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Abstract 

 

 The main factor in measuring server performance is 

the accuracy of detection mechanisms. Sever is needed 

to detect server overload condition accurately. 

Therefore, it can be satisfied customers by reducing 

request drop rate. Server overload detection would be 

an initial step of overload control system. In order to 

provide such a detection mechanism, it is important to 

choose the best classifier which is the most suitable for 

our dataset. Selecting correct classifier maximize the 

performance of detection mechanism. 

 In this paper, we present how server workload 

classification task is performed by using different 

machine learning classification methods and how the 

best classifier improve overload detection mechanism. 

We make a synthetic dataset by using window 

performance monitor tool. Many classifiers are 

evaluated over synthetic dataset. 

 

1. Introduction 
 

 One of the key factors in customer satisfaction is the 

application performance. If an application regularly 

takes too long to respond, the customer may become 

unsatisfied and he may eventually switch to another 

service provider. Our aim is to detect performance 

problems for Ultra-Large-Scale (ULS) system and to 

provide an overload prevention mechanism. Some 

existing approaches made their detection based on small 

amount of performance metric such as response time 

[10]. Proposed method is based on measuring a wide 

variety of performance counters such as 

…Memory\Available Mbytes and 

…Processor\%processor Time.  

 Some conventional control approaches based their 

request discard decisions on hard thresholds and make 

admission decision [11]. Traditionally, server utilization 

or queue length has been the variables mostly used in 

admission control schemes. In this work, the response of 

performance counters are chosen as the control 

parameter since it indirectly affects system utilization 

and system overloading. Admission controller 

negatively affects the performance of some customers, 

therefore, our approach tried to avoid this problem. This 

approach reduces request drop rates and raises up server 

performance. 

  When server gets overloaded, the response time of 

hardware components become long and the response 

time of a service become long which affects the many 

users. When hardware components response so long, 

server becomes overload vice versa. One of the best 

solutions is to reduce request drop rate of admission 

control mechanism by predicting the state of the server. 

So the admission control mechanism handles some 

requests with fair admission decision whenever the 

arriving traffic is too high and thereby maintains an 

acceptable load in the system. 

 In server overload control system, an interesting 

problem is that the underling hardware should be scale 

up when request rate exceed the limitation of server. In 

real time situation, it is very difficult to scale up 

hardware resources before user notices a decrease in 

performance. Therefore, server overload situation is 

needed to detect accurately with complete set of 

performance counter. The acceptance decision of 

admission control process mostly depends on accuracy 

of overload detector. So it is very important to take a 

complete relevant performance metric for overload 

prediction.  

 In this paper, server overload detection mechanism is 

presented as a part of overload control system that we 

proposed. We present how to select the best classifier 

and it can improve server overload control.  This 

research is an ongoing research. We make a synthetic 

dataset by using performance counter patterns. 

Experimentation is performed based on many classifiers 

for evaluating the performance of the best classifier. 

Experimental results demonstrate that selected classifier 

improve the accuracy of perdition decision. 

 

2. Related Work 
 

 The aim of existing research on overload prediction 

mostly related to admission control and resource 

scheduling issue for server overload prevention. An 

admission control mechanism for web servers using 

neural network (NN) was proposed in [2]. The control 

decision is based on the desired web server performance 

criteria: average response time, blocking probability and 

throughput of web server. A NN model was developed 

able to predict web server performance metrics based on 

the parameters of the Apache server, the core of the 

Linux system and arrival traffic. In [4], Server overload 

detection method is proposed by using statistical pattern 

recognition method. The classifier predicted server 

overload situation (underload, normal, and overload) on 

14 performance counters that they assume to be 

significant for overload detection. 

  [3] presented a dynamic session management based 

on reinforcement learning. A learning agent decides the 

acceptance or rejection of an arriving session by 

estimating the response time only for service request. In 



 

[5], an efficient admission control algorithm, ACES, 

based on the server workload characteristics. The 

admission control algorithm ensures the bounded 

response time from a web server by periodical allocation 

of system resources according to the resource 

requirements of incoming tasks. By rejecting requests 

exceeding server capacity, the response performance of 

the server is well maintained even under high system 

utilization. The resource requirements of tasks are 

estimated based on their types. A double-queue structure 

is implemented to reduce the effects caused by 

estimation inaccuracy, and to exploit the spare capacity 

of the server, thus increasing the system throughput. 

 In our experience, most of existing research 

emphasized response time and other related factors of 

web service to predict system resource and server 

overload condition. In our consumption, service 

response time is directly related to hardware 

components of physical server. Therefore, it is 

impossible to lack estimation response time of hardware 

components. It is indispensible to know the response 

time value of hardware components to increase 

estimation accuracy of perdition method. In this work, 

performance counters are chosen as important variables 

of detection mechanism and the best classifier is defined 

on our own experimentation.  

 

3. Proposed System Architecture 

 
 Proposed Architecture of overload control 

mechanism is described in Figure 1.In this architecture; 

there are three modules such as classification module, 

overload prediction module, scheduling module and 

admission control module. The number of requests 

which will be processed is controlled (scheduling and 

admission control), and a suitable Queue is dynamically 

selected for request assignment. In classification 

module, incoming request are assigned to each classes 

based on their processing time by using lookup table. 

This module parses each incoming request URL to 

extract its file name and searches in a lookup table. 

 
 

Figure 1.Architecture of proposed overload control mechanism 

 

After a request has been classified, the queue module is 

invoked.  The queue module implements first in first-out 

(FIFO) queuing policy. The queue module suspends 

incoming requests and adds each of them to the queue 

corresponding to its class. After this phase, the 

scheduler listens the state of server form prediction 

module and selects requests from queue according to 

scheduling algorithm. The overload prediction module 

predicts whether server is in which state (Underload, 

Normal and Overload) based on performance counter 

patterns. And then send server situations information to 

admission control module and scheduling module. Once 

server overload occurs, admission control module 

rejects new incoming requests and reconsiders 

acceptance of new incoming request when server pass 

overload situation. This research is an ongoing research. 

Therefore, in this paper, server overload detection 

mechanism is presented as a part of overload control 

system and evaluated the performance of the best 

classifier on based line performance measures. 

 

4. Server Overload Detection 
 

 In this section, we will explain how to detect the 

overload condition of physical server by using 

classification method. In this approach, the following 

stages are distinguish, 

 Data generation 

 Data preparation 

 Designing classifier 

 Evaluating classifier 

The implementation of these stages will present in next 

section. 

 

4.1. Data Generation 
 

 The first step of proposed method is collection data 

from the server by using performance monitor (PM).PM 

produces performance counters which describe server 

states(State1,State2,State3 which is defined in proposed 

Server Overload Control approach.Here,State1,2,3 



 

means ;Low, Normal and High).Data set is generated on 

window server which allow to use Performance Monitor  

tool. In order to train classifier, synthetic data set is 

created. We avoided collecting data from real server 

because it can take long time to get enough data. 

Therefore, synthetic data set is created by using load 

generator such as CPU Busy which performs a stress 

test on the same server. But the specifications of 

production server must equal to real server. During 

stress test, the load will vary from one state to another. 

Two measurements are interested for training data set; 

 Performance counter pattern which is used to 

describe the server state 

 Performance counter values which are used to 

decide whether a performance counter pattern 

should be defined as state1 or state2 or state3. 

 

4.2. Data Preparation 

 
4.2.1. Feature Selection 

 

 Performance counters are measurements of system 

state or activity. They can be included in the operating 

system or can be part of individual applications. 

Windows Performance Monitor requests the current 

value of performance counters at specified time 

intervals. Actually Performance Monitor tool can 

generate 1948 performance counter patterns, but some 

of these are not very unlikely to be of interest when 

monitoring for overload. In [4] 36 counter patterns are 

selected which are assume to be significant for overload 

prediction. In our consumption, all performance 

counters related to physical servers and their processes, 

some counters may not be significant because of server 

behavior. We can define which counters patterns are 

significant or not by examining their counter values. 

Firstly we calculate information gain of each feature by 

using information gain ranking filter.  

  

 
 

Figure 2. Result of Feature Selection 

 

 Here, we can divide features into three groups. First 

group is >=1 , second group is >=0 and gorup3 

(G3)which combine G1 and G2 .The result is shown in 

Figure 2.Accrodng to the figure; we can see G1 is 

obviously effective on classifier. Therefore, we selected 

significant features which contain higher information 

gain value (>=1).Table I presented some of selected 

performance counter list. We can improve data set by 

reducing features from 1948 to 926 features. 

 

4.2.2 Information gain Ranking Filter 

 
 Information gain (IG) is a feature ranking method 

based on decision trees that exhibits good classification 

performance. Information gain used in feature selection 

constitutes a filter approach. Filter approaches select 

features using characteristics of individual features. 

Advantages of the filter-based techniques are that they 

can easily scale up to high-dimensional datasets and that 

they are computationally fast and independent of the 

learning algorithm. Information gain is a measure based 

on entropy. Entropy is one of the most commonly used 

discretization measures.  

 

4.2.3 Data Transformation 

 
 To be able to predict server state correctly, it is 

important to transform it for use with a classifier. 

Performance Monitor tool generate data collector set 

which contain performance counter patterns and values. 

These are need to assigned to a target class (overload, 

normal and underload) based on their values. We built 

our data set in the form of (ID, Values).Each 

performance counter contain about 2000 records which 

are recorded during 1 minute. The values are used to 

define which pattern are meet with S1, S2 or S3. 

 

Table 1. Selected Performance Counter List 

 
Main 
Categories 

Counter 
Name 

ID Value 

Physical 
Disk 

Avg.Disk 
Queue 
Length 

D1571 0.000714245 

%Disk Read 
Time 

D1572 0.396698 

%Disk Write 
Time 

D1574 2.16555466666666 

Processor %Interrupt 
Time 

U1616 1.559920773 

% Idle Time U1619 98.27500867 
%Processor 
Time 

U1731 2.504948441 

Memory Page 
Faults/sec 

M1746 1655.02885723717 

Available 
Bytes 

M1747 1367638016 

Pages/sec M1754 20.5277281622 
Network 
Interface 

Packets/sec NT1833 93.93193628 
Packets 
Received/sec 

NT1834 1.020999307 

Packets 
Sent/sec 

NT1835 1.020999307 

Current 
Bandwidth 

NT1836 100000000 

 

4.3 Designing Classifier 
 

 Although understanding the data distribution is 

very helpful for choosing the best classifier, it is very 

difficult to understand the different data distribution. For 

small dimensional data set, it can be easy to understand 



 

by plotting the data, but it is not simple for very large 

scale data set. In this work, in order to know which 

classifier is the most suitable one for our synthesis 

dataset many classifiers are tried heuristically with our 

data set. Some classifiers are sensitive to very large or 

small data set. Since performance monitor recorded 

thousands of performance counters contained thousands 

of features, it is important to choose the best classifier 

correctly. 

 

4.4 Evaluating Classifier 

 
 In this subsection we present the Machine Learning 

evaluation process conducted. The two main goals of 

this process are Model selection and Model Accessment. 

Model Selection: Comparing different Machine 

Learning algorithms in order to choose the 

(approximately) best one. 

Model Assessment: Having chosen a final algorithm, 

estimate its generalization error on new data. 

 According to the goal (model selection or 

assessment), different tasks could be conducted. 

However, in a rich-data scenario, the best approach (if 

there is enough data) to both model selection and model 

assessment goals is to divide the data set into three 

disjoint parts: Training data set needed to build (or fit) 

the models. Validation data set (or development data test 

set) used to estimate the test error for model selection. 

Test data set used for assessment of the generalization 

error of the finally chosen model. 

 The main goal is to conduct an evaluation of 

different Machine Learning algorithms to chose the best 

algorithm found during current chapter to predict the 

time to crash and trigger the rejuvenation action in real 

environments. Due to this goal, we have conducted a 

model selection. Model selection process requires that 

ML algorithms given are trained with the training data 

set, and later compared according to the estimated test 

error using a completely different data set, called 

validation data set or development data test set. The 

training and validation process is presented in Figure 3 

and described in detail below. 

 
 

Figure 3. Machine Learning Model Selection Process 

 

5. Analysis of Machine Learning Classifiers 
 

5.1 J48 Decision Tree 

 
 Decision trees are a classic way to represent 

information from a machine learning algorithm, and 

offer a fast and powerful way to express structures in 

data. The overall concept is to gradually generalize a 

decision tree until it gains a balance of flexibility and 

accuracy. J48 is a decision classifier and also an 

optimized implementation of C4.5. The C4.5 technique 

is one of the decision tree families that can produce both 

decision tree and rule-sets and construct a tree. J48 

classifier is among the most popular and powerful 

decision tree classifiers. J48 are the improved versions 

of C4.5 algorithms.  The J48 algorithm gives several 

options related to tree pruning. Pruning produces fewer, 

more easily interpreted results. The basic algorithm 

recursively classifies until each leaf is pure, meaning 

that the data has been categorized as close to perfectly 

as possible. This process ensures maximum accuracy on 

the training data, but it may create excessive rules that 

only describe particular idiosyncrasies of that data.  

 In this experiment, the classification rules are 

generated by using j48 classifier for the training dataset. 
The  J48  classifier  produced  the  analysis  of  the  

training  dataset  and  the classification rules. 

 p433 = 974848.0:  Low (6.0) 

 p433 = 8.0:  Normal (366.0) 

 p433 = 3.0: High (360.0) 

 

5.2 JRip Classifier 

 
 JRip (RIPPER) is one of the basic and most popular 

algorithms.  Classes  are  examined  in increasing size 

and an  initial set of rules  for  the class  is generated 

using  incremental reduced error  JRip  (RIPPER)  

proceeds  by  treating  all  the  examples  of  a  particular  

judgment  in  the training  data  as  a  class,  and  finding  

a  set  of  rules  that  cover  all  the members  of  that  

class. Thereafter it proceeds to the next class and does 



 

the same, repeating this until all classes have been 

covered. JRIP classifier generates some useful rules; 

 

 p4 >= 208486400: Low (336.0/0.0) 

 Normal (366.0/0.0) 

 p257 <= 798.679436:High (360.0/0.0) 

 

5.3 OneR Classifier 

 
 OneR is a simple and a very effective classification 

algorithm frequently used in machine learning 

applications. ven though OneR is difficult to be 

improved further due to its simplicity, it can be 

enhanced by providing better methods for handling 

some of the exceptions. OneR, short for “One Rule”, is a 

simple classification algorithm that generates a one-

level decision tree. OneR is able to infer typically 

simple, yet accurate, classification rules from a set of 

instances. Comprehensive studies of OneR’s 

performance have shown it produces rules only slightly 

less accurate than state-of-the-art learning schemes 

while producing rules that are simple for humans to 

interpret. The OneR algorithm creates one rule for each 

attribute in the training data, then selects the rule with 

the smallest error rate as its ‘one rule’.  To create a  rule 

for an attribute, the most frequent class for each attribute 

value must be determined.  The most frequent class is 

simply the class that appears most often for that attribute 

value.  A rule is simply a set of attribute values bound to 

their majority class; one such binding for each attribute 

value of the attribute the rule is based on. 

 p257< 432.1987029:Low 

 p257>=3.740097533971775E7:Normal 

 p257< 3.740097533971775E7:High 

 

 
5.4 AdaBoostM1 Classifier  
 

 Boosting has been a very successful idea for the 

two-class classification problem. In going from two-

class to multi-class classification, most algorithms have 

been restricted to reducing the multi-class classification 

problem to multiple two-class problems. AdaBoost.M1 

is the most direct extension of the original AdaBoost 

algorithm to the multiclass case. AdaBoost.M1 only 

requires the performance of each weak classifier be 

better than random guessing rather than ½.  

 p1164 = 9.0 : High 

 p1164 != 9.0 :  Low 

 p1164 is missing : High 

  

6. Experimental Results of Classifiers 
  

 We conduct our experiment on our synthesis 

performance counter data set.. Our synthesis data set 

includes 500 up to 1500 records and 150 to 926 features. 
A summary of some of the properties of these datasets is 

given in Table 2. For these datasets with no provided 

test set, we reran each algorithm 10 times (since some of 

the algorithms are randomized), and averaged the 

results. We used 10-fold cross validation, and averaged 

the results over 10 runs of each algorithm on our 

synthesis dataset. Different classifiers are J48, JRip, 

OneR and AdaBoostM1. In our experiment, 

performance of classifiers is evaluated over execution 

time (second) and percentage of correctly classified 

instances. In this experiment, all criteria are not different 

so far. Classifier speed is very important for real time 

implementation. 
 Inspection of Figure 4 shows that OneR gave the 

lowest classification speed and same correctly classify 

instances. As we can see in Figure 5,all classifiers have 

the same values in correctly classified instant. 

 
 

Figure 4. Experimentation on Classifier Speed 

 
Figure 5. Experimentation on Correctly Classified 

Instances 
 

7. Conclusion 

 In this paper, we have practically evaluated 

performance of various classifiers on a synthetically 

generated dataset. We presented how selected classifier 

(Random Tree) is match with our synthesis dataset and 

how can be useful for server overload detection. In 

detection method, performance counter values are 

effective to improve the accuracy of detection 

mechanism. According to experimental results, the 

accuracy of selected classifier is obviously increased 

over number of features .In future work, we will 

combine random Tree with overload prevention method 

such as admission control and implement in our 

overload control mechanism. 
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