

THE COMPARISON OF CLASSIFICATION

METHODS ON SOFTWARE DEFECT DATA SETS

HNIN YI SAN

M.C.Sc. DECEMBER 2018

THE COMPARISON OF CLASSIFICATION

METHODS ON SOFTWARE DEFECT DATA SETS

By

Hnin Yi San

B.C.Sc. (Honours)

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Master of Computer Science

(M.C.Sc.)

University of Computer Studies, Yangon

December 2018

i

ACKNOWLEDGEMENTS

 I wish to express my sincere appreciation to Prof. Dr. Mie Mie Thet Thwin,

the Rector of the University of Computer Studies, Yangon, for her kind permission to

develop this thesis.

My sincere thanks and regards go to Dr. Thi Thi Soe Nyunt, Professor, Head

of Faculty of Computer Science, University of Computer Studies, Yangon, for her

kind management throughout the completion of this thesis.

I would like to express my heartfelt thanks to my supervisor, Dr. Khine

Khine Oo, Professor, Faculty of Information Science, University of Computer

Studies, Yangon, for her encouragement, patient and invaluable supervision in

compiling the materials for my thesis.

 I also deeply thank Daw Aye Aye Khine, Associate Professor and Head of the

Department, the Department of Language, for editing my thesis from the language

point of view.

Finally, I especially thank my parents, all of my friends and their suggestions,

support and generous help rendered to me during the development of thesis. Their

love and concerned encouragement has strengthened me through the studies.

Moreover, I would like to thank all the staffs, teachers from the University of

Computer Studies, Yangon for their support.

ii

ABSTRACT

Nowadays, it is difficult for us to imagine a life without devices that is

controlled by
software

. Software quality has become the main concern during the

software development. Software quality is a field of study and practice that describes

the desirable attributes of software products. Software quality prediction is a process

of utilizing software metrics such as code-level measurements and defect data to build

classification models that are able to estimate the quality of program modules. The

major problem that affects the quality of datasets is high dimensionality and class

imbalanced. A more useful and efficient mechanism is k Nearest Neighbor method,

where Nearest Neighbor classify classes of testing dataset based on k nearest neighbor

of training dataset. Another mechanism is Class Based Weighted k Nearest Neighbor

with BINER Algorithm for classifying classes of testing dataset. By using BINER

Algorithm, it narrows down the training dataset range instead of whole training

dataset that has the maximum likelihood of occurrence and then CBW k-NN classifies

classes of testing dataset based on this range. This thesis is the comparison of two

classification methods by classifying classes of testing dataset focuses on NASA

MDP (PC1, CM1 and JM1) datasets. The comparison results of two methods based on

Accuracy, Reliability, Mean Absolute Error and Root Mean Squared Error.

iii

TABLE OF CONTENTS

 Pages

ACKNOWLEDGEMENTS i

ABSTRACT ii

TABLE OF CONTENTS iii

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF EQUATIONS viii

CHAPTER 1 INTRODUCTION

 1.1 Objectives of the Thesis 2

 1.2 Motivation of the Thesis 3

 1.3 Organization of the Thesis 3

CHAPTER 2 BACKGROUND THEORY

 2.1 Data Mining 4

 2.1.1 Data Mining Functionalities 5

 2.1.2 Application Areas of Data Mining 7

 2.2 Data Preparation and Cleaning 8

 2.3 Classification Methods 9

 2.3.1 Decision Tree (C4.5) 10

 2.3.2 Naive Bayesian Classification 11

 2.3.3 Neural Network (NN) 11

 2.3.4 Support Vector Machine (SVM) 12

 2.3.5 Genetic Algorithms 13

 2.4 Classification Rules and Challenges 13

 2.5 Evaluation Methods 14

CHAPTER 3 METHODS OF THE PROPOSED SYSTEM

 3.1 Software Defect 16

 3.2 Software Defect Dataset 17

 3.3 k Nearest Neighbor Classifier 22

iv

 3.4 Class Based Weighted k-NN 24

 3.5 BINER Algorithm 27

CHAPTER 4 SYSTEM DESIGN AND IMPLEMENTATION

 4.1 Overview Design of the System 31

 4.2 Data Pre-processing 33

 4.3 Problem Formulation for k-NN 33

 4.3.1 Dividing Dataset 33

 4.3.2 Calculation Distances 35

 4.3.3 Sorting Distances 35

 4.3.4 Elimination the k Nearest Instances to x 35

 4.3.5 Taking into Account the Result 36

 4.4 Problem Formulation for CBW k-NN 36

 4.4.1 Dividing and Sorting Training Dataset 36

 4.4.2 Calculation Sub Range by BINER Function 38

 4.4.3 Calculation d(xi, x) for Result Sub Range 39

 4.4.4 Ordering d(xi ,x) and Elimination the k Nearest 39

 Instances to x

 4.4.5 Calculation Class Based Weighted k-NN d(xj, x) 40

 4.4.6 Calculation for Total Weight Value of Each Class 40

 4.4.7 Calculation for Class Based Weighted Factor 40

 4.4.8 Calculation for Final Weight and Class Value 40

 4.5 Implementation of the System 41

 4.6 Experimental Results 54

CHAPTER 5 CONCLUSION AND FURTHER EXTENSION

 5.1 Advantages of the System 60

 5.2 Limitation of the System 61

 5.3 Further Extension 61

REFERENCES 62

AUTHOR’S PUBLICATIONS 65

v

LIST OF FIGURES

 Pages

Figure 3.1 Two Classes‟ Imbalance Solve 21

Figure 3.2 k Nearest Neighbor Algorithm 23

Figure 3.3 Class Based Weighted k Nearest Neighbor Algorithm 26

Figure 3.4 BINER Algorithm 29

Figure 4.1 Overview Design of the System 32

Figure 4.2 Data Pre-processing Algorithm 33

Figure 4.3 Home Page for the System 41

Figure 4.4 About Page for the System 41

Figure 4.5 File Open Page for the System 42

Figure 4.6 Select File for the System 42

Figure 4.7 Upload File Success for the System 42

Figure 4.8 Show All Data for the System 43

Figure 4.9 Division Data for the System 43

Figure 4.10 Divided Data for the System 44

Figure 4.11 Choosing Algorithms for the System 44

Figure 4.12 Calculation Distance for k-NN Method of Testing 1 45

Figure 4.13 Calculation Distance for k-NN Method of Testing 5 45

Figure 4.14 Sorting Distance for k-NN Method of Testing 1 46

Figure 4.15 Sorting Distance for k-NN Method of Testing 5 46

Figure 4.16 Elimination Distance for k-NN Method 46

Figure 4.17 Final Result for k-NN Method 47

Figure 4.18 BINER Function for CBW k-NN Method 48

Figure 4.19 Calculation Distance and Similar Value for CBW k-NN Method 49

vi

Figure 4.20 Final Result for CBW k-NN Method 50

Figure 4.21 Performance Evaluation Result for Both Methods 51

Figure 4.22 Choosing another k Value for Next Selection 51

Figure 4.23 Final Result for CBW k-NN Method 52

Figure 4.24 Final Result for k-NN Method 53

Figure 4.25 Performance Evaluation Result for Two k Values 53

Figure 4.26 Performance Evaluation Result for PC1 59

Figure 4.27 Performance Evaluation Result for CM1 59

Figure 4.28 Performance Evaluation Result for JM1 59

vii

LIST OF TABLES

 Pages

Table 3.1 List of Product Module Metrics 18

Table 3.2 List of Symbols Used in the k Nearest Neighbor Algorithm 24

Table 3.3 List of Symbols Used in the CBW k-NN Algorithm 26

Table 3.4 List of Symbols Used in the BINER Algorithm 30

Table 4.1 Training Dataset 34

Table 4.2 Testing Dataset 34

Table 4.3 k-NN Distance Values Calculation 35

Table 4.4 Sorted Distance Values 35

Table 4.5 Eliminated Distances and Class Values 36

Table 4.6 Sorted Training Dataset 37

Table 4.7 Testing Dataset 37

Table 4.8 Mean and Deviation Values 38

Table 4.9 Calculated Distance Values 39

Table 4.10 Sorted and Eliminated Distances and Class Value 39

viii

LIST OF EQUATIONS

 Pages

Equation 2.1 Calculation of Absolute Error 14

Equation 2.2 Calculation of Squared error 14

Equation 2.3 Calculation of Mean Absolute Error 15

Equation 2.4 Calculation of Mean Squared Error 15

Equation 2.5 Calculation of Root Mean Squared Error 15

Equation 3.1 Calculation of Manhattan Distance 22

Equation 3.2 Calculation of getDistance() function 28

Equation 3.3 Calculation of standard deviation 28

Equation 4.1 Calculation of Accuracy 54

Equation 4.2 Calculation of Precision 54

Equation 4.3 Calculation of Recall 54

Equation 4.4 Calculation of F-Measure 55

Equation 4.5 Calculation of MAE 55

Equation 4.6 Calculation of RMSE 55

1

CHAPTER 1

INTRODUCTION

Software industry has been trying to find out ways for developing software

product within time and according to the needs of customers. Software quality is

software functional and structural quality in software engineering. Functional quality

reveals functional requirements whereas structural quality highlights non-functional

requirements. Software quality and reliability have become the main concern during

the software development. The desirable attributes of software products are software

quality that is a field of study and practice. The performance of the software products

must be perfect without any defects. A subset of software metrics, software quality

metrics depend on the quality aspects of product, process, and project.

Software life cycle is a human activity, so it is difficult to create software

without defects but is possible to prevent the injection of defects. In software life

cycle, software requirements, software design, software coding and software testing

are the important aspects for detecting software defects [14]. During the stages of

software requirements, software design and software testing, software defects can

evoke and affect in software source codes. Therefore, prediction software defect is the

most popular method for software industry to detect software defect by using software

source codes. The abstract expressions of software source codes complexity are size

and complexity metrics which are line of code, design and cyclomatic complexity and

so on.

A large portion of the project budget is the finding and fixing the defects after

delivery. Therefore, detection software defect before delivery can wake up the success

of project quality and cost. A software defect is an incorrect or unexpected result and

unintentional outcomes by using software and is also called an error, fault, flaw, or

failure in a computer system or program [3]. The software defect is the main software

quality characteristic. During software development and maintenance, the most

expensive activity is the finding and correcting software defects. Therefore, the key

element for a creative and successful software project is the development high quality

software within the assigned time and budget. A panel at IEEE Metrics 20022 also

concluded that manual software reviews can find only 60 percent of defects. In the

2

software engineering field, software defect prediction has been an important research

topic, especially to solve the inefficiency and ineffectiveness of existing

manufacturing approach of software testing and reviews.

The reduction number of faults in the delivered code is the main goal of

software developers to create the better software. Therefore, they need to fix the faults

as early as possible, in order to ensure the reliability of software systems. Moreover,

the earlier an error can identify, the better and more cost effectively can be fixed.

Therefore, the need and high demand in software industry is to predict software

defects across the stages of software development process. The machine learning is

becoming an important field of computer science. The machine learning is associated

the number of core algorithms for pattern recognition and data mining. The

classification, clustering and prediction are the useful machine learning algorithms.

Classification algorithms have been successfully used in several areas and different

applications have their own related issues. The amount of data in our lives appears the

increasing more and more and there is no end in sight.

1.1 Objectives of the Thesis

The primary objectives of this thesis are to find out the way that can identify

the software defects and compare classification methods on imbalanced software

defect datasets. The other objectives are

• To provide the effective method for classification software defect datasets

• To study basic concepts of classification methods with the purpose of to be

applied as software defect classification techniques

• To identify defects and non-defects using k Nearest Neighbor and Class Based

Weighted k Nearest Neighbor with BINER Algorithm

• To classify class label on imbalanced software defect datasets using both

methods

• To provide comparison of two methods of their abilities of software defect

classification using Accuracy, Reliability, Mean Absolute Error (MAE) and

Root Mean Squared Error (RMSE)

3

1.2 Motivation of the Thesis

In the data mining field, a series of challenges have recently developed and

rapidly triggered from academic to the resulting needs of real-life applications and

applied science. This thesis is concerned with classification tasks and related issues.

They are not complete and not relevant records and redundant pieces of the

information, imbalanced class distribution and error costs of software [18].

Today, usage of software is increasing very rapidly so it becomes very

difficult to create software without defect. It is necessary for developers to classify

features of software defect by using module metrics of the better software. Therefore,

developers need to know characteristics of defect for developing software. In the field

of machine learning, classification has been a valuable and energetic of research. In

classification, the goal is to classify class value for testing data and to separate a given

lots of data items into groups. Classification can develop the performance of retrieval

on features of software.

1.3 Organization of the Thesis

This thesis is mainly composed of five chapters. Chapter 1 introduces the

basic information about the thesis and motivation including the scope and objectives.

Chapter 2 describes the literature of the classification methods that pointed out some

systems offering important knowledge and background history for the understanding

of the following chapters. Chapter 3 presents the theoretical background of the system

and about software defect datasets. Chapter 4 describes overview design and

implementation of the system that implemented by using PHP Hypertext Processor

Language (PHP) and includes the experimental result of the thesis. Chapter 5

discusses conclusion and the directions for further development and deals with

problems for future research.

4

CHAPTER 2

BACKGROUND THEORY

This chapter presents data mining with functionalities and application area,

data preparation and cleaning, classification methods, classification rules and

challenges and evaluation methods. Firstly, this chapter describes the meaning of data

mining that is important to analyze a large amount of data. Secondly, it explains how

to use data mining methods in many application areas. Thirdly, it describes about a

several of classification methods and classification rules and challenges. Finally, it

presents evaluation methods in order to compare and evaluate between classification

methods with calculation equations.

2.1 Data Mining

Data mining is about solving problems by analyzing data already presented in

databases. In highly competitive business growth, the customer-centered, service-

oriented economy, data is the raw material is need. It is also defined as the process of

discovering patterns in data that must be automatic or semiautomatic. The patterns

discovered must be meaningful that lead to an economic advantage. The nontrivial

predictions on new data are used to make useful patterns. The data patterns are used

by economists, statisticians, forecasters, and communication engineers to seek

automatically, identified, validated, and used for prediction.

Data mining refers to extracting or “mining” knowledge from large amounts

of data. The synonym for another popularly used term for data mining is, Knowledge

Discovery from Data, or KDD. Knowledge discovery consists of an iterative sequence

of the following steps:

1. Data cleaning- it is use to remove inconsistent and noise data.

2. Data integration- it is use to combine multiple data sources.

3. Data selection- it is use to retrieve data relevant from the database to the

analysis task.

4. Data transformation- it is use to transform or consolidate into forms by

performing summary or aggregation actions.

5. Data mining- it is use to extract data patterns by applying intelligent

methods.

5

6. Pattern evaluation- it is use to identify truly interesting patterns representing

knowledge based on some incorrect measures.

7. Knowledge presentation- it is use to present the mined knowledge to the

user based on visualization and knowledge representation techniques.

2.1.1 Data Mining Functionalities

 The functions of data mining are used to identify the kind of patterns to be

found in data mining tasks. In general, data mining tasks can be classified into two

categories such as descriptive and predictive. Descriptive mining tasks characterize

the general properties of the data in the database. Predictive mining tasks perform

inference on the current data in order to make predictions [23].

Descriptive Function

The descriptive function deals with the general properties of data in the

database. The list of descriptive functions −

(i) Class/Concept Description

(ii) Mining of Frequent Patterns

(iii) Mining of Associations

(iv) Mining of Correlations

(v) Mining of Clusters

 (i) Class/Concept Description

Class/Concept refers to the data associated with the classes or concepts. For

example, in a company, the classes of items for sales include computer and printers,

and concepts of customers include big spenders and budget spenders. These

descriptions can be derived by the following two ways −

 Data Characterization − It refers to summarizing data of class under study

that is called as target class.

 Data Discrimination − It refers to the classification of a class with some

predefined group or class.

6

 (ii) Mining of Frequent Patterns

Frequent patterns are those patterns that occur frequently in transactional data.

The list of kind of frequent patterns are-

 Frequent Item Set − It refers to a set of items that frequently appear together,

e.g. milk and bread.

 Frequent Subsequence − A sequence of patterns that occur frequently such

as purchasing a camera is followed by memory card.

 Frequent Sub Structure − Substructure refers to different structural forms,

such as graphs, trees, or lattices, which may be combined with item-sets or

subsequences.

 (iii) Mining of Association

Associations are used in retail sales to identify data patterns that are

frequently purchased together. This process refers to the process of determining

association rules and uncovering the relationship among data.

(iv) Mining of Correlations

Correlation is a kind of additional analysis that performs to uncover

interesting statistical correlations between associated-attribute-value pairs or between

two item sets to analyze positive, negative pair or no effect on each other.

(v) Mining of Clusters

Cluster refers to a group of similar kind of objects. Cluster analysis analyses

group of objects that are very similar to each other in same cluster but are highly

different from the objects in other clusters.

Classification and Prediction

Classification is the process of finding a model that describes the data classes

or concepts. The purpose of classification is to use this model to predict the class of

objects whose class label is unknown. This derived model is based on the analysis of

sets of training data i.e. the data object whose class label is well known. The derived

model can be presented as Classification (IF-THEN) Rules, Decision Trees,

Mathematical Formulae and Neural Networks.

7

Prediction is used to predict missing data or unavailable numerical data values

rather than class labels. Regression Analysis is generally used for prediction.

Prediction can also be used for identification of distribution trends based on available

data. Outlier Analysis refers to the data objects that do not comply with the general

behavior or model of the data available. Evolution Analysis refers to the description

and model regularities or trends for objects whose behavior changes over time.

2.1.2 Application Areas of Data Mining

 Data mining is a process that analyzes a large amount of data to find new and

hidden information that improves business efficiency. Many industries have been

implementing data mining to their critical business processes to gain competitive

advantages and help business grows [21].

In Sales/Marketing, data mining supports businesses to understand the hidden

patterns inside historical purchasing transaction data [22]. It can help planning and

launching new marketing campaigns in a prompt and cost-effective way. Retail

companies identify customer‟s behavior buying patterns by using data mining

techniques. Data mining is used for market basket analysis to provide information on

what product combinations were purchased together and in what sequence. In

addition, it encourages customers to purchase related products that they may have

been missed or overlooked.

In Banking/ Finance, several data mining techniques as distributed data

mining have been researched, modeled and developed to help credit card fraud

detection [22]. To help the bank process retaining credit card customers, data mining

is applied. By analyzing the past bank information data, data mining can help banks

to predict customers that likely to change their credit card affiliation. So, they can

plan and launch different special offers to recall those customers. Data mining can

identify credit card spending by customer groups.

In Education, there is a new emerging field, called Educational Data Mining

(EDM) concerns with developing methods that discover knowledge from educational

environments data originating. The goals of EDM are identified as predicting

students‟ future learning behavior, studying the effects of educational support, and

advancing scientific knowledge about learning methods. Data mining can use by an

8

institution to take accurate decisions and can also predict the results of the student

focus on what to teach and how to teach. Learning pattern of the students can be

captured and used to develop techniques to teach them by using data mining.

In Research Analysis, history data shows that researchers have witnessed

revolutionary changes in research. Data mining is helpful in data cleaning, data pre-

processing and integration of databases. By using data mining, researchers can find

any similar data from the database that might bring any change in the research. Data

visualization and visual data mining provide them with a clear view of the data.

In Lie Detection, this filed includes text mining also. Apprehending a criminal

is easy whereas bringing out the truth from him is difficult. Law enforcement can use

mining techniques to investigate crimes, monitor communication of suspected

terrorists. This process seeks to find meaningful patterns in data which is usually

unstructured text. The data samples collected from previous investigations are

compared and a model for lie detection is created.

In Telecommunication, today the telecommunication industry is one of the

most emerging industries providing various services such as fax, pager, cellular

phone, internet messenger, images, e-mail, web data transmission, etc. Due to the

development of new computer and communication technologies, the

telecommunication industry is rapidly expanding. This is the reason why data mining

becomes very important to help and understand the business. Data mining in

telecommunication industry helps in identifying the telecommunication patterns,

catch fraudulent activities, make better use of resource, and improve quality of

service. The list of examples for which data mining improves telecommunication

services are multidimensional analysis of telecommunication data, fraudulent pattern

analysis, identification of unusual patterns, multidimensional association and

sequential patterns analysis, mobile telecommunication services, and use of

visualization tools in telecommunication data analysis.

2.2 Data Preparation and Cleaning

Data pre-processing is the important step in the data mining process. The

phrase “Garbage In, Garbage Out” is particularly applicable to data mining and

machine learning. Data collecting methods are often loosely controlled, resulting in

9

out-of-range values such as Income value is (-100), impossible data combinations

such as Gender is Male and Pregnant is Yes, missing values, etc. Analyzing data has

been carefully separated for such problems to prevent producing misleading results.

Thus, the demonstration and quality of data is first and foremost before processing an

analysis. The irrelevant and redundant information present noisy and unreliable data

for knowledge discovery during the training phase is more difficult. Data preparation

and filtering steps can be sizeable amount of processing time. The product of data pre-

processing is the final training dataset. Data pre-processing is one of the most critical

steps in a data mining process to prepare and transform the initial dataset [25]. It is an

important issue for both data warehousing and data mining, as real-world data tends to

be incomplete, noisy, and inconsistent. It includes data cleaning, data integration, data

transformation, and data reduction.

Data cleaning can be used to fill missing values, smooth noisy data, identify

outliers, and correct data inconsistencies. Data integration combines data from

multiples sources to form a coherent data store. Data transformation conform the data

into appropriate forms for mining methods. Data reduction techniques can be used to

obtain a reduced representation of the data, while minimizing the loss of information

content. They are data cube aggregation, dimension reduction, data compression,

numerosity reduction, and discretization. Noisy data is a random error or variance in a

measured variable. The data smoothing techniques are binning methods, clustering,

combined computer and human inspection, regression. Binning methods smooth a

sorted data value by consulting the neighborhood, or values around it. Data can be

smoothed by fitting the data to a function, such as with regression. Using regression to

find a mathematical equation to fit the data helps smooth out the noise.

2.3 Classification Methods

Classification is the process of finding a model (or function) that describes

and distinguishes data classes or concepts, for the purpose of being able to use the

model to predict the class of objects whose class label is unknown. The derived

model is based on the analysis of a set of training data (i.e., data objects whose class

label is known). Classification predicts categorical (discrete, unordered) labels.

The classification learning is sometimes called supervised learning because

the method operates under supervision by being provided with the actual outcome for

10

each of the training examples. The success of classification learning can be decided

by trying out the concept description that is learned on an independent set of test data.

The success rate on test data gives an objective measure of how well the concept has

been learned. In many practical data mining applications, success is measured more

subjectively in terms of how acceptable the learned description. Many classification

and prediction methods have been proposed by researchers in machine learning,

pattern recognition, and statistics.

2.3.1 Decision Tree (C4.5)

Decision Tree is the process of learning a tree from pre-classified training

examples [16]. A decision tree is like a flowchart tree structure, where each internal

node called non-leaf node denotes a test on an attribute. Each branch represents an

outcome of the test, and each leaf node or terminal node holds a class label. The

topmost node in a tree is the root node. Decision tree algorithms transform from the

raw data to rule based mechanism.

C4.5 is an improved version of ID3 (Iterative Dichotomizer 3 algorithm), an

inductive learning method developed by John Ross Quinla at 1989. C4.5 can accept

input values as both symbolic and numeric, and generates a classification tree for

output. It employs a splitting procedure which recursively partitions a set of examples

into disjointed subsets. C4.5 accepts both continuous and discrete features, handles

incomplete data points, solves over-fitting problem by bottom-up technique and can

be applied different weights that comprise the training data. For example, in the

training phase, the gain ratio of each attribute is adjusted by a factor which depends

on the number of complete records (in that attribute) in the training set. Input/output

(activation) functions are continuous and differentiable. The output is a classification

tree where the leaves contain class assignments determined by majority rule.

A decision tree is a special case of a state-space graph. It is a tree in which

each internal node corresponds to a decision that has a sub tree for each possible

outcome of the decision. Decision trees can be used to model problems in which a

series of decisions leads to a solution. Its programs construct a decision tree from a set

of training cases and are used to improve the prediction and classification accuracy of

the algorithm. It is widely applied in various areas since it is robust to data scales or

distributions by comparing to other data mining techniques,

11

2.3.2 Naive Bayesian Classification

Naive is a statistical classifier that can predict class membership probabilities

such as the probability a given example belongs to a particular class [10]. Naive

Bayes classifier is a probabilistic classifier that produces probability estimates based

on the Bayes theorem rather than predictions. For each class value, they estimate the

probability that a given instance belongs to that class by using a small amount of

training data to estimate. It assumes that the effect of an attribute value on a given

class is independent of the values of the other attributes. Bayesian classifiers have also

exhibited high accuracy and speed when applied to large database.

 The Naive Bayes classifier technique is based on Bayes‟ theorem and is

particularly appropriate when the dimensionality of the feature space is high. For

example, a vector x=(x1,x2,….,xn) of n features is associated with each observation

and Naive Bayes learns the class conditional probabilities p(xi|yi) of each categorical

variable i, i=1,2,….,n, given the class label yi. A new observation with feature vector

x is classified by using the Bayes‟ rule to compute the posterior probability of each

class yi given the vector of attributes. The basic assumption of Naive Bayes‟ classifier

is that the variables are conditionally independent given the class label.

2.3.3 Neural Network (NN)

A neural network (NN) can be defined as reasoning model based on the

human brain [11]. A NN consists of a number of interconnected processors called

neurons. Firstly, a neuron receives input signals from its input links, computes an

output signal and transmits this signal through its output links. An input signal can be

raw data or the outputs from other neurons. The output signal can be either a final

solution to the problem or an input to other neurons. A NN is set through repeated

adjustments of these weights. A neural network model, the branch of artificial

intelligence is generally referred to as Artificial Neural Networks (ANNs). ANN

constructs the system to execute task, instead of programming computational system

to do definite tasks.

Neural Networks are capable of predicting new observations from existing

observations. The neurons within the network work together, in parallel, to produce

an output function. Since the computation is performed by the collective neurons, a

neural network can still produce the output function even if some of the individual

12

neurons are malfunctioning (the network is robust and fault tolerant). Neural

Networks (NN) are important data mining tool used for classification and clustering

[21]. It is an attempt to build machine that can mimic brain activities and be able to

learn. Basic NN consists of three layers such as input, output and hidden layer. Each

layer can have number of nodes and nodes are connected from input layer to hidden

layer and hidden layer‟s nodes are connected to the nodes from output layer. Those

connections represent weights between nodes. Back Propagation Neural Network

(BPNN), one of the most popular NN algorithms need a very large number of training

samples and need a lot of time to gradually approach good values of the weights.

2.3.4 Support Vector Machine (SVM)

The concept of decision planes to define decision boundaries is Support

Vector Machine (SVM) that supports both regression and classification. A decision

plane is the one that separates between a set of objects having different class

membership [17]. SVM performs classification task by constructing hyper plane in a

multidimensional space that separates cases of different class labels. It uses a

nonlinear mapping to transform the original training data into a higher dimension.

Within this new dimension, it searches for the linear optimal separating hyper plane.

SVM was first proposed by Vapnik at 1995 as learning systems for binary

classification [11]. It is trained using an algorithm from optimization theory and

statistical learning theory to derive a separating hyper plane in a high dimensional

feature space. SVMs are based on a nonlinear mapping of the problem data into a

higher dimension feature space. However, the learning algorithm may be inefficient

and SVMs may be difficult to implement as a large number of 17 parameters is

required. In addition, small training samples can result in over fitting, with poor

generalization ability. The original model proposed by Vapnik was a linear classifier,

but other types were later proposed in order to improve the accuracy of the original

model. The main difference of the new models compared to the initial model is the

function used to map the data into a higher dimensional space. New functions were

proposed, namely: polynomial, Radial Basis Function (RBF) and sigmoid. All these

functions transform the original data into a higher dimensional space and then the

linear classifier is used subsequently.

13

2.3.5 Genetic Algorithms

Genetic Algorithms attempt to incorporate ideas of natural evolution [6].

Genetic algorithms are used to discover classification rules for data that can be used

for predictions. The genetic algorithms are adaptive techniques that can be

successfully used to solve complex search and optimization problems. They are based

on the principles of genetics and Darwin‟s natural selection theory (“the one that is

best endowed, survives”). In data mining, genetic algorithms have been effectively

used in order to determine classification rules and to search for appropriate cluster

centers, to select the attributes of interest in predicting the value of a target attribute

and so on. By using some hybrid algorithms, classification of instances was

performed such as Genetic Algorithms and Particle Swarm Optimization, respectively

Naive Bayes and k-Nearest Neighbors. A few applications in which genetic

algorithms were effectively applied to solve classification problems are prints‟

classification, heart disease classification, classification of emotions on the human

face.

The fitness functions of the genetic algorithms used for mining classification

rules may contain metrics concerning predictive accuracy, rule comprehensibility as

well as rule interestingness [19]. Diverse studies suggest genetic algorithms with

fitness functions that take into consideration in different ways. Genetic algorithms are

a type of optimization algorithm, meaning they are used to find the maximum or

minimum of a function [5]. These algorithms are far more efficient and powerful than

random and exhaustive search algorithms. In data mining, the advantage of Genetic

algorithm becomes more obvious when the search space of a task is large. Genetic

algorithm is a search technique used in computing to find exact or approximate

solution to optimization and search problems.

2.4 Classification Rules and Challenges

The process of assigning each element in a population to one of the pre-

defined classes is defined by classification rules. A perfect classification process is

such that every element in the dataset is assigned to the class it really belongs to (High

Accuracy classification). An imperfect classification process is such that some errors

appear like false negatives or false positives. Statistical analysis is then applied to

analyze the efficiency of the classification algorithm [17].

14

2.5 Evaluation Methods

Classification methods can be compared and evaluated according to following

criteria:

Accuracy- The accuracy of a classifier refers to the ability to correctly predict the

class label of new or previously unknown data.

Speed- This refers to the computational costs involved in generating and using the

given classifier or predictor.

Robustness: This is the ability of the classifier or predictor to make correct

predictions given noisy data or data with missing values.

Scalability: This refers to the ability to construct the classifier or predictor efficiently

given large amounts of data.

Interpretability: This refers to the level of understanding and insight that is provided

by classifier or predictor.

 The reliable estimate of predictor accuracy is measured in terms of error. For

example, D
T

be a test set of the form (X1, y1), (X2,y2), …. , (Xd, yd), where the Xi are the

n-dimensional test tuples with associated known values, yi, for a response variable, y,

and d is the number of tuples in D
T
. The accuracy of a predictor is estimated by

computing an error based on the difference between the predicted value and the actual

known value of y for each of test tuples, X. Loss functions measure error between

actual value, yi and predicted value, yi’. The most common loss functions can be

executed in Equation 2.1 and 2.2.

Absolute error : | yi -, yi’ | (2.1)

Squared error : (yi -, yi’)2

 (2.2)

 Based on the above, the test error (rate), or generalization error, is the average

loss over the test set. The most popular evaluation metric to measure the prediction

accuracy is Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean

Squared Error (RMSE).

15

)
∑ |

 |

 (2.3)

)
∑

)

 (2.4)

) √
∑

)

 (2.5)

 The Mean Squared Error exaggerates the presence of outliers, while the mean

absolute error does not. Root Mean Squared Error can accomplish by taking the

square root of the Mean Squared Error. This is useful in that it allows the error

measured to be of the same magnitude as the quantity being predicted. MAE, MSE

and RMSE can range values from 0 to ∞. The lower the error values, the better the

model is. If the square root of the mean squared error is taken, this is useful to allow

the error measured of the same magnitude as the quantity being predicted.

16

CHAPTER 3

METHODS OF THE PROPOSED SYSTEM

This chapter presents the background theory of k nearest neighbor method,

class based weighted k-NN method, BINER algorithm and software defect datasets

and imbalanced dataset. Firstly, this chapter describes about software defects that is

important to develop and maintain software. Secondly, it explains how to applied data

mining methods for software defect detection. Thirdly, it describes about the nature of

software defect dataset and their characteristics. Finally, it presents background

theories such as k-NN method and CBW k-NN method with BINER algorithm with

flowchart figures.

3.1 Software Defect

During software development and maintenance, the costs of finding and

correcting software defects have been the most expensive activity. A panel at IEEE

Metrics 20022 also decided that manual software reviews can find only 60 percent of

defects [23]. Therefore, software defect prediction became an important research topic

in the software engineering field. Especially, it is to solve the inefficiency and

ineffectiveness of existing industrial approach of software testing and reviews. The

accurate prediction of defect prone software modules can help direct test effort,

reduce costs, improve the software testing process, and identify refactoring candidates

that are predicted as fault-prone. Software fault prediction approaches are much more

efficient and effective to detect software faults compared to software reviews.

Various machine learning classification algorithms have been applied for

software defect prediction, including Logistic Regression, Decision Trees, Neural

Networks and Naive-Bayes. The software defect prediction remains a largely

unsolved problem that is the comparisons and benchmarking result of the defect

prediction using machine learning classifiers. There is a need of accurate defect

prediction model for large-scale software system. Two common aspects of data

quality that can affect classification performance are class imbalanced and noisy

attributes of data sets. Software defect datasets have an imbalanced nature with very

few defective modules compared to defective ones. Imbalanced can lead to a model

17

that is not practical in software defect prediction, because most instances can be

predicted as non-defect prone.

3.2 Software Defect Dataset

The real time defect datasets are taken from the NASA‟s MDP (Metric Data

Program) data repository, created by NASA MDP [13, 20]. For example, PC1 dataset

which is collected from flight software for an earth orbiting satellite coded in C

programming language, containing 1109 modules. And CM1 dataset which is

collected from NASA spacecraft instrument, containing 402 modules and JM1 dataset

which is collected from Real-time predictive ground system, containing 1096

modules. These datasets are coded in C programming language. All these datasets

varied in percentage of defect modules, with PC1 dataset containing the least number

of defect modules.

 The metrics in NASA MDP datasets describe vary in size and complexity,

programming languages, development processes, etc. [20]. When reporting a fault

prediction modeling experiment, it is important to describe the characteristics of the

datasets. Each dataset contains twenty-one software metrics, which describe product‟s

size, complexity and some structural properties. Also the product metrics and product

module metrics available in dataset which can also be use are the product requirement

metrics are as follows:

 Module

 Action

 Conditional

 Continuance

 Imperative

 Option

 Risk_Level

 Source

 Weak_Phrase

18

The product module metrics are as follows:

Table 3.1 List of Product Module Metrics

Number Module Metrics Name

1. Module

2. Loc_Blank

3. Branch_Count

4. Call_Pairs

5. LOC_Code_and_Comment

6. LOC_Comments

7. Condition_Count

8. Cyclomatic_complexity

9. Cyclomatic_Density

10. Decision_Count

11. Edge_Count

12. Essential_Complexity

13. Essential_Density

14. LOC_Executable

15. Parameter_Count

16. Global_Data_Complexity

17. Global_Data_Density

18. Halstead_Content

19. Halstead_Difficulty

20. Halstead_Effort

21. Halstead_Error_EST

22. Halstead_Length

23. Halstead_Prog_Time

24. Halstead_Volume

25. Normalized_Cyclomatic_Complexity

26. Num_Operands

27. Num_Operators

28. Num_Unique_Operands

29. Num_Unique_Operators

30. Number_Of_Lines

31. Pathological_Complexity

32. LOC_Total

19

The attribute nature taken from NASA MDP software projects are shown in

Table 3.1. Among of NASA MDP datasets, this thesis uses three datasets. They are

PC1, CM1 and JM1. The PC1, Flight software for earth orbiting satellite used C

language has 1109 modules and 22 attributes. The CM1, NASA spacecraft

instrument, also used C language has 402 modules and 22 attributes. The JM1, Real-

time predictive ground system, also used C language has 1096 modules and 22

attributes.

These three datasets have 22 attributes that was measured based on metrics of

McCabe and Halstead [2]. The McCabe metrics are a collection of four software

metrics. They are essential complexity, cyclomatic complexity, design complexity and

LOC, Lines of Code. The Halstead falls into three groups such as the base measures,

the derived measures, and lines of code measures. The following is explanation of 22

attributes.

1. loc (McCabe's line count of code) – it is straightforward to measure line of

code because it counts blanks, comments, etc.

2. v(g) (McCabe "cyclomatic complexity") – it measures the number of linearly

independent paths through flowgraph of a given program. Its formula is v(g) =

number of decision statements + 1.

3. ev(g) (McCabe "essential complexity") – it is the measure of the

unstructuredness of a program. Its formula is ev(G) = v(G) – m where m is

number of one-entry one-exit program‟s flowgraph.

4. iv(g) (McCabe "design complexity") – it is the cyclomatic complexity of a

module's reduced flowgraph. According to McCabe, this complexity

measurement reflects the modules calling patterns to its immediate

subordinate modules.

5. N (Halstead total operators + operands) – it sums number of total occurrence

operators and operands in program.

6. V (Halstead "volume") – it is a count of the number of mental comparisons

required to generate a program. Its formula is V=N x log2(n) where V is the

Volume, N is the number of words in the program and log2(n) is the minimum

number of bits required to represent all unique words in the program.

7. L (Halstead "program length") – it represents a program written at the highest

possible level. Its formula is
D

L
1

 .

20

8. D (Halstead “difficulty") – it is related to the difficulty of the program to write

or understand. Operands and operators that are used repeatedly can tend to

increase the Volume and the program Difficulty. Its formula is

2

2

2

1

n

Nn
D  .

9. I (Halstead "intelligence") – The intelligence content is correlated highly with

the potential volume. Its formula is VLI  .

10. E (Halstead "effort") – The effort measure translates into actual coding time

by selecting each word to be used in the implementation. Its formula is

VDE  .

11. B (Halstead “number of delivered bugs") – Halstead's delivered bugs (B) is an

estimate for the number of errors in the implementation. Its formula is

3000

V
B  .

12. T (Halstead's time estimator) – it is an estimate of the amount of time it took a

programmer to write a program. Its formula is
18

E
T  .

13. lOCode (Halstead's line count) – it measures line of code in a program.

14. lOComment (Halstead's count of lines of comments) – it measures count of

comment line in a program.

15. lOBlank (Halstead's count of blank lines) – it measures count of blank line in

a program.

16. lOCodeAndComment – It measures count of code with comment in a

program.

17. uniq_Op (unique operators) – it counts number of unique operators (not

count duplicated) in program.

18. uniq_Opnd (unique operands) – it counts number of unique operands (not

count duplicated) in program.

19. total_Op (total operators) – it counts number of total operators (count

duplicated) in program.

20. total_Opnd (total operands) – it counts number of total operands (count

duplicated) in program.

21. branchCount – it counts number of branches for program.

21

22. Defects (false or true) – it is class value attribute that describe non-defect or

defect for a program.

Imbalanced Data

 Building data mining models with unreliable or abnormal datasets can be a

significant challenge to classifier construction [7]. Numerous studies dealing with

classification problem shows training dataset‟s errors presence lower than testing

data‟s predictive accuracy. There are many different dimensions of data quality that

included class noise or labeling errors, attribute noise, and missing values. The

occurrence of class imbalance is another commonly encountered challenge in data

mining applications. Imbalanced data set problem occurs in classification, where the

number of instances of one class is much lower than the instances of the other classes.

Figure 3.1 Two Classes’ Imbalance Solve

 Figure 3.1 shows an example of two-class imbalance problem to classify new

query instance. In this figure, the majority class “A” represented circles and the

minority class “B” represented triangles. The new data instance is cross symbol. The

data instance has been classified as the majority class “A” by a regular k-NN

algorithm using threshold (k) value 7. But, if the algorithm had taken into account the

imbalance class distribution around the neighborhood of the data instances. Finally,

the new data instance has been classified as minority class “B”, which is the desired

class.

22

3.3 k Nearest Neighbor Classifier

k Nearest Neighbor Classifier (k-NN) is a method for classifying objects based

on closest training dataset [10], [17]. The k-NN is an instance-based algorithm for

approximating real valued or discrete-valued target functions, assuming instances

correspond to points in an n-dimensional Manhattan space. The target function value

for a new query is estimated from the known values of the k nearest training

examples. When a new query instance is encountered, a set of similar related

instances is retrieved from memory and used to classify the new query instance.

Instance-based methods can use more complex, symbolic representations for

instances. The most basic instance-based method is the k-Nearest-Neighbor

algorithm. The nearest neighbors of an instance are defined in terms of the standard

Manhattan distance. Then the distance between two instances xi and xj is defined to be

d (xi, xj), where in nearest-neighbor learning the target function may be either

discrete-valued or real-valued.

Nearest-neighbor classifiers are based on learning by analogy, that is, by

comparing a given test tuple with training tuples that are similar to it [24]. The

training tuples are described by n attributes. Each tuple represents a point in an n-

dimensional space. In this way, all of the training tuples are stored in an n-

dimensional pattern space. When given an unknown tuple, a k-nearest-neighbor

classifier searches the pattern space for the k training tuples that are closest to the

unknown tuple. These k training tuples are k “nearest neighbors” of unknown tuple.

“Closeness” is defined in terms of a distance metric, such as Manhattan distance [10].

The Manhattan distance between two points or tuples, say, X1 = (x11, x12, : : : , x1n)

and X2 = (x21, x22, : : : , x2n), is

) ∑| |

 (3.1)

For each data point in the target dataset, the distance metric between target

data and all training data are calculated and sorted. The threshold value (k) has to

eliminate all distance values depend on threshold value (k) and taken into account

based on classes of selected distance values to classify target data. If the threshold

value k = 1, then the 1-Nearest Neighbor Algorithm where xi is the training instance

nearest to x. For larger values of k, the algorithm assigns the most common value

23

among the k nearest training examples. The advantages of k Nearest Neighbor

algorithm [4] are

 very fast training

 Simple and easy to learn

 Robust to noisy training data

 easy to implement to classify data point

 Effective if training data is large

Figure 3.2 is k Nearest Neighbor algorithm, is a method for classifying objects

based on closest training dataset. For each data in the testing dataset, it calculates

distance metrics between testing data and all training data by using Equation 3.1. And,

it sorts all distance values and eliminates distance values depend on threshold value

(k). Then, it taken into account based on classes of selected distance values to classify

testing data.

Algorithm 1: k Nearest Neighbor Algorithm

Input: X, C, k, x

Output: class label for testing data x

1. For all distances between testing data and training dataset do

.) ∑ | |

2. End for

3. Sort d (Xj, x) by ascending order

4. For iteration <= k-value do

 Dx
k
= d (Xj, x)

5. iteration++

6. End for

7. Taken into account imbalanced classes in training data

8. Classify testing data by Dx
k

9. Output class label of x

Figure 3.2 k Nearest Neighbor Algorithm

24

Table 3.2 reveals the meaning of various symbols used in k Nearest Neighbor

algorithm. This table is used to form better understanding of the algorithm.

Table 3.2 List of Symbols Used in the k Nearest Neighbor Algorithm

Symbol Meaning

X Training dataset

Xj Each data of Training dataset

C Class labels of X

k Threshold value

x Each data of testing dataset

d(X, x) Manhattan distance between one testing data and training dataset

Dx
k
 Eliminated Distance values based on k value

3.4 Class Based Weighted k-NN

One obvious refinement to the k- Nearest Neighbor Algorithm is to weigh the

contribution of each of the k neighbors according to their distance to the query point

x, giving greater weight to closer neighbors [12, 24]. The approximates discrete-

valued target functions, we might weigh the vote of each neighbor according to the

inverse square of its distance from x. Class based Weighted k Nearest Neighbor

classifier calculate a weight is assigned to each of the class based on how its instances

are classified in the neighborhood of query instance. The only disadvantage of

considering all examples is that our classifier can run more slowly. If all training

examples are considered when classifying a new query instance, it calls the algorithm

a global method

The distance-weighted k-Nearest Neighbor Algorithm is a highly effective

inductive inference method for many practical problems [12, 15]. It is robust to noisy

training data and quite effective when it is provided a sufficiently large set of training

data. By taking the weighted average of the k neighbors nearest to the query point, it

can smooth out the impact of isolated noisy training examples. The distance between

neighbors can be dominated by the large number of irrelevant attributes that is

25

sometimes referred to as the curse of dimensionality. Nearest-neighbor approaches are

especially sensitive to this problem.

Distance value is to weigh each attribute differently when calculating the

distance between two instances. This corresponds to stretching the axes in the

Manhattan space, shortening the axes that correspond to less relevant attributes, and

lengthening the axes that correspond to more relevant attributes. To see how, it is

chosen to minimize the true classification error of the learning algorithm. Second,

note that this true error can be estimated using cross validation. An algorithm is to

select a subset of the available data to use as training that lead to the minimum error

in classifying the remaining examples. By repeating this process, the estimate for

these weighting factors can be made more accurate. The advantages of Class-Based

Weighted k Nearest Neighbor algorithm are -

 Overcomes limitations of k-NN of assigning equal weight to k

neighbors implicitly

 Uses all training samples not just k

 Defines the threshold value k (maximum) and (minimum)

 Does not need large memory according to partition of training dataset

 Makes the algorithm global one

 Figure 3.3 is algorithm for Class Based Weighed k Nearest Neighbor with

BINER algorithm. It finds the nearest range of training dataset where the testing data

has the maximum likelihood of occurrence by using BINER algorithm as shown in

Figure 3.4. Then, it calculates distance metrics between testing data and nearest range

of training data by using Equation 3.1. And, it sorts all distance values and eliminates

distance values depend on threshold value (k). Then, it calculates weight values for

eliminated distances and total weight values for each class. Finally, it compares final

weight values to classify testing data.

Algorithm 2: Class Based Weighted k Nearest Neighbor Algorithm

Input: X, C, k, x

Output: class label for testing data x

1. Find nearest range by using BINER algorithm

26

2. For all distances between testing data and sub range training dataset do

.) ∑ | |

3. End for

4. Sort d (Xj, x) by ascending order

5. For iteration <= k-value do

Dx
k
= d (Xj, x)

6. iteration++

7. End for

8. For all weight of Dx
k
 do

.

9. End for

10. Calculate total weight values of each class

11. In class based weighted factor, compute

 w(c)=1/frequency[c]

12. Multiply total weight and w(c)

13. Compare final total weight

14. Output class label of x

Figure 3.3 Class Based Weighted k Nearest Neighbor Algorithm

Table 3.3 reveals the meaning of various symbols used to form better

understanding of Class Based Weighted k Nearest Neighbor.

Table 3.3 List of Symbols Used in the CBW k-NN Algorithm

Symbol Meaning

k Threshold value

x Each data of testing dataset

X Training dataset

27

Xj Each data of Training dataset

C Class labels of X

d(X, x) Manhattan distance between one testing data and training dataset

Dx
k
 Eliminated distance values based on k value

wi Weight value of eliminated distances

w(c) class based weighted factor for each class

3.5 BINER Algorithm

Harshit Dubey proposed BINary search based Efficient Regression (BINER)

which is a new efficient technique for regression [8].

BINER follows the same overall methodology as k-NN. Firstly, it finds the k

nearest neighbors to the given query. Then, weighted mean of response variables in k

nearest neighbors is given as output. The weights are kept inversely proportional to

distance from the query. The intuition of BINER is that the query Q is expected to be

similar to tuples whose response variable values are close to that of Q. Thus it is more

beneficial to find nearest neighbors in a locality where tuple have nearby response

variable values rather than the whole dataset. This guarantees that even if the tuples in

the considered locality are not the global nearest neighbors (nearest neighbors of the

query in the complete dataset), the value of predicted response variable can be more

appropriate.

Like other k-NN based approaches, BINER has the following core assumption

- tuples with similar X-values have similar response variable values. This assumption

is almost always borne out in practice and is justified also by experiments. Instead of

directly predicting the value of response variable, BINER narrows down the range in

which the response variable has the maximum likelihood of occurrence and then

interpolates to give the output. The data is hierarchically partitioned in the

preprocessing step, and search for the partition in which the response has the

maximum likelihood of occurrence is carried out at the runtime. It takes a single

parameter k, the same as in k-NN and more than often outperforms the conventional

state of art methods on a wide variety of datasets as illustrated by our experimental

study.

28

The algorithm proceeds in two steps. First, it finds the range of tuples where

the query Q has the maximum likelihood of occurrence. The term range (or locality),

here, refers to consecutively indexed tuples in the dataset D and thus is characterized

by two integers namely, start index and end index. Second, k-NN is applied to these

few (compared to D) tuples and weighted mean of the K nearest neighbors in these

ranges is quoted as output. To find the range in which the query has the maximum

likelihood of occurrence, the dataset is sorted in, say, non-decreasing manner of

response variable values and then the function BINER described below is invoked

with Q as query, and range (0, n) where n is the number of tuples in D.

Figure 3.4 is BINER Algorithm to search nearest range of training dataset in

Class Based Weighed k Nearest Neighbor method. Firstly, the training dataset is

sorted in increasing order based on maximum value attribute and then the algorithm

BINER is invoked with x as testing data, and range (0, n) where n is the number of

records in Training dataset. The getDistance() of testing data x from a range is

calculated as shown in Equation 3.2.

.) √∑
)

 (3.2)

.

[∑

 ∑)

] (3.3)

In Equation 3.2, qi is the i
th

 attribute of the testing data, µi is the mean of i
th

attribute values in all records in the range and i is the standard deviation of values of

the i
th

 attribute in the whole training dataset. In Equation 3.3, standard deviation

equation, xi is value of each attribute and N is the number of records in training

dataset. RangeMean(si,ei) is the mean values of each range of training dataset and i is

number of range. The distance values of three ranges are compared by using similar()

function. The two distances, di and dj are similar if min(di/dj, dj/di) is greater than 0.95

(selected by experimentations and it works well on most of the datasets). If the two

smaller distances are similar, it returns the current range instead of selecting a sub

range. If the two larger distances are similar or the three distances are not similar, it

chooses the sub range of smallest distance. Then, that sub range calculate with

BINER function again.

29

Algorithm 3: BINER Algorithm

Input: x, k, Range (start, end)

Output: Range (s, e)

while end – start > 2 * k do

r =end – start

s1 = start

e1 = start + r/2

s2 = start +r/4

e2 = start + 3r/4

s3 = start + r/2

e3 = end

d1 = getDistance (RangeMean(s1, e1), x)

d2 = getDistance (RangeMean(s2, e2), x)

d3 = getDistance (RangeMean(s3, e3), x)

if similar (d1 , d2, d3) then

return Range(start, end)

break

else

start = si

end = ei

end if

end while

return Range(start, end)

Figure 3.4 BINER Algorithm

30

Table 3.4 presents the various symbols used in BINER algorithm to form

better understanding.

Table 3.4 List of Symbols Used in the BINER Algorithm

Symbol Meaning

Range (start, end) Whole Training dataset range

k Threshold value

x Each data of testing dataset

s1, e1 First range of three sub ranges

d1 Distance value between testing data and first range

RangeMean(s1,e1) Mean values for first range of training dataset

si, ei Selected sub range to calculate next sub ranges

BINER Algorithm Complexity

The algorithm divides the current range into 3 sub-ranges that each sub-range

has half size of current range and considers one of them for subsequent processing. It

can be observed that the function iterates O (log n) time. The function returns a range

of size, say, R which is significantly smaller than n as confirmed by experimentations.

Thus computational complexity of the algorithm becomes O (log n + R) and when the

R << n it becomes logarithmic.

31

CHAPTER 4

SYSTEM DESIGN AND IMPLEMENTATION

This chapter presents overview design of the system, data pre-processing,

problem formulation for k-NN and CBW k-NN, user interface design and

experimental results of the system. Firstly, this chapter explains about system

overview design with figure and detailed explanation. Secondly, it describes data pre-

processing procedure for imbalanced datasets and clean datasets. Thirdly, it calculates

problem formulation for k-NN and CBW k-NN to understand two methods clearly.

Finally, it presents user interface design of the system with step by step detailed

explanation figures and experimental results of the system.

4.1 Overview Design of the System

In overview design of the system (Figure 4.1), the main process is to classify

target data that are defective or non-defective and compare two methods according to

accuracy and reliability. Firstly, user input dataset file such as PC1, CM1 and JM1

and then the system checks dataset file and removes unnecessary data as data pre-

processing algorithm. Then, the system stores clean data to database and selects data

to divide training set and testing set. User input training and testing ratio and then the

system divides training dataset and testing dataset by ratio value. And user input and

the system checks k value to eliminate k nearest instances in training dataset for each

testing data. User can choose two methods such as k-NN and Class Based Weighted

k-NN with BINER Algorithm for classification to calculate step by step processes.

The system displays to user classification results (defective or non-defective)

according to chosen method (k-NN or Class Based Weighted k-NN with BINER

Algorithm). Then, the system also compares classification results by calculating

accuracy, reliability, and error rate methods (MAE and RMSE) for two methods.

Finally, the system displays comparison results of two methods as accuracy,

precision, recall, reliability, MAE and RMSE.

32

Figure 4.1: Overview Design of the System

k-NN Or CBW k-

NN with BINER

Calculate steps of k-NN

Algorithm

Calculate steps of CBW k-NN

with BINER Algorithm

Display defect or

non-defect result

Display defect or

non-defect result

Calculate Accuracy,

Reliability, MAE, RMSE

Display comparison

result

End

Select Data

Start

Database

Divide Train and Test

Check k value

Input Dataset File

Input Divide Ratio

(Train : Test)

Input k value

Check dataset file and

Data Pre-processing

33

4.2 Data Pre-processing

For k Nearest Neighbor (k-NN) and Class-Based Weighted k-NN (CBW k-

NN) methods, data preparation and cleaning procedure is used by software defect

datasets. It checks imbalanced dataset file, removes unnecessary text in input data file

and removes duplicated records. The detail process of data pre-processing is shown in

Figure 4.2.

Algorithm: Data Preparation and Cleaning Algorithm

Input: upload dataset file

Upload dataset file

Read all instances in given file

Check the dataset file for imbalanced instances

For iteration <= length_of_file do

 Read each record of dataset

 Save each record to Array

iteration++

End For

Check record in Array for duplication

Remove unnecessary text

Remove same record in Array

Save remaining record to database

Figure 4.2 Data Pre-processing Algorithm

4.3 Problem Formulation for k-NN

The k-NN, k Nearest Neighbor classifier, is the classification method to

classify testing data based on training data. First, it needs to divide training and testing

dataset by ratio value. Second, it calculates the distance value for each testing data

point based on all training data points. Third, it eliminates calculated distance values

according to k value. Finally, it classifies class value for each testing data point based

on class value of eliminated training data points.

4.3.1 Dividing Dataset

In PC1 dataset, it is used to create flight software for earth orbiting satellite

and total instances are 932 records. In detail calculation processes, it uses totally 30

34

instances for PC1 dataset. It divides training dataset and testing dataset by ratio 2:1 as

number of training instances is 20 and number of testing instances is 10 are shown in

Table 4.1 and 4.2.

Table 4.1 Training Dataset

No. Instances Class

1 16,4,1,3,59,283.63,0.07,13.5,21.01,3829.06,0.09,212.73,16,3,0,0,14,

14,32,27,7

false

2 16,3,1,3,60,300,0.11,9.33,32.14,2800,0.1,155.56,16,0,0,8,14,18,36,2

4,5

true

3 15,4,3,2,86,457.69,0.07,14.73,31.08,6740.46,0.15,374.47,14,6,1,8,1

8,22,50,36,7

true

4 16,2,1,2,73,347.11,0.14,7.37,47.11,2557.63,0.12,142.09,16,0,0,8,8,1

9,38,35,3

false

5 14,4,1,2,69,353.92,0.09,10.88,32.54,3848.89,0.12,213.83,12,7,2,4,1

5,20,40,29,7

true

 ……………………….

18 14,5,1,2,66,317.29,0.05,20,15.86,6345.71,0.11,352.54,12,4,2,6,16,1

2,36,30,9

false

19 19,2,1,2,71,351.75,0.08,12.66,27.79,4451.81,0.12,247.32,18,25,1,9,

15,16,44,27,3

true

20 23,4,1,4,101,548.05,0.08,11.79,46.5,6459.19,0.18,358.84,23,0,0,12,

15,28,57,44,7

true

Table 4.2 Testing Dataset

No. Instances Class

1 17,1,1,1,60,285.29,0.1,10.21,27.93,2914.07,0.1,161.89,17,18,0,11,13,

14,38,22,1

false

2 16,1,1,1,54,244.27,0.11,9.17,26.65,2239.16,0.08,124.4,16,15,0,12,11,

12,34,20,1

false

3 23,4,1,4,101,544.62,0.08,12.22,44.56,6656.52,0.18,369.81,23,0,0,12,1

5,27,57,44,7

true

4 29,2,1,2,140,718.1,0.1,9.93,72.35,7127.8,0.24,395.99,28,3,1,8,8,27,73

,67,3

true

5 17,4,1,3,63,284.98,0.09,11.15,25.55,3178.67,0.09,176.59,17,0,0,0,10,

13,34,29,7

false

6 8,3,1,3,48,214.05,0.08,12,17.84,2568.63,0.07,142.7,8,0,0,0,11,11,24,2

4,5

false

7 16,1,1,1,54,244.27,0.12,8.08,30.24,1972.97,0.08,109.61,16,12,0,11,10

,13,33,21,1

false

8 28,6,1,5,86,477.69,0.07,13.73,34.79,6559.11,0.16,364.4,28,0,0,7,21,2

6,52,34,8

true

9 9,1,1,1,31,114.71,0.05,21.67,5.29,2485.46,0.04,138.08,9,0,0,2,10,3,18

,13,1

false

10 12,3,1,3,49,230.32,0.09,11.67,19.74,2687.08,0.08,149.28,12,1,0,7,14,

12,29,20,5

false

35

4.3.2 Calculation Distances

) ∑| |

Table 4.3 is all distance values for first instance of testing and the whole

training dataset.

Table 4.3 k-NN Distance Values Calculation

Instance No. Distance Value

1 1029.74

2 180.21

3 4317.12

 …………………..

19 1735.26

20 4166.08

4.3.3 Sorting Distances

By ordering the instances according to the distance value, it is sorted distance

values are shown in Table 4.4.

Table 4.4 Sorted Distance Values

Instance No. Distance Value

2 180.21

13 478.23

4 523.14

9 586.39

 …………………..

20 4166.08

3 4317.12

4.3.4 Elimination the k Nearest Instances to x

In this PC1 dataset, total instance is 30 and train and test are divided by ratio

2:1 as number of training instances is 20 and number of testing instances is 10. Now,

it is result for first instance of testing and eliminates distance value by k value 6. The

eliminated distance values are shown in Table 4.5.

d(x
1
, x)= |16-17| + 4-1| + |1-1| + ………. + |27-22|+ |7-1| = 1029.74

36

4.3.5 Taking into Account the Result

In training dataset, number of class true values is 7 and number of class false

values is 13, so training‟s true and false ratio is 1 to 2. In class values of eliminated

distances, number of class true values is 1 and number of class false values is 5 by k

value 6 is shown in Table 4.5.

Table 4.5 Eliminated Distances and Class Values

Instance No. Distance Value class

2 180.21 true

13 478.23 false

4 523.14 false

9 586.39 false

15 729.62 false

12 842.05 false

Therefore, class label of first instance of testing dataset is „True’ by using true

and false ratio of training dataset (1:2). Then, all remaining testing instances calculate

class value as the above calculation processes.

4.4 Problem Formulation for CBW k-NN

The CBW k-NN with BINER Algorithm, Class Based Weighted k-NN

classifier, is the classification method to classify testing dataset based on calculated

weight values of k Nearest Neighbor distances. First, BINER algorithm divides three

ranges of training dataset. Second, BINER algorithm calculates mean value of each

range and deviation value and then calculates three distance values for each range.

Third, it calculates similar values based on three ranges of training dataset to find

nearest training dataset range of each testing data. Finally, it calculates weight values

and classifies class value for weighted distance values based on k Nearest Neightbor

distances.

4.4.1 Dividing and Sorting Training Dataset

In detail calculation processes, it uses totally 30 instances for PC1 dataset. It

divides training dataset and testing dataset by ratio 2:1 as number of training instances

37

is 20 and number of testing instances is 10. Firstly, it is sort training dataset by

ascending order to divide three ranges of training dataset by BINER algorithm. The

sorted training dataset and testing dataset are shown in Table 4.6 and 4.7.

Table 4.6 Sorted Training Dataset

No. Instances Class

1 15,3,1,3,48,228.23,0.16,6.18,36.95,1409.68,0.08,78.32,15,15,0,7,10,

17,27,21,5

false

2 10,3,1,1,31,142.13,0.09,10.83,13.12,1539.78,0.05,85.54,10,0,0,2,15,

9,18,13,5

false

3 20,2,1,2,51,245.18,0.13,7.44,32.95,1824.39,0.08,101.36,20,0,0,2,11,

17,28,23,3

false

 ……………………….

19 23,4,1,4,101,548.05,0.08,11.79,46.5,6459.19,0.18,358.84,23,0,0,12,1

5,28,57,44,7

true

20 15,4,3,2,86,457.69,0.07,14.73,31.08,6740.46,0.15,374.47,14,6,1,8,1

8,22,50,36,7

true

Table 4.7 Testing Dataset

No. Instances Class

1 17,1,1,1,60,285.29,0.1,10.21,27.93,2914.07,0.1,161.89,17,18,0,11,13,1

4,38,22,1

false

2 16,1,1,1,54,244.27,0.11,9.17,26.65,2239.16,0.08,124.4,16,15,0,12,11,1

2,34,20,1

false

3 23,4,1,4,101,544.62,0.08,12.22,44.56,6656.52,0.18,369.81,23,0,0,12,1

5,27,57,44,7

true

4 29,2,1,2,140,718.1,0.1,9.93,72.35,7127.8,0.24,395.99,28,3,1,8,8,27,73

,67,3

true

5 17,4,1,3,63,284.98,0.09,11.15,25.55,3178.67,0.09,176.59,17,0,0,0,10,1

3,34,29,7

false

6 8,3,1,3,48,214.05,0.08,12,17.84,2568.63,0.07,142.7,8,0,0,0,11,11,24,2

4,5

false

7 16,1,1,1,54,244.27,0.12,8.08,30.24,1972.97,0.08,109.61,16,12,0,11,10,

13,33,21,1

false

8 28,6,1,5,86,477.69,0.07,13.73,34.79,6559.11,0.16,364.4,28,0,0,7,21,26

,52,34,8

true

9 9,1,1,1,31,114.71,0.05,21.67,5.29,2485.46,0.04,138.08,9,0,0,2,10,3,18,

13,1

false

10 12,3,1,3,49,230.32,0.09,11.67,19.74,2687.08,0.08,149.28,12,1,0,7,14,1

2,29,20,5

false

38

4.4.2 Calculation Sub Range by BINER Function

Firstly, it is divided into three ranges of whole dataset such as Range 1(0, 10),

Range 2(5, 15), and Range 3 (10, 20).

Table 4.8 Mean and Deviation Values

Attribute Mean 1 Mean 2 Mean 3 Deviation

1 15.2 15.8 17.1 9.2275

2 2.6 3.3 4.3 1.6475

…. ……….. …. ……….. ….

20 23.7 28.7 32.2 73.1475

21 4.2 5.6 7.6 6.59

And then it calculates sub range for each instance of testing dataset by using

mean and deviation values are shown in Table 4.8. In distance equation, is mean

values of i
th

 attribute of sub range and is standard deviation of i
th

 attribute of

training dataset.

0169.41 d

2021.42 d

7577.53 d

 These distance values are used to calculate similar values for using equation of

min (di/dj, dj/di) function.





2

2)(

i

ii q
d





i

2

i

59.6

)12.4(

1475.73

)227.23(
......

19.0

)11(

6475.1

)16.2(

2275.9

)172.15(22222

1














d

59.6

)16.5(

1475.73

)227.28(
......

19.0

)11(

6475.1

)13.3(

2275.9

)178.15(22222

2














d

59.6

)16.7(

1475.73

)222.32(
......

19.0

)12.1(

6475.1

)13.4(

2275.9

)171.17(22222

3














d

39

min (d1/d2,d2/d1) = min(0.9559,1.0461) = 0.9559

min (d1/d3,d3/d1) = min(0.6977,1.4334) = 0.6977

min (d2/d3,d3/d2) = min(0.7298,1.3702) = 0.7298

And then it compares three similar values to choose nearest range by using

BINER function. In three similar values, d1 and d2 are similar because similar value

0.9559 is greater than 0.95. If the two smaller distances are similar, it chooses the

current range instead of selecting a sub range as final range (0, 20). Therefore,

training instances range is 1 to 20 for first instance of testing dataset.

4.4.3 Calculation d(xi, x) for Result Sub Range

Table 4.9 is distance values for first instance of testing dataset with the

selected range of training dataset.

Table 4.9 Calculated Distance Values

Instance No. Distance Value

1 1029.74

2 180.21

3 4317.12

 …………………..

19 1735.26

20 4166.08

4.4.4 Ordering d(xi ,x) and Elimination the k Nearest Instances to x

By ordering the instances according to the distance value, it is sorted distance

values and eliminated distances by k value 6 are shown in Table 4.10.

Table 4.10 Sorted and Eliminated Distances and Class Values

Instance No. Distance Value class

2 180.21 true

13 478.23 false

4 523.14 false

9 586.39 false

15 729.62 false

12 842.05 false

40

4.4.5 Calculation Class Based Weighted k-NN d(xj, x)

Then, it calculates each weight value of eliminated distance values in above

Table 4.10.

4.4.6 Calculation for Total Weight Value of Each Class

It calculates total weight value of each class as w1 is „True‟ class and w2 is

„False‟ class.

For class True, w1 = 1

For class False, w2 = 1.5878

4.4.7 Calculation for Class Based Weighted Factor

It calculates class based weighted factor of each class for unbalance dataset.

For class True, w(cT) = 1/7 = 0.1429

For class False, w(cF) = 1/13 = 0.0769

4.4.8 Calculation for Final Weight and Class Value

It calculates final weight values of each class and classifies class result

according to final weights.

For class True, total_w
1

= 1 * 0.1429 = 0.1429

For class False, total_w
2

= 1.5878 * 0.076 = 0.1221

total_w
1
 > total_w

2

For class T=1, class F=2

……………….

….……………

1dd

dd
w

k

ik
i






1
21.18005.842

21.18005.842
11 




w

5497.0
21.18005.842

23.47805.842
22 




w

0
21.18005.842

05.84205.842
26 




w

41

Therefore, class label of first instance of testing dataset is true by comparing

total weight values for each class. Then, the remaining testing instances calculate

class values by using BINER function as the above calculation processes.

4.5 Implementation of the System

The system is implemented with the PHP and MYSQL as shown in Figure 4.3.

In this page, user can view the four options in the navigation bar. User can click the

desired link to use the system. In the navigation, it has home, file open, process and

about system.

Figure 4.3 Home Page for the System

Figure 4.4 represents about system page of the system. In this page, user can

view about the whole system.

Figure 4.4 About Page for the System

42

Figure 4.5 represents the file open page of the system. In this page, user can

upload three software defect datasets such as PC1, CM1 and JM1. The input file must

be .txt format only. After choosing the input file, user can click the Upload button.

Figure 4.5 File Open Page for the System

Figure 4.6 represents the selecting files of the system. In this page, user can

select the data input file with only .txt format and then click upload button to check

file format. By selecting the files of the software defect datasets, system checks file

format and dataset is imbalanced dataset.

Figure 4.6 Select File for the System

Figure 4.7 represents the process page of the system and the successful

massage for uploading dataset file. In this page, user can view sub menus of process

menu such as show data, divide data, and choose algorithm to choose sub menus.

Figure 4.7 Upload File Success for the System

43

Figure 4.8 represents the all data by uploading dataset. In this page, user can

view all data of the uploaded dataset before dividing training and testing with table

format and the remaining data by clicking next button and last button. User can also

check total instances and dataset name of uploaded file.

Figure 4.8 Show All Data for the System

Figure 4.9 represents dividing data for training and testing set. In this page,

user can divide training set and testing set for the all data of the dataset. If user clicks

skip button, the system divides automatically 2:1 ratio for training and testing.

Figure 4.9 Division Data for the System

Figure 4.10 represents the divided data information of the system. For

example, the whole dataset instances is 100, user divide 2:1 ratio, training dataset is

44

66 instances and testing dataset is 34 instances. Then, user clicks choose algorithm

button to select k-NN algorithm or CBW k-NN algorithm.

Figure 4.10 Divided Data for the System

Figure 4.11 represents to select algorithm for calculation class values. If user

choose k-NN algorithm, system calculates the step-by-step processes of k-NN

algorithm firstly. Then, this page shows minimum k value and maximum k value

according to training dataset and user can input k values to calculate.

Figure 4.11 Choosing Algorithms for the System

45

Figure 4.12 and Figure 4.13 represent calculation distance page of the system.

This system shows the calculated distance values for each tuple of testing dataset and

user can click next and last button to view remaining distance values by showing 5

testing data per page. Then user can click show equation to view distance calculation

formula.

Figure 4.12 Calculation Distance for k-NN Method of Testing 1

Figure 4.13 Calculation Distance for k-NN Method of Testing 5

Figure 4.14 and Figure 4.15 represent sorted distance page of the system. This

system shows the sorted distance values for each tuple of testing dataset according to

the above distance values. Sorting order of distance values is lowest to highest to

eliminate the nearest neighbor distance values.

46

Figure 4.14 Sorting Distance for k-NN Method of Testing 1

Figure 4.15 Sorting Distance for k-NN Method of Testing 5

Figure 4.16 represents eliminate distance page of the system by using k-NN

method. If user clicks the eliminate distance button in navigation link, user can view

the eliminated distance values for each tuple of testing dataset according to the above

sorted distance values.

Figure 4.16 Elimination Distance for k-NN Method

47

If user clicks the final result button in navigation link, user can view the class

values for each tuple of testing dataset according to the class values of above

eliminated distance values. The result is shown in Figure 4.17.

Figure 4.17 Final Result for k-NN Method

If user clicks the CBW k-NN Algorithm button to calculate the class values

with CBW k-NN Algorithm. The user calculates the class values with k-NN algorithm

and clicks the other algorithm, CBW k-NN and vice versa. For CBW k-NN algorithm,

user calculates the partitions of three sub ranges after sorting the training dataset and

mean and deviation values for each sub range. The result is shown in Figure 4.18.

48

Figure 4.18 BINER Function for CBW k-NN Method

Figure 4.19 represents distance and similar page of the system. If user clicks

the distance and similar button, system calculates the three distance values for each

sub range and similar values for three distance values. Then, the system calculates

final range of each tuple in testing dataset.

49

Figure 4.19 Calculation Distance and Similar Value for CBW k-NN Method

Figure 4.20 represents final weight and result page of the system. If user clicks

final weight and result button, system calculates the eliminated distance values and

final weight values and compares weight values to generate class values for each tuple

in testing dataset.

50

Figure 4.20 Final Result for CBW k-NN Method

51

Figure 4.21 represents the performance evaluation page of the system for k

value 16. This is the expected and actual class values result and performance

evaluation results based on two method, k-NN and CBW k-NN algorithm. Then, user

can click choose algorithm button to select algorithm and input k values for next

calculation of these dataset.

Figure 4.21 Performance Evaluation Result for Both Methods

Figure 4.22 represents the select algorithm page of the system. User can input

another k values and select algorithm to calculate another calculation.

Figure 4.22 Choosing another k Value for Next Selection

If user clicks button in navigation link one-by-one, user can view the final

class values for CBW k-NN algorithm for another k value. The result is shown in

Figure 4.23.

52

Figure 4.23 Final Result for CBW k-NN Method (Next Selection)

If user clicks the button in navigation link one-by-one, user can view the final

class values for k-NN algorithm for another k value. The result is shown in Figure

4.24.

53

Figure 4.24 Final Result for k-NN Method (Next Selection)

Figure 4.25 represents performance evaluation results for both methods and

then compares the evaluation results by selecting several calculated k values. If user

wants to upload new dataset file, user clicks home button to go to the home page of

the system and file open button to upload another dataset files.

Figure 4.25 Performance Evaluation Result for Two k Values

54

4.6 Experimental Results

For experimental purpose, to demonstrate the comparison of two methods by

using various thresholds (k) values. The experimental results are shown in Figure 4.21

and Figure 4.25. We have tested the k values 16 and 27. It measures the system

performance by using Accuracy, F-measure, Precision, Recall, MAE and RMSE to

compare output results with other methodologies on the same datasets.

Accuracy is also known as correct classification rate. Accuracy can be defined

as the total number of correctly identified defects (true positive and true negative)

divided by the total number of defects or non-defects [1], [9]. It is usually expressed

as a percentage.

TP - a query instance is defective and classify as defective

FN - a query instance is defective and classify as non-defective

TN - a query instance is non-defective and classify as non-defective

FP - a query instance is non-defective and classify as defective

%100*
)(

FNFPTNTP

TNTP
Accuracy




 (4.1)

Precision is also known as correctness. It is defined as the ratio of the number

of modules correctly predicted as defective to the total number of modules predicted

as defective. It is usually expressed as a percentage.

%100*Pr
FPTP

TP
ecision


 (4.2)

Recall is also known as defect detection rate. It is defined as the ratio of the

number of modules correctly predicted as defective to the total number of modules

that are actually defective. It is usually expressed as a percentage.

%100*Re
FNTP

TP
call


 (4.3)

The higher the Precision, the less effort wasted in testing and inspection. The

higher the Recall, the fewer defective modules go undetected. F-measure combines

precision and recall in a single efficiency measure by taking their harmonic mean. It is

usually expressed as a percentage.

55

%100*
RePr

Re*Pr*2

callecision

callecision
measureF


 (4.4)

MAE and RMSE can be used together to diagnose the variation in the errors in

a set of test samples. MAE is the average over the verification sample of the absolute

values of the differences between forecast (predict) and corresponding observed

(actual) value. RMSE is calculated square of the difference between forecast and

corresponding value and then averaged over the sample. Therefore, RMSE gives a

relatively high weight to large errors more than MAE.

m
MAE

m

i

i




 1



 (4.5)

 

m
RMSE

m

i

i




 1

2



 (4.6)

Where i =1, 2, ….. , m number of test samples

 xi = value of i
th

 test sample,  = mean value of xi

Calculation of Performance Evaluation

The result of performance evaluation is different k values (16 and 27) as

shown in Figure 4.21 and Figure 4.25. For k value (16), result of k-NN method is

more accurate than result of CBW k-NN with BINER Algorithm. But result of k-NN

method is the same as result of CBW k-NN with BINER Algorithm in k value (27).

This is step by step detail calculation of all performance methods for k-NN and CBW

k-NN method.

For k = 16, k-NN Method

TP = 10 FN = 1 TN = 23 FP = 0

%06.97%100*
)(







FNFPTNTP

TNTP
Accuracy

%100%100*Pr 



FPTP

TP
ecision

%91.90%100*Re 



FNTP

TP
call

56

%24.95%100*
RePr

RePr2







callecision

callecision
measureF

For k=16 in k-NN method,
m

MAE

m

i

i




 1



Testing No. (i) i

 1 1 0.0294

 2 1 0.0294

3 1 0.0294

……………..

18 0 0.9706

……………..

33 1 0.0294

34 1 0.0294

9706.0
......21 




m
x m

06.0
......21 




m
xMAE m

The RMSE calculate as the above MAE calculation way according to RMSE formula.

For k=16 in k-NN method,

17.0
......21 




m
xRMSE m

For k = 16, CBW k-NN with BINER Algorithm

TP = 10 FN = 1 TN = 22 FP = 1

%12.94%100*
)(







FNFPTNTP

TNTP
Accuracy

%91.90%100*Pr 



FPTP

TP
ecision

%91.90%100*Re 



FNTP

TP
call

 i  i

57

%91.90%100*
RePr

RePr2







callecision

callecision
measureF

For k=16 in CBW k-NN with BINER Algorithm,
m

MAE

m

i

i




 1



Testing No. (i) i

 1 1 0.0588

 2 1 0.0588

3 1 0.0588

……………..

18 0 0.9412

19 0 0.9412

……………..

33 1 0.0588

34 1 0.0588

9412.0
......21 




m
x m

11.0
......21 




m
xMAE m

The RMSE calculate as the above MAE calculation way according to RMSE formula.

For k=16 in CBW k-NN with BINER Algorithm,

24.0
......21 




m
xRMSE m

For k = 27, k-NN Method and CBW k-NN with BINER Algorithm

TP = 10 FN = 1 TN = 23 FP = 0

%06.97%100*
)(







FNFPTNTP

TNTP
Accuracy

%100%100*Pr 



FPTP

TP
ecision

 i  i

58

%91.90%100*Re 



FNTP

TP
call

%24.95%100*
RePr

RePr2







callecision

callecision
measureF

For k=27 in k-NN method,
m

MAE

m

i

i




 1



Testing No. (i) i

 1 1 0.0294

 2 1 0.0294

3 1 0.0294

……………..

18 0 0.9706

……………..

33 1 0.0294

34 1 0.0294

9706.0
......21 




m
x m

06.0
......21 




m
xMAE m

The RMSE calculate as the above MAE calculation way according to RMSE formula.

For k=27 in k-NN method,

17.0
......21 




m
xRMSE m

For other testing result, it uses three datasets that are PC1, CM1 and JM1. It

measures the system performance by using various kind of k value. For PC1 dataset,

different threshold k values are 25, 32 and 50. For CM1 dataset, different threshold k

values are 16, 25 and 38. For JM1dataset, different threshold k values are 27, 42 and

65. The performance range for evaluation methods is 0% to 100%. For three datasets,

the threshold k value range is more increase, the accuracy and reliability is higher

except MAE and RMSE. For demonstration purpose, the evaluation results have

shown in Figure 4.26, 4.27 and 4.28.

 i  i

59

Figure 4.26 Performance Evaluation Result for PC1

Figure 4.27 Performance Evaluation Result for CM1

Figure 4.28 Performance Evaluation Result for JM1

0%

20%

40%

60%

80%

100%

Accuracy

Precision

Recall

F-measure

MAE

RMSE

0%

20%

40%

60%

80%

100%

Accuracy

Precision

Recall

F-measure

MAE

RMSE

0%

20%

40%

60%

80%

100%

Accuracy

Precision

Recall

F-measure

MAE

RMSE

60

CHAPTER 5

CONCLUSION AND FURTHER EXTENSION

The aim of the system is to apply the algorithm of Nearest Neighbors

especially k Nearest Neighbor and Class Based Weighted k-NN in software defect

detection. To analyze the performance of these algorithms, it is needed to apply some

software defect datasets for this detection. After the system has been developed, the

more accurate and effective algorithm has appeared according to the evaluation of

their performance.

In this implemented system, there are three software defect datasets such as

PC1, CM1 and JM1 from NASA MDP datasets. Classification is the most researched

topic of machine learning that is applied in the system for the purpose of software

defect detection. For selecting an appropriate classifier to test software defective on

imbalance data set, this system describes the classification algorithm based on k-

nearest neighbors. This system also make available classification of software

defective and non-defective using weighted k-nearest neighbor algorithm with class-

based weighted factor which is focused on the range of nearest data set using BINER

function. One of the algorithms is used to measure the performance result such as

accuracy of the test result. It calculates the accuracy, reliability, error-rate (MAE,

RMSE) to compare two classification methods. As the accuracy results, the k Nearest

Neighbor (k-NN) gives the accurate classification when compared to Class Based

Weighted k Nearest Neighbor (CBW k-NN) algorithm. During training of the system,

the more the number of threshold value (k) is increased, the more accurate two

approaches can be. This system has shown that data mining techniques can be used

efficiently to model and classify the class value such as defect or non-defect. The

outcome of this system can be used as an assistant tool to provide comparison result

of classification methods on imbalanced software defect datasets. The higher

threshold value (k) is increased, the more accurate in Class Based Weighted k Nearest

Neighbor with BINER algorithm.

5.1 Advantages of the System

This system demonstrates effective use of classification methods on software

defect dataset. It describes the nature of the software defect datasets and applies k-NN

61

method, CBW k-NN method, and BINER algorithm. The user can test k-NN and

CBW k-NN with BINER algorithm for desired software defect dataset. This system

calculates performance evaluation results based on multiple threshold (k) values of k-

NN and CBW k-NN and compares different performance results according to

multiple threshold values. This system supports software engineering groups and

software industries to calculate defect rate for existing program.

5.2 Limitation of the System

The implemented system is processed in the only two algorithms such as k-

NN and CBW k-NN. It has used only software defect datasets from NASA MDP

datasets that are detected C program and had same attributes as PC1, CM1 and JM1.

The accuracy result of these algorithms can be varied any other software defect

datasets by these may be slightly changed. This system classifies existing testing data

only, not classifies new record data.

5.3 Further Extension

The implemented system can test two classification methods such as k-NN

and CBW k-NN methods. To improve the classification accuracy of the models,

further studies should be conducted using different classification algorithms. And this

system can be extended to test any program as defect or non-defect in that program.

And, this system can also be extended to generate results for comparison of

classification methods on any other datasets. Furthermore, this system should be

extended for the classification of the software defect datasets which includes

unknown class values for defect/ non-defect by using other classification methods.

62

REFERENCES

[1] Aleem S, Capretz L F and Ahmed F, “Benchmarking Machine Learning

Techniques for Software Defect Detection”, International Journal of Software

Engineering & Applications (IJSEA), Vol.6, No.3, May 2015.

[2] Anu K P and BinuRajan, “A Novel Approach for Improving Software Quality

Prediction”, International Journal of Engineering and Advanced Technology

(IJEAT) ISSN: 2249 – 8958, Volume-4 Issue-6, August 2015.

[3] Azeem N and Usmani S, “Analysis of Data Mining Based Software Defect

Prediction Techniques”, Global Journal of Computer Science and Technology,

Volume 11 Issue 16 Version 1.0 September 2011.

[4] Bhatia N, “Survey of Nearest Neighbor Techniques”, International Journal of

Computer Science and Information Security (IJCSIS), Vol. 8, No. 2, 2010.

[5] Carr J, “An Introduction to Genetic Algorithms”, International Journal of

Computer Science and Information Security (IJCSIS), May, 2014.

[6] Chadha P and Singh G N, “Classification Rules and Genetic Algorithm in Data

Mining”, Global Journal of Computer Science and Technology Software &

Data Engineering, Volume 12 Issue 15 Version 1.0 Year 2012.

[7] Dubey H, “Efficient and Accurate kNN based Classification and Regression”

CENTER FOR DATA ENGINEERING, International Institute of Information

Technology, Hyderabad - 500 032, INDIA, March 2013.

[8] Dubey H and Pudi V, “BINER: Binary Search Based Efficient Regression”,

Machine Learning and Data Mining in Pattern Recognition (MLDM): 76-85,

Report No: IIIT/TR/2012/-1, July 2012.

[9] Elish K O and Elish M O, “Predicting defect-prone software modules using

support vector machines”, The Journal of Systems and Software 81 (2008)

649–660.

[10] Entezari-Maleki R, Minaei B and Rezaei A, “Comparison of Classification

methods based on the Type of Attributes and Sample Size”, Journal of

Convergence Information Technology · September 2009.

[11] Falangis K, “Mathematical Programming models for classification problems

with applications to credit scoring”, Thesis Presented for the degree of Doctor

of Philosophy, The University of Edinburgh, 2013.

63

[12] Gou J, Du L, Zhang Y and Xiong T, “A New Distance-weighted k-nearest

Neighbor Classifier”, Journal of Information & Computational Science 9: 6

(2012) 1429–1436.

[13] Gray D, Bowes D, Davey N, Sun Y and Christianson B, “The Misuse of the

NASA Metrics Data Program Data Sets for Automated Software Defect

Prediction”.

[14] Hamid B, ur-Rehman I, Rauf A, Khan T A, “Using Smote for Convalescing

Software Defect Prediction”, Journal of Applied Environmental and

Biological Sciences, ISSN: 2090-4274, J. Appl. Environ. Biol. Sci., 5(6)53-59,

2015.

[15] Hechenbichler K and Schliep K, “Weighted k-Nearest-Neighbor Techniques

and Ordinal Classification”, Sonderforschungsbereich 386, Paper 399, October

2004.

[16] Kiang M Y, “A Comparative Assessment of Classification Methods”, Decision

Support Systems 35 (2003) 441–454, 1 May 2002.

[17] Kilany and Rania M., "Efficient Classification and Prediction Algorithms for

Biomedical Information" (2013). Doctoral Dissertations. 105.

http://digitalcommons.uconn.edu/dissertations/105.

[18] Miclea L, Nedevschi S, Petrescu M, Cretu V and Potolea R, “Strategies for

Dealing with Real World Classification Problems”, Faculty of Computer

Science and Automation, Eng. Camelia Lemnaru (Vidrighin Bratu).

[19] Robu R and Holban S, “A Genetic Algorithm for Classification”, Recent

Researches in Computers and Computing, ISBN: 978-1-61804-000-8.

[20] Singh A K, Goel R and Kumar P, “Comparative Analysis of Accuracy

Prediction using Fuzzy C-Means and KNN Clasiffier”, IJDACR, International

Journal of Digital Application & Contemporary research, ISSN: 2319-4863,

Volume 2, Issue 7, February 2014.

[21] Singh Y and Chauhan A S, “Neural Networks in Data Mining”, Journal of

Theoretical and Applied Information Technology, 2005-2009.

[22] Sudhakar M and Reddy C V K, “Application Areas of Data Mining in Indian

Retail Banking Sector”, Global Journal of Computer Science and Technology:

C Software & Data Engineering, Volume 14 Issue 5 Version 1.0 Year 2014.

64

[23] Wahono R S and Herman N S, “Genetic Feature Selection for Software Defect

Prediction”, American Scientific Publishers, Advanced Science Letters, Vol.

20, 239–244, 2014.

[24] Zhao M and Chen J, “Improvement and Comparison of Weighted k Nearest

Neighbors Classifiers for Model Selection”, Journal of Software Engineering,

2016, ISSN 1819-4311 / DOI: 10.3923/jse.2016.

[25] Witten I H and Frank E, “Practical Machine Learning Tools and Techniques”,

Second Edition

65

AUTHOR’S PUBLICATION

[1] Hnin Yi San, Dr. Khine Khine Oo, “The Comparison of Classification

Methods on Software Defect Data Sets”, the Proceedings of the 9
th

 Conference

on Parallel and Soft Computing (PSC 2018), Yangon, Myanmar, 2018.

