

3. End for 

4. Sort d (Xj, x) by ascending order  

5. For iteration <= k-value do 

Dx
k 
= d (Xj, x)

 
 

6. iteration++  

7. End for 

8. For all weight of  Dx
k
 do 

.     
     

     
 

9. End for 

10. Calculate total weight values of each class 

11. In class based weighted factor, compute 

 w(c)=1/frequency[c] 

12. Multiply total weight and w(c) 

13. Compare final total weight 

14. Output class label of x 

Figure 3.3 Class Based Weighted k Nearest Neighbor Algorithm 

Table 3.3 reveals the meaning of various symbols used to form better 

understanding of Class Based Weighted k Nearest Neighbor. 

Table 3.3 List of Symbols Used in the CBW k-NN Algorithm 

Symbol Meaning 

k Threshold value 

x Each data of testing dataset 

X Training dataset 
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Xj Each data of Training dataset 

C Class labels of X 

d(X, x) Manhattan distance between one testing data and training dataset 

Dx
k
 Eliminated distance values based on k value 

wi Weight value of eliminated distances 

w(c ) class based weighted factor for each class 

 

 

3.5 BINER Algorithm 

Harshit Dubey proposed BINary search based Efficient Regression (BINER) 

which is a new efficient technique for regression [8]. 

BINER follows the same overall methodology as k-NN. Firstly, it finds the k 

nearest neighbors to the given query. Then, weighted mean of response variables in k 

nearest neighbors is given as output. The weights are kept inversely proportional to 

distance from the query. The intuition of BINER is that the query Q is expected to be 

similar to tuples whose response variable values are close to that of Q. Thus it is more 

beneficial to find nearest neighbors in a locality where tuple have nearby response 

variable values rather than the whole dataset. This guarantees that even if the tuples in 

the considered locality are not the global nearest neighbors (nearest neighbors of the 

query in the complete dataset), the value of predicted response variable can be more 

appropriate. 

Like other k-NN based approaches, BINER has the following core assumption 

- tuples with similar X-values have similar response variable values. This assumption 

is almost always borne out in practice and is justified also by experiments. Instead of 

directly predicting the value of response variable, BINER narrows down the range in 

which the response variable has the maximum likelihood of occurrence and then 

interpolates to give the output. The data is hierarchically partitioned in the 

preprocessing step, and search for the partition in which the response has the 

maximum likelihood of occurrence is carried out at the runtime. It takes a single 

parameter k, the same as in k-NN and more than often outperforms the conventional 

state of art methods on a wide variety of datasets as illustrated by our experimental 

study. 
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The algorithm proceeds in two steps. First, it finds the range of tuples where 

the query Q has the maximum likelihood of occurrence. The term range (or locality), 

here, refers to consecutively indexed tuples in the dataset D and thus is characterized 

by two integers namely, start index and end index. Second,  k-NN is applied to these 

few (compared to D) tuples and weighted mean of the K nearest neighbors in these 

ranges is quoted as output. To find the range in which the query has the maximum 

likelihood of occurrence, the dataset is sorted in, say, non-decreasing manner of 

response variable values and then the function BINER described below is invoked 

with Q as query, and range (0, n) where n is the number of tuples in D. 

Figure 3.4 is BINER Algorithm to search nearest range of training dataset in 

Class Based Weighed k Nearest Neighbor method. Firstly, the training dataset is 

sorted in increasing order based on maximum value attribute and then the algorithm 

BINER is invoked with x as testing data, and range (0, n) where n is the number of 

records in Training dataset. The getDistance( ) of testing data x from a range is 

calculated as shown in Equation 3.2.  

.             )   √∑
      )

 

  
                (3.2) 

 

.  
  

 

 
[∑   

  
 

 
 ∑  )

 ]                (3.3) 

In Equation 3.2, qi is the i
th

 attribute of the testing data, µi is the mean of i
th

 

attribute values in all records in the range and i is the standard deviation of values of 

the i
th

 attribute in the whole training dataset. In Equation 3.3, standard deviation 

equation, xi is value of each attribute and N is the number of records in training 

dataset. RangeMean(si,ei) is the mean values of each range of training dataset and i is 

number of range. The distance values of three ranges are compared by using similar( ) 

function. The two distances, di and dj are similar if min(di/dj, dj/di) is greater than 0.95 

(selected by experimentations and it works well on most of the datasets). If the two 

smaller distances are similar, it returns the current range instead of selecting a sub 

range. If the two larger distances are similar or the three distances are not similar, it 

chooses the sub range of smallest distance. Then, that sub range calculate with 

BINER function again. 
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Algorithm 3: BINER Algorithm 

Input: x, k, Range (start, end) 

Output: Range (s, e) 

while end – start > 2 * k do 

r =end – start 

s1 = start  

e1 = start + r/2 

s2 = start +r/4  

e2 = start + 3r/4 

s3 = start + r/2 

e3 = end 

d1 = getDistance (RangeMean(s1, e1), x) 

d2 = getDistance (RangeMean(s2, e2), x) 

d3 = getDistance (RangeMean(s3, e3), x) 

if similar (d1 , d2, d3 ) then 

return Range(start, end) 

break 

else 

start = si 

end = ei      

end if 

end while 

return Range(start, end) 

Figure 3.4 BINER Algorithm 
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Table 3.4 presents the various symbols used in BINER algorithm to form 

better understanding. 

Table 3.4 List of Symbols Used in the BINER Algorithm 

Symbol Meaning 

Range (start, end) Whole Training dataset range 

k Threshold value 

x Each data of testing dataset 

s1, e1 First range of three sub ranges 

d1 Distance value between testing data and first range 

RangeMean(s1,e1) Mean values for first range of training dataset 

si, ei Selected sub range to calculate next sub ranges 

 

 

BINER Algorithm Complexity 

The algorithm divides the current range into 3 sub-ranges that each sub-range 

has half size of current range and considers one of them for subsequent processing. It 

can be observed that the function iterates O (log n) time. The function returns a range 

of size, say, R which is significantly smaller than n as confirmed by experimentations. 

Thus computational complexity of the algorithm becomes O (log n + R) and when the 

R << n it becomes logarithmic. 
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CHAPTER 4 

SYSTEM DESIGN AND IMPLEMENTATION  

 

This chapter presents overview design of the system, data pre-processing, 

problem formulation for k-NN and CBW k-NN, user interface design and 

experimental results of the system. Firstly, this chapter explains about system 

overview design with figure and detailed explanation. Secondly, it describes data pre-

processing procedure for imbalanced datasets and clean datasets. Thirdly, it calculates 

problem formulation for k-NN and CBW k-NN to understand two methods clearly. 

Finally, it presents user interface design of the system with step by step detailed 

explanation figures and experimental results of the system. 

 

4.1 Overview Design of the System 

In overview design of the system (Figure 4.1), the main process is to classify 

target data that are defective or non-defective and compare two methods according to 

accuracy and reliability. Firstly, user input dataset file such as PC1, CM1 and JM1 

and then the system checks dataset file and removes unnecessary data as data pre-

processing algorithm. Then, the system stores clean data to database and selects data 

to divide training set and testing set. User input training and testing ratio and then the 

system divides training dataset and testing dataset by ratio value. And user input and 

the system checks k value to eliminate k nearest instances in training dataset for each 

testing data. User can choose two methods such as k-NN and Class Based Weighted 

k-NN with BINER Algorithm for classification to calculate step by step processes. 

The system displays to user classification results (defective or non-defective) 

according to chosen method (k-NN or Class Based Weighted k-NN with BINER 

Algorithm). Then, the system also compares classification results by calculating 

accuracy, reliability, and error rate methods (MAE and RMSE) for two methods. 

Finally, the system displays comparison results of two methods as accuracy, 

precision, recall, reliability, MAE and RMSE. 
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Figure 4.1: Overview Design of the System 
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4.2 Data Pre-processing  

For k Nearest Neighbor (k-NN) and Class-Based Weighted k-NN (CBW k-

NN) methods, data preparation and cleaning procedure is used by software defect 

datasets. It checks imbalanced dataset file, removes unnecessary text in input data file 

and removes duplicated records. The detail process of data pre-processing is shown in 

Figure 4.2. 

Algorithm: Data Preparation and Cleaning Algorithm 

Input: upload dataset file 

Upload dataset file 

Read all instances in given file  

Check the dataset file for imbalanced instances 

For iteration <= length_of_file do  

 Read each record of dataset  

 Save each record to Array  

iteration++ 

End For 

Check record in Array for duplication 

Remove unnecessary text  

Remove same record in Array 

Save remaining record to database 

Figure 4.2 Data Pre-processing Algorithm 

 

4.3 Problem Formulation for k-NN 

The k-NN, k Nearest Neighbor classifier, is the classification method to 

classify testing data based on training data. First, it needs to divide training and testing 

dataset by ratio value. Second, it calculates the distance value for each testing data 

point based on all training data points. Third, it eliminates calculated distance values 

according to k value. Finally, it classifies class value for each testing data point based 

on class value of eliminated training data points. 

 

4.3.1 Dividing Dataset 

In PC1 dataset, it is used to create flight software for earth orbiting satellite 

and total instances are 932 records. In detail calculation processes, it uses totally 30 



34 
 

instances for PC1 dataset. It divides training dataset and testing dataset by ratio 2:1 as 

number of training instances is 20 and number of testing instances is 10 are shown in 

Table 4.1 and 4.2. 

Table 4.1 Training Dataset 

No. Instances Class 

1 16,4,1,3,59,283.63,0.07,13.5,21.01,3829.06,0.09,212.73,16,3,0,0,14,

14,32,27,7 

false 

2 16,3,1,3,60,300,0.11,9.33,32.14,2800,0.1,155.56,16,0,0,8,14,18,36,2

4,5 

true 

3 15,4,3,2,86,457.69,0.07,14.73,31.08,6740.46,0.15,374.47,14,6,1,8,1

8,22,50,36,7 

true 

4 16,2,1,2,73,347.11,0.14,7.37,47.11,2557.63,0.12,142.09,16,0,0,8,8,1

9,38,35,3 

false 

5 14,4,1,2,69,353.92,0.09,10.88,32.54,3848.89,0.12,213.83,12,7,2,4,1

5,20,40,29,7 

true 

 ……………………….  

18 14,5,1,2,66,317.29,0.05,20,15.86,6345.71,0.11,352.54,12,4,2,6,16,1

2,36,30,9 

false 

19 19,2,1,2,71,351.75,0.08,12.66,27.79,4451.81,0.12,247.32,18,25,1,9,

15,16,44,27,3 

true 

20 23,4,1,4,101,548.05,0.08,11.79,46.5,6459.19,0.18,358.84,23,0,0,12,

15,28,57,44,7 

true 

 

Table 4.2 Testing Dataset 

No. Instances Class 

1 17,1,1,1,60,285.29,0.1,10.21,27.93,2914.07,0.1,161.89,17,18,0,11,13,

14,38,22,1 

false 

2 16,1,1,1,54,244.27,0.11,9.17,26.65,2239.16,0.08,124.4,16,15,0,12,11,

12,34,20,1 

false 

3 23,4,1,4,101,544.62,0.08,12.22,44.56,6656.52,0.18,369.81,23,0,0,12,1

5,27,57,44,7 

true 

4 29,2,1,2,140,718.1,0.1,9.93,72.35,7127.8,0.24,395.99,28,3,1,8,8,27,73

,67,3 

true 

5 17,4,1,3,63,284.98,0.09,11.15,25.55,3178.67,0.09,176.59,17,0,0,0,10,

13,34,29,7 

false 

6 8,3,1,3,48,214.05,0.08,12,17.84,2568.63,0.07,142.7,8,0,0,0,11,11,24,2

4,5  

false 

7 16,1,1,1,54,244.27,0.12,8.08,30.24,1972.97,0.08,109.61,16,12,0,11,10

,13,33,21,1 

false 

8 28,6,1,5,86,477.69,0.07,13.73,34.79,6559.11,0.16,364.4,28,0,0,7,21,2

6,52,34,8 

true 

9 9,1,1,1,31,114.71,0.05,21.67,5.29,2485.46,0.04,138.08,9,0,0,2,10,3,18

,13,1  

false 

10 12,3,1,3,49,230.32,0.09,11.67,19.74,2687.08,0.08,149.28,12,1,0,7,14,

12,29,20,5 

false 
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4.3.2 Calculation Distances 

                      )   ∑|      |

 

   

 

 

 

Table 4.3 is all distance values for first instance of testing and the whole 

training dataset. 

Table 4.3 k-NN Distance Values Calculation 

Instance No. Distance Value 

1 1029.74 

2 180.21 

3 4317.12 

 ………………….. 

19 1735.26 

20 4166.08 

 

4.3.3 Sorting Distances 

By ordering the instances according to the distance value, it is sorted distance 

values are shown in Table 4.4. 

Table 4.4 Sorted Distance Values 

Instance No. Distance Value 

2 180.21 

13 478.23 

4 523.14 

9 586.39 

 ………………….. 

20 4166.08 

3 4317.12 

 

4.3.4 Elimination the k Nearest Instances to x 

In this PC1 dataset, total instance is 30 and train and test are divided by ratio 

2:1 as number of training instances is 20 and number of testing instances is 10. Now, 

it is result for first instance of testing and eliminates distance value by k value 6. The 

eliminated distance values are shown in Table 4.5. 

d(x
1
, x)= |16-17| + 4-1| + |1-1| + ………. + |27-22|+ |7-1| = 1029.74 
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4.3.5 Taking into Account the Result 

In training dataset, number of class true values is 7 and number of class false 

values is 13, so training‟s true and false ratio is 1 to 2. In class values of eliminated 

distances, number of class true values is 1 and number of class false values is 5 by k 

value 6 is shown in Table 4.5.  

Table 4.5 Eliminated Distances and Class Values 

Instance No. Distance Value class 

2 180.21 true 

13 478.23 false 

4 523.14 false 

9 586.39 false 

15 729.62 false 

12 842.05 false 

 

Therefore, class label of first instance of testing dataset is „True’ by using true 

and false ratio of training dataset (1:2). Then, all remaining testing instances calculate 

class value as the above calculation processes.  

 

4.4 Problem Formulation for CBW k-NN 

The CBW k-NN with BINER Algorithm, Class Based Weighted k-NN 

classifier, is the classification method to classify testing dataset based on calculated 

weight values of k Nearest Neighbor distances. First, BINER algorithm divides three 

ranges of training dataset. Second, BINER algorithm calculates mean value of each 

range and deviation value and then calculates three distance values for each range. 

Third, it calculates similar values based on three ranges of training dataset to find 

nearest training dataset range of each testing data. Finally, it calculates weight values 

and classifies class value for weighted distance values based on k Nearest Neightbor 

distances. 

4.4.1 Dividing and Sorting Training Dataset 

In detail calculation processes, it uses totally 30 instances for PC1 dataset. It 

divides training dataset and testing dataset by ratio 2:1 as number of training instances 
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is 20 and number of testing instances is 10. Firstly, it is sort training dataset by 

ascending order to divide three ranges of training dataset by BINER algorithm. The 

sorted training dataset and testing dataset are shown in Table 4.6 and 4.7. 

Table 4.6 Sorted Training Dataset 

No. Instances Class 

1 15,3,1,3,48,228.23,0.16,6.18,36.95,1409.68,0.08,78.32,15,15,0,7,10,

17,27,21,5 

false 

2 10,3,1,1,31,142.13,0.09,10.83,13.12,1539.78,0.05,85.54,10,0,0,2,15,

9,18,13,5 

false 

3 20,2,1,2,51,245.18,0.13,7.44,32.95,1824.39,0.08,101.36,20,0,0,2,11,

17,28,23,3 

false 

 ……………………….  

19 23,4,1,4,101,548.05,0.08,11.79,46.5,6459.19,0.18,358.84,23,0,0,12,1

5,28,57,44,7 

true 

20 15,4,3,2,86,457.69,0.07,14.73,31.08,6740.46,0.15,374.47,14,6,1,8,1

8,22,50,36,7 

true 

 

Table 4.7 Testing Dataset 

No. Instances Class 

1 17,1,1,1,60,285.29,0.1,10.21,27.93,2914.07,0.1,161.89,17,18,0,11,13,1

4,38,22,1 

false 

2 16,1,1,1,54,244.27,0.11,9.17,26.65,2239.16,0.08,124.4,16,15,0,12,11,1

2,34,20,1 

false 

3 23,4,1,4,101,544.62,0.08,12.22,44.56,6656.52,0.18,369.81,23,0,0,12,1

5,27,57,44,7 

true 

4 29,2,1,2,140,718.1,0.1,9.93,72.35,7127.8,0.24,395.99,28,3,1,8,8,27,73

,67,3 

true 

5 17,4,1,3,63,284.98,0.09,11.15,25.55,3178.67,0.09,176.59,17,0,0,0,10,1

3,34,29,7 

false 

6 8,3,1,3,48,214.05,0.08,12,17.84,2568.63,0.07,142.7,8,0,0,0,11,11,24,2

4,5  

false 

7 16,1,1,1,54,244.27,0.12,8.08,30.24,1972.97,0.08,109.61,16,12,0,11,10,

13,33,21,1 

false 

8 28,6,1,5,86,477.69,0.07,13.73,34.79,6559.11,0.16,364.4,28,0,0,7,21,26

,52,34,8 

true 

9 9,1,1,1,31,114.71,0.05,21.67,5.29,2485.46,0.04,138.08,9,0,0,2,10,3,18,

13,1  

false 

10 12,3,1,3,49,230.32,0.09,11.67,19.74,2687.08,0.08,149.28,12,1,0,7,14,1

2,29,20,5 

false 
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4.4.2 Calculation Sub Range by BINER Function 

Firstly, it is divided into three ranges of whole dataset such as Range 1(0, 10), 

Range 2(5, 15), and Range 3 (10, 20). 

Table 4.8 Mean and Deviation Values 

Attribute Mean 1 Mean 2 Mean 3 Deviation 

1 15.2 15.8 17.1 9.2275 

2 2.6 3.3 4.3 1.6475 

…. ……….. …. ……….. …. 

20 23.7 28.7 32.2 73.1475 

21 4.2 5.6 7.6 6.59 

 

And then it calculates sub range for each instance of testing dataset by using 

mean and deviation values are shown in Table 4.8. In distance equation,      is mean 

values of i
th

 attribute of sub range and     is standard deviation of i
th

 attribute of 

training dataset. 
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min (d1/d2,d2/d1) = min(0.9559,1.0461) = 0.9559 

min (d1/d3,d3/d1) = min(0.6977,1.4334) = 0.6977 

min (d2/d3,d3/d2) = min(0.7298,1.3702) = 0.7298 

And then it compares three similar values to choose nearest range by using 

BINER function. In three similar values, d1 and d2 are similar because similar value 

0.9559 is greater than 0.95. If the two smaller distances are similar, it chooses the 

current range instead of selecting a sub range as final range (0, 20). Therefore, 

training instances range is 1 to 20 for first instance of testing dataset. 

 

4.4.3 Calculation d(xi, x) for Result Sub Range 

Table 4.9 is distance values for first instance of testing dataset with the 

selected range of training dataset. 

Table 4.9 Calculated Distance Values  

Instance No. Distance Value 

1 1029.74 

2 180.21 

3 4317.12 

 ………………….. 

19 1735.26 

20 4166.08 

 

 

4.4.4 Ordering d(xi ,x) and Elimination the k Nearest Instances to x 

By ordering the instances according to the distance value, it is sorted distance 

values and eliminated distances by k value 6 are shown in Table 4.10. 

Table 4.10 Sorted and Eliminated Distances and Class Values 

Instance No. Distance Value class 

2 180.21 true 

13 478.23 false 

4 523.14 false 

9 586.39 false 

15 729.62 false 

12 842.05 false 
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4.4.5 Calculation Class Based Weighted k-NN d(xj, x) 

Then, it calculates each weight value of eliminated distance values in above 

Table 4.10. 

 

 

 

 

 

 

 

 

 

4.4.6 Calculation for Total Weight Value of Each Class 

It calculates total weight value of each class as w1 is „True‟ class and w2 is 

„False‟ class. 

For class True, w1 = 1 

For class False, w2 = 1.5878 

4.4.7 Calculation for Class Based Weighted Factor  

It calculates class based weighted factor of each class for unbalance dataset. 

For class True, w(cT) = 1/7 =  0.1429 

For class False, w(cF) = 1/13 = 0.0769 

4.4.8 Calculation for  Final Weight and Class Value 

It calculates final weight values of each class and classifies class result 

according to final weights. 

For class True, total_w
1 

= 1 * 0.1429  = 0.1429 

For class False, total_w
2 
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Therefore, class label of first instance of testing dataset is true by comparing 

total weight values for each class. Then, the remaining testing instances calculate 

class values by using BINER function as the above calculation processes.  

 

4.5 Implementation of the System 

The system is implemented with the PHP and MYSQL as shown in Figure 4.3. 

In this page, user can view the four options in the navigation bar. User can click the 

desired link to use the system. In the navigation, it has home, file open, process and 

about system. 

Figure 4.3 Home Page for the System 

Figure 4.4 represents about system page of the system. In this page, user can 

view about the whole system.  

 

Figure 4.4 About Page for the System 
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Figure 4.5 represents the file open page of the system. In this page, user can 

upload three software defect datasets such as PC1, CM1 and JM1. The input file must 

be .txt format only. After choosing the input file, user can click the Upload button. 

 

Figure 4.5 File Open Page for the System 

Figure 4.6 represents the selecting files of the system. In this page, user can 

select the data input file with only .txt format and then click upload button to check 

file format. By selecting the files of the software defect datasets, system checks file 

format and dataset is imbalanced dataset. 

 

Figure 4.6 Select File for the System 

Figure 4.7 represents the process page of the system and the successful 

massage for uploading dataset file. In this page, user can view sub menus of process 

menu such as show data, divide data, and choose algorithm to choose sub menus. 

 

Figure 4.7 Upload File Success for the System 
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Figure 4.8 represents the all data by uploading dataset. In this page, user can 

view all data of the uploaded dataset before dividing training and testing with table 

format and the remaining data by clicking next button and last button. User can also 

check total instances and dataset name of uploaded file. 

 

Figure 4.8 Show All Data for the System 

Figure 4.9 represents dividing data for training and testing set. In this page, 

user can divide training set and testing set for the all data of the dataset. If user clicks 

skip button, the system divides automatically 2:1 ratio for training and testing.  

 

Figure 4.9 Division Data for the System 

Figure 4.10 represents the divided data information of the system. For 

example, the whole dataset instances is 100, user divide 2:1 ratio, training dataset is 
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66 instances and testing dataset is 34 instances. Then, user clicks choose algorithm 

button to select k-NN algorithm or CBW k-NN algorithm. 

 

Figure 4.10 Divided Data for the System 

Figure 4.11 represents to select algorithm for calculation class values. If user 

choose k-NN algorithm, system calculates the step-by-step processes of k-NN 

algorithm firstly. Then, this page shows minimum k value and maximum k value 

according to training dataset and user can input k values to calculate. 

 

Figure 4.11 Choosing Algorithms for the System 
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Figure 4.12 and Figure 4.13 represent calculation distance page of the system. 

This system shows the calculated distance values for each tuple of testing dataset and 

user can click next and last button to view remaining distance values by showing 5 

testing data per page. Then user can click show equation to view distance calculation 

formula. 

 

Figure 4.12 Calculation Distance for k-NN Method of Testing 1 

 

Figure 4.13 Calculation Distance for k-NN Method of Testing 5 

Figure 4.14 and Figure 4.15 represent sorted distance page of the system. This 

system shows the sorted distance values for each tuple of testing dataset according to 

the above distance values. Sorting order of distance values is lowest to highest to 

eliminate the nearest neighbor distance values. 
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Figure 4.14 Sorting Distance for k-NN Method of Testing 1 

 

Figure 4.15 Sorting Distance for k-NN Method of Testing 5 

Figure 4.16 represents eliminate distance page of the system by using k-NN 

method. If user clicks the eliminate distance button in navigation link, user can view 

the eliminated distance values for each tuple of testing dataset according to the above 

sorted distance values.  

 

Figure 4.16 Elimination Distance for k-NN Method 
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If user clicks the final result button in navigation link, user can view the class 

values for each tuple of testing dataset according to the class values of above 

eliminated distance values. The result is shown in Figure 4.17. 

 

Figure 4.17 Final Result for k-NN Method  

If user clicks the CBW k-NN Algorithm button to calculate the class values 

with CBW k-NN Algorithm. The user calculates the class values with k-NN algorithm 

and clicks the other algorithm, CBW k-NN and vice versa. For CBW k-NN algorithm, 

user calculates the partitions of three sub ranges after sorting the training dataset and 

mean and deviation values for each sub range. The result is shown in Figure 4.18. 
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Figure 4.18 BINER Function for CBW k-NN Method 

Figure 4.19 represents distance and similar page of the system. If user clicks 

the distance and similar button, system calculates the three distance values for each 

sub range and similar values for three distance values. Then, the system calculates 

final range of each tuple in testing dataset. 
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Figure 4.19 Calculation Distance and Similar Value for CBW k-NN Method 

Figure 4.20 represents final weight and result page of the system. If user clicks 

final weight and result button, system calculates the eliminated distance values and 

final weight values and compares weight values to generate class values for each tuple 

in testing dataset. 
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Figure 4.20 Final Result for CBW k-NN Method 
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Figure 4.21 represents the performance evaluation page of the system for k 

value 16. This is the expected and actual class values result and performance 

evaluation results based on two method, k-NN and CBW k-NN algorithm. Then, user 

can click choose algorithm button to select algorithm and input k values for next 

calculation of these dataset. 

 

Figure 4.21 Performance Evaluation Result for Both Methods 

Figure 4.22 represents the select algorithm page of the system. User can input 

another k values and select algorithm to calculate another calculation. 

 

Figure 4.22 Choosing another k Value for Next Selection 

If user clicks button in navigation link one-by-one, user can view the final 

class values for CBW k-NN algorithm for another k value. The result is shown in 

Figure 4.23. 
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Figure 4.23 Final Result for CBW k-NN Method (Next Selection) 

If user clicks the button in navigation link one-by-one, user can view the final 

class values for k-NN algorithm for another k value. The result is shown in Figure 

4.24. 
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Figure 4.24 Final Result for k-NN Method (Next Selection) 

Figure 4.25 represents performance evaluation results for both methods and 

then compares the evaluation results by selecting several calculated k values. If user 

wants to upload new dataset file, user clicks home button to go to the home page of 

the system and file open button to upload another dataset files. 

 

Figure 4.25 Performance Evaluation Result for Two k Values 
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4.6 Experimental Results 

For experimental purpose, to demonstrate the comparison of two methods by 

using various thresholds (k) values. The experimental results are shown in Figure 4.21 

and Figure 4.25. We have tested the k values 16 and 27. It measures the system 

performance by using Accuracy, F-measure, Precision, Recall, MAE and RMSE to 

compare output results with other methodologies on the same datasets.  

Accuracy is also known as correct classification rate. Accuracy can be defined 

as the total number of correctly identified defects (true positive and true negative) 

divided by the total number of defects or non-defects [1], [9]. It is usually expressed 

as a percentage. 

 

TP - a query instance is defective and classify as defective 

FN - a query instance is defective and classify as non-defective 

TN - a query instance is non-defective and classify as non-defective 

FP - a query instance is non-defective and classify as defective 

%100*
)(

FNFPTNTP

TNTP
Accuracy




                   (4.1) 

 

Precision is also known as correctness. It is defined as the ratio of the number 

of modules correctly predicted as defective to the total number of modules predicted 

as defective. It is usually expressed as a percentage. 

%100*Pr
FPTP

TP
ecision


                (4.2) 

 

Recall is also known as defect detection rate. It is defined as the ratio of the 

number of modules correctly predicted as defective to the total number of modules 

that are actually defective. It is usually expressed as a percentage. 

%100*Re
FNTP

TP
call


                (4.3) 

 

The higher the Precision, the less effort wasted in testing and inspection. The 

higher the Recall, the fewer defective modules go undetected. F-measure combines 

precision and recall in a single efficiency measure by taking their harmonic mean. It is 

usually expressed as a percentage. 
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%100*
RePr

Re*Pr*2

callecision

callecision
measureF


              (4.4) 

 

MAE and RMSE can be used together to diagnose the variation in the errors in 

a set of test samples. MAE is the average over the verification sample of the absolute 

values of the differences between forecast (predict) and corresponding observed 

(actual) value. RMSE is calculated square of the difference between forecast and 

corresponding value and then averaged over the sample. Therefore, RMSE gives a 

relatively high weight to large errors more than MAE. 

m
MAE

m

i

i
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
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

                  (4.5) 

 

m
RMSE

m

i

i




 1

2



               (4.6) 

Where i =1, 2, ….. , m number of test samples   

 xi = value of i
th

 test sample,      = mean value of  xi  

 

Calculation of Performance Evaluation 

The result of performance evaluation is different k values (16 and 27) as 

shown in Figure 4.21 and Figure 4.25. For k value (16), result of k-NN method is 

more accurate than result of CBW k-NN with BINER Algorithm. But result of k-NN 

method is the same as result of CBW k-NN with BINER Algorithm in k value (27). 

This is step by step detail calculation of all performance methods for k-NN and CBW 

k-NN method. 

 

For k = 16, k-NN Method 
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%24.95%100*
RePr
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
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measureF  

 

For k=16 in k-NN method,   
m

MAE

m

i

i




 1



 

Testing No. (i)   i      

 1   1    0.0294 

 2   1    0.0294 

3   1    0.0294 

…………….. 

18   0    0.9706 

…………….. 

33   1    0.0294 

34   1    0.0294 

9706.0
......21 




m
x m

 

06.0
......21 




m
xMAE m

 

The RMSE calculate as the above MAE calculation way according to RMSE formula.  

 

For k=16 in k-NN method,    
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For k = 16, CBW k-NN with BINER Algorithm 

TP = 10 FN = 1  TN = 22 FP = 1 
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For k=16 in CBW k-NN with BINER Algorithm,   
m
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Testing No. (i)   i      

 1   1    0.0588 

 2   1    0.0588 
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The RMSE calculate as the above MAE calculation way according to RMSE formula.  

 

For k=16 in CBW k-NN with BINER Algorithm,    
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For k = 27, k-NN Method and CBW k-NN with BINER Algorithm 

TP = 10 FN = 1  TN = 23 FP = 0 
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For k=27 in k-NN method,   
m
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Testing No. (i)   i      

 1   1    0.0294 

 2   1    0.0294 
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

m
xMAE m

 

The RMSE calculate as the above MAE calculation way according to RMSE formula.  

 

For k=27 in k-NN method,    

17.0
......21 




m
xRMSE m

 

 

For other testing result, it uses three datasets that are PC1, CM1 and JM1. It 

measures the system performance by using various kind of k value. For PC1 dataset, 

different threshold k values are 25, 32 and 50. For CM1 dataset, different threshold k 

values are 16, 25 and 38. For JM1dataset, different threshold k values are 27, 42 and 

65. The performance range for evaluation methods is 0% to 100%. For three datasets, 

the threshold k value range is more increase, the accuracy and reliability is higher 

except MAE and RMSE. For demonstration purpose, the evaluation results have 

shown in Figure 4.26, 4.27 and 4.28.  

 i  i
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Figure 4.26 Performance Evaluation Result for PC1 

 

Figure 4.27 Performance Evaluation Result for CM1 

 

Figure 4.28 Performance Evaluation Result for JM1 
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CHAPTER 5 

CONCLUSION AND FURTHER EXTENSION 

 

The aim of the system is to apply the algorithm of Nearest Neighbors 

especially k Nearest Neighbor and Class Based Weighted k-NN in software defect 

detection. To analyze the performance of these algorithms, it is needed to apply some 

software defect datasets for this detection. After the system has been developed, the 

more accurate and effective algorithm has appeared according to the evaluation of 

their performance. 

In this implemented system, there are three software defect datasets such as 

PC1, CM1 and JM1 from NASA MDP datasets. Classification is the most researched 

topic of machine learning that is applied in the system for the purpose of software 

defect detection. For selecting an appropriate classifier to test software defective on 

imbalance data set, this system describes the classification algorithm based on k-

nearest neighbors. This system also make available classification of software 

defective and non-defective using weighted k-nearest neighbor algorithm with class-

based weighted factor which is focused on the range of nearest data set using BINER 

function. One of the algorithms is used to measure the performance result such as 

accuracy of the test result. It calculates the accuracy, reliability, error-rate (MAE, 

RMSE) to compare two classification methods. As the accuracy results, the k Nearest 

Neighbor (k-NN) gives the accurate classification when compared to Class Based 

Weighted k Nearest Neighbor (CBW k-NN) algorithm. During training of the system, 

the more the number of threshold value (k) is increased, the more accurate two 

approaches can be. This system has shown that data mining techniques can be used 

efficiently to model and classify the class value such as defect or non-defect. The 

outcome of this system can be used as an assistant tool to provide comparison result 

of classification methods on imbalanced software defect datasets. The higher 

threshold value (k) is increased, the more accurate in Class Based Weighted k Nearest 

Neighbor with BINER algorithm.  

 

5.1 Advantages of the System 

This system demonstrates effective use of classification methods on software 

defect dataset. It describes the nature of the software defect datasets and applies k-NN 
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method, CBW k-NN method, and BINER algorithm. The user can test k-NN and 

CBW k-NN with BINER algorithm for desired software defect dataset. This system 

calculates performance evaluation results based on multiple threshold (k) values of k-

NN and CBW k-NN and compares different performance results according to 

multiple threshold values. This system supports software engineering groups and 

software industries to calculate defect rate for existing program.  

 

5.2 Limitation of the System 

The implemented system is processed in the only two algorithms such as k-

NN and CBW k-NN. It has used only software defect datasets from NASA MDP 

datasets that are detected C program and had same attributes as PC1, CM1 and JM1. 

The accuracy result of these algorithms can be varied any other software defect 

datasets by these may be slightly changed. This system classifies existing testing data 

only, not classifies new record data.  

 

5.3 Further Extension 

The implemented system can test two classification methods such as k-NN 

and CBW k-NN methods. To improve the classification accuracy of the models, 

further studies should be conducted using different classification algorithms. And this 

system can be extended to test any program as defect or non-defect in that program. 

And, this system can also be extended to generate results for comparison of 

classification methods on any other datasets. Furthermore, this system should be 

extended for the classification of the software defect datasets which includes 

unknown class values for defect/ non-defect by using other classification methods. 
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