

 Server Workload Classification and Analysis with Machine Learning

Algorithms

San Hlaing Myint

University of Computer Studies, Yangon

shm2007@gmail.com

Abstract

 The main factor in measuring server performance is

the accuracy of detection mechanisms. Sever is needed

to detect server overload condition accurately.

Therefore, it can be satisfied customers by reducing

request drop rate. Server overload detection would be

an initial step of overload control system. In order to

provide such a detection mechanism, it is important to

choose the best classifier which is the most suitable for

our dataset. Selecting correct classifier maximize the

performance of detection mechanism.

 In this paper, we present how server workload

classification task is performed by using different

machine learning classification methods and how the

best classifier improve overload detection mechanism.

We make a synthetic dataset by using window

performance monitor tool. Many classifiers are

evaluated over synthetic dataset.

1. Introduction

 One of the key factors in customer satisfaction is the

application performance. If an application regularly

takes too long to respond, the customer may become

unsatisfied and he may eventually switch to another

service provider. Our aim is to detect performance

problems for Ultra-Large-Scale (ULS) system and to

provide an overload prevention mechanism. Some

existing approaches made their detection based on small

amount of performance metric such as response time

[10]. Proposed method is based on measuring a wide

variety of performance counters such as

…Memory\Available Mbytes and

…Processor\%processor Time.

 Some conventional control approaches based their

request discard decisions on hard thresholds and make

admission decision [11]. Traditionally, server utilization

or queue length has been the variables mostly used in

admission control schemes. In this work, the response of

performance counters are chosen as the control

parameter since it indirectly affects system utilization

and system overloading. Admission controller

negatively affects the performance of some customers,

therefore, our approach tried to avoid this problem. This

approach reduces request drop rates and raises up server

performance.

 When server gets overloaded, the response time of

hardware components become long and the response

time of a service become long which affects the many

users. When hardware components response so long,

server becomes overload vice versa. One of the best

solutions is to reduce request drop rate of admission

control mechanism by predicting the state of the server.

So the admission control mechanism handles some

requests with fair admission decision whenever the

arriving traffic is too high and thereby maintains an

acceptable load in the system.

 In server overload control system, an interesting

problem is that the underling hardware should be scale

up when request rate exceed the limitation of server. In

real time situation, it is very difficult to scale up

hardware resources before user notices a decrease in

performance. Therefore, server overload situation is

needed to detect accurately with complete set of

performance counter. The acceptance decision of

admission control process mostly depends on accuracy

of overload detector. So it is very important to take a

complete relevant performance metric for overload

prediction.

 In this paper, server overload detection mechanism is

presented as a part of overload control system that we

proposed. We present how to select the best classifier

and it can improve server overload control. This

research is an ongoing research. We make a synthetic

dataset by using performance counter patterns.

Experimentation is performed based on many classifiers

for evaluating the performance of the best classifier.

Experimental results demonstrate that selected classifier

improve the accuracy of perdition decision.

2. Related Work

 The aim of existing research on overload prediction

mostly related to admission control and resource

scheduling issue for server overload prevention. An

admission control mechanism for web servers using

neural network (NN) was proposed in [2]. The control

decision is based on the desired web server performance

criteria: average response time, blocking probability and

throughput of web server. A NN model was developed

able to predict web server performance metrics based on

the parameters of the Apache server, the core of the

Linux system and arrival traffic. In [4], Server overload

detection method is proposed by using statistical pattern

recognition method. The classifier predicted server

overload situation (underload, normal, and overload) on

14 performance counters that they assume to be

significant for overload detection.

 [3] presented a dynamic session management based

on reinforcement learning. A learning agent decides the

acceptance or rejection of an arriving session by

estimating the response time only for service request. In

[5], an efficient admission control algorithm, ACES,

based on the server workload characteristics. The

admission control algorithm ensures the bounded

response time from a web server by periodical allocation

of system resources according to the resource

requirements of incoming tasks. By rejecting requests

exceeding server capacity, the response performance of

the server is well maintained even under high system

utilization. The resource requirements of tasks are

estimated based on their types. A double-queue structure

is implemented to reduce the effects caused by

estimation inaccuracy, and to exploit the spare capacity

of the server, thus increasing the system throughput.

 In our experience, most of existing research

emphasized response time and other related factors of

web service to predict system resource and server

overload condition. In our consumption, service

response time is directly related to hardware

components of physical server. Therefore, it is

impossible to lack estimation response time of hardware

components. It is indispensible to know the response

time value of hardware components to increase

estimation accuracy of perdition method. In this work,

performance counters are chosen as important variables

of detection mechanism and the best classifier is defined

on our own experimentation.

3. Proposed System Architecture

 Proposed Architecture of overload control

mechanism is described in Figure 1.In this architecture;

there are three modules such as classification module,

overload prediction module, scheduling module and

admission control module. The number of requests

which will be processed is controlled (scheduling and

admission control), and a suitable Queue is dynamically

selected for request assignment. In classification

module, incoming request are assigned to each classes

based on their processing time by using lookup table.

This module parses each incoming request URL to

extract its file name and searches in a lookup table.

Figure 1.Architecture of proposed overload control mechanism

After a request has been classified, the queue module is

invoked. The queue module implements first in first-out

(FIFO) queuing policy. The queue module suspends

incoming requests and adds each of them to the queue

corresponding to its class. After this phase, the

scheduler listens the state of server form prediction

module and selects requests from queue according to

scheduling algorithm. The overload prediction module

predicts whether server is in which state (Underload,

Normal and Overload) based on performance counter

patterns. And then send server situations information to

admission control module and scheduling module. Once

server overload occurs, admission control module

rejects new incoming requests and reconsiders

acceptance of new incoming request when server pass

overload situation. This research is an ongoing research.

Therefore, in this paper, server overload detection

mechanism is presented as a part of overload control

system and evaluated the performance of the best

classifier on based line performance measures.

4. Server Overload Detection

 In this section, we will explain how to detect the

overload condition of physical server by using

classification method. In this approach, the following

stages are distinguish,

 Data generation

 Data preparation

 Designing classifier

 Evaluating classifier

The implementation of these stages will present in next

section.

4.1. Data Generation

 The first step of proposed method is collection data

from the server by using performance monitor (PM).PM

produces performance counters which describe server

states(State1,State2,State3 which is defined in proposed

Server Overload Control approach.Here,State1,2,3

means ;Low, Normal and High).Data set is generated on

window server which allow to use Performance Monitor

tool. In order to train classifier, synthetic data set is

created. We avoided collecting data from real server

because it can take long time to get enough data.

Therefore, synthetic data set is created by using load

generator such as CPU Busy which performs a stress

test on the same server. But the specifications of

production server must equal to real server. During

stress test, the load will vary from one state to another.

Two measurements are interested for training data set;

 Performance counter pattern which is used to

describe the server state

 Performance counter values which are used to

decide whether a performance counter pattern

should be defined as state1 or state2 or state3.

4.2. Data Preparation

4.2.1. Feature Selection

 Performance counters are measurements of system

state or activity. They can be included in the operating

system or can be part of individual applications.

Windows Performance Monitor requests the current

value of performance counters at specified time

intervals. Actually Performance Monitor tool can

generate 1948 performance counter patterns, but some

of these are not very unlikely to be of interest when

monitoring for overload. In [4] 36 counter patterns are

selected which are assume to be significant for overload

prediction. In our consumption, all performance

counters related to physical servers and their processes,

some counters may not be significant because of server

behavior. We can define which counters patterns are

significant or not by examining their counter values.

Firstly we calculate information gain of each feature by

using information gain ranking filter.

Figure 2. Result of Feature Selection

 Here, we can divide features into three groups. First

group is >=1 , second group is >=0 and gorup3

(G3)which combine G1 and G2 .The result is shown in

Figure 2.Accrodng to the figure; we can see G1 is

obviously effective on classifier. Therefore, we selected

significant features which contain higher information

gain value (>=1).Table I presented some of selected

performance counter list. We can improve data set by

reducing features from 1948 to 926 features.

4.2.2 Information gain Ranking Filter

 Information gain (IG) is a feature ranking method

based on decision trees that exhibits good classification

performance. Information gain used in feature selection

constitutes a filter approach. Filter approaches select

features using characteristics of individual features.

Advantages of the filter-based techniques are that they

can easily scale up to high-dimensional datasets and that

they are computationally fast and independent of the

learning algorithm. Information gain is a measure based

on entropy. Entropy is one of the most commonly used

discretization measures.

4.2.3 Data Transformation

 To be able to predict server state correctly, it is

important to transform it for use with a classifier.

Performance Monitor tool generate data collector set

which contain performance counter patterns and values.

These are need to assigned to a target class (overload,

normal and underload) based on their values. We built

our data set in the form of (ID, Values).Each

performance counter contain about 2000 records which

are recorded during 1 minute. The values are used to

define which pattern are meet with S1, S2 or S3.

Table 1. Selected Performance Counter List

Main
Categories

Counter
Name

ID Value

Physical
Disk

Avg.Disk
Queue
Length

D1571 0.000714245

%Disk Read
Time

D1572 0.396698

%Disk Write
Time

D1574 2.16555466666666

Processor %Interrupt
Time

U1616 1.559920773

% Idle Time U1619 98.27500867
%Processor
Time

U1731 2.504948441

Memory Page
Faults/sec

M1746 1655.02885723717

Available
Bytes

M1747 1367638016

Pages/sec M1754 20.5277281622
Network
Interface

Packets/sec NT1833 93.93193628
Packets
Received/sec

NT1834 1.020999307

Packets
Sent/sec

NT1835 1.020999307

Current
Bandwidth

NT1836 100000000

4.3 Designing Classifier

 Although understanding the data distribution is

very helpful for choosing the best classifier, it is very

difficult to understand the different data distribution. For

small dimensional data set, it can be easy to understand

by plotting the data, but it is not simple for very large

scale data set. In this work, in order to know which

classifier is the most suitable one for our synthesis

dataset many classifiers are tried heuristically with our

data set. Some classifiers are sensitive to very large or

small data set. Since performance monitor recorded

thousands of performance counters contained thousands

of features, it is important to choose the best classifier

correctly.

4.4 Evaluating Classifier

 In this subsection we present the Machine Learning

evaluation process conducted. The two main goals of

this process are Model selection and Model Accessment.

Model Selection: Comparing different Machine

Learning algorithms in order to choose the

(approximately) best one.

Model Assessment: Having chosen a final algorithm,

estimate its generalization error on new data.

 According to the goal (model selection or

assessment), different tasks could be conducted.

However, in a rich-data scenario, the best approach (if

there is enough data) to both model selection and model

assessment goals is to divide the data set into three

disjoint parts: Training data set needed to build (or fit)

the models. Validation data set (or development data test

set) used to estimate the test error for model selection.

Test data set used for assessment of the generalization

error of the finally chosen model.

 The main goal is to conduct an evaluation of

different Machine Learning algorithms to chose the best

algorithm found during current chapter to predict the

time to crash and trigger the rejuvenation action in real

environments. Due to this goal, we have conducted a

model selection. Model selection process requires that

ML algorithms given are trained with the training data

set, and later compared according to the estimated test

error using a completely different data set, called

validation data set or development data test set. The

training and validation process is presented in Figure 3

and described in detail below.

Figure 3. Machine Learning Model Selection Process

5. Analysis of Machine Learning Classifiers

5.1 J48 Decision Tree

 Decision trees are a classic way to represent

information from a machine learning algorithm, and

offer a fast and powerful way to express structures in

data. The overall concept is to gradually generalize a

decision tree until it gains a balance of flexibility and

accuracy. J48 is a decision classifier and also an

optimized implementation of C4.5. The C4.5 technique

is one of the decision tree families that can produce both

decision tree and rule-sets and construct a tree. J48

classifier is among the most popular and powerful

decision tree classifiers. J48 are the improved versions

of C4.5 algorithms. The J48 algorithm gives several

options related to tree pruning. Pruning produces fewer,

more easily interpreted results. The basic algorithm

recursively classifies until each leaf is pure, meaning

that the data has been categorized as close to perfectly

as possible. This process ensures maximum accuracy on

the training data, but it may create excessive rules that

only describe particular idiosyncrasies of that data.

 In this experiment, the classification rules are

generated by using j48 classifier for the training dataset.
The J48 classifier produced the analysis of the

training dataset and the classification rules.

 p433 = 974848.0: Low (6.0)

 p433 = 8.0: Normal (366.0)

 p433 = 3.0: High (360.0)

5.2 JRip Classifier

 JRip (RIPPER) is one of the basic and most popular

algorithms. Classes are examined in increasing size

and an initial set of rules for the class is generated

using incremental reduced error JRip (RIPPER)

proceeds by treating all the examples of a particular

judgment in the training data as a class, and finding

a set of rules that cover all the members of that

class. Thereafter it proceeds to the next class and does

the same, repeating this until all classes have been

covered. JRIP classifier generates some useful rules;

 p4 >= 208486400: Low (336.0/0.0)

 Normal (366.0/0.0)

 p257 <= 798.679436:High (360.0/0.0)

5.3 OneR Classifier

 OneR is a simple and a very effective classification

algorithm frequently used in machine learning

applications. ven though OneR is difficult to be

improved further due to its simplicity, it can be

enhanced by providing better methods for handling

some of the exceptions. OneR, short for “One Rule”, is a

simple classification algorithm that generates a one-

level decision tree. OneR is able to infer typically

simple, yet accurate, classification rules from a set of

instances. Comprehensive studies of OneR’s

performance have shown it produces rules only slightly

less accurate than state-of-the-art learning schemes

while producing rules that are simple for humans to

interpret. The OneR algorithm creates one rule for each

attribute in the training data, then selects the rule with

the smallest error rate as its ‘one rule’. To create a rule

for an attribute, the most frequent class for each attribute

value must be determined. The most frequent class is

simply the class that appears most often for that attribute

value. A rule is simply a set of attribute values bound to

their majority class; one such binding for each attribute

value of the attribute the rule is based on.

 p257< 432.1987029:Low

 p257>=3.740097533971775E7:Normal

 p257< 3.740097533971775E7:High

5.4 AdaBoostM1 Classifier

 Boosting has been a very successful idea for the

two-class classification problem. In going from two-

class to multi-class classification, most algorithms have

been restricted to reducing the multi-class classification

problem to multiple two-class problems. AdaBoost.M1

is the most direct extension of the original AdaBoost

algorithm to the multiclass case. AdaBoost.M1 only

requires the performance of each weak classifier be

better than random guessing rather than ½.

 p1164 = 9.0 : High

 p1164 != 9.0 : Low

 p1164 is missing : High

6. Experimental Results of Classifiers

 We conduct our experiment on our synthesis

performance counter data set.. Our synthesis data set

includes 500 up to 1500 records and 150 to 926 features.
A summary of some of the properties of these datasets is

given in Table 2. For these datasets with no provided

test set, we reran each algorithm 10 times (since some of

the algorithms are randomized), and averaged the

results. We used 10-fold cross validation, and averaged

the results over 10 runs of each algorithm on our

synthesis dataset. Different classifiers are J48, JRip,

OneR and AdaBoostM1. In our experiment,

performance of classifiers is evaluated over execution

time (second) and percentage of correctly classified

instances. In this experiment, all criteria are not different

so far. Classifier speed is very important for real time

implementation.
 Inspection of Figure 4 shows that OneR gave the

lowest classification speed and same correctly classify

instances. As we can see in Figure 5,all classifiers have

the same values in correctly classified instant.

Figure 4. Experimentation on Classifier Speed

Figure 5. Experimentation on Correctly Classified

Instances

7. Conclusion

 In this paper, we have practically evaluated

performance of various classifiers on a synthetically

generated dataset. We presented how selected classifier

(Random Tree) is match with our synthesis dataset and

how can be useful for server overload detection. In

detection method, performance counter values are

effective to improve the accuracy of detection

mechanism. According to experimental results, the

accuracy of selected classifier is obviously increased

over number of features .In future work, we will

combine random Tree with overload prevention method

such as admission control and implement in our

overload control mechanism.

References

[1] Saeed Sharifian,Seyed Ahmad Motamedi,Mohammad

Kazem Akbari, "Estimation-Based Load-Balancing with

Admission Control For Cluster Web Servers," ETRI Journa,

vol-31. No.2,April 2009.

[2] Lahcene AID,Malik LOUDINI,Walid-Khaled HIDOUCI,

"An Admission Control Mechanism For Web Servers Using

Neural Network," International Journal of Computer

Application(0975-8887), vol. 15-No.5,Feb 2011.

[3] Kimihiro Mizutani,Izumi Koyanagi,Takuji Tachibana,

"Dyanmic Session Management Based on Reinforcement

Learning in Virtual Server Environment ," Proceeding of the

International MultiConference of Engineers and Computer

Scientists, Vols II,IMECS.March 17-19,2010,Hong Kong.

[4] Cor-Paul Bezemer,Veronika Cheplaygina,Andy Zaidman,

"Using Pattern Recognition Techniques for Server Overload

Detection,"Report TUD-SERG-2011-009.

[5] Xiangping Chen,Huamin Chen,Prasant Mohapatra,

"ACES:An Efficient Admission Control Scheme For QoS-

aware Web Servers," Computer Communications 26(2003),

1581-1593.

[6] Andy Liaw,Matthew Wiener, "Classification and

Regression by RandomForest," ISSN(1609-3631), vol.

2/3,December 2002.

[7] Breiman L, " Random Forests," Journal of Machine

Learning, vol. 45-No.1,pp.5-32,Springer,October 2001.

[8] Frederick Livingston, "Implementation of Breiman’s

Random Forest Machine Learning Algorithm,"ECE591Q

Machine Learning Jpurnal Paper,Fall 2005 .

[9] Xiangping Chen,Huamin Chen,Prasant Mohapatra, "An

Admission Control Scheme For Predictable Server Response

Time For Web Servers," ACM 1-58113-348-

0/01/0005,WWW10,May 1-5,2001,Hong Kong.

[10] Y.-C. Ko, S.-K. Park, C.-Y. Chun, H.-W. Lee and C.-H.

Cho, “An adaptive QoS provisioning distributed call

admission control using fuzzy logic control,” in Proc. of IEEE

ICC 2001, vol. 2, pp. 356-360, Helsinki, Finland, 2001.

[11] Nicolas Poggi,Toni Moreno,Josep Lluis Berral ,Ricard

Gavalda, Jordi Torres,“Self-adaptive utility-based session

management”, Computer Networks 53(2009) 1712-1721,©

2008 Elsevier B.V.

[12] Gerald Tesauro, Nicholas K.Jong,”A Hybrid

Reinforcement Learning Approach to Autonomic Resource

Allocation”,In the fifth IEEE International conference on

Autonomic Computing,ICAC 06,Dublin, Ireland,June 2006.

[13] Apache Software Foundation.http://www.apache.org

[14] Web server survey by Netcraft, http://news.netcraft.com,

May 2011.

