
Usage of Tree-based Indexing Scheme in Structured P2P System

Yi Yi Mar

University of Computer

Studies, Yangon

yiyimar.yym@googlemail.

com

Aung Htein Maw

University of Computer

Studies, Yangon

Khine Moe Nwe

University of Computer

Studies, Yangon

Abstract

Query processing is an essential role in large

scale distributed network application environment

including database indexing, distributed

computing, location aware services and network

monitoring system. In order to support complex

queries including multi-dimensional and/or range

queries, the efficiency of indexing scheme is

important to be considered. This paper proposes

the usage of tree-based multi-dimensional

indexing scheme that is built over structured P2P

overlay network. There are two phases in this

indexing scheme (1) data locating phase using a

balanced kd-tree (2) building of indexing

mechanism which is based on the location of data

on peers. This proposed indexing mechanism can

support complex query processing over structured

P2P overlay network and keeps load balancing

among peers. In this paper, the performance of

tree-based indexing mechanism is evaluated by

using many simulated results.

Key words: Indexing over structured P2P system,

DHT-based P2P system, Complex query

processing over DHT

1. Introduction

Peer-to-peer architecture is widely used in

many distributed applications because of its

ability in good security and scalability [7].

Sharing content files containing audio, video, data

or anything in a digital format is very common,

and real-time data such as telephony traffic is also

passed using P2P technology. In such

applications, while complex query processing

plays an important role for locating data by any

peer in the systems efficiently and quickly [14],

one challenge is organizing peers into a

cooperative, global index. Another major

challenge is load balancing of resource sharing

among network nodes. There are many

researchers proposed various techniques to

enhance query processing in both unstructured

and structured P2P systems.

Earlier peer-to-peer proposals were

unstructured overlays like Napster [3] and

Gnutella [2]. Unstructured P2P system can handle

more complex queries such as multi-dimensional

query, range query, keyword-based query. Napster

is a centralized server providing a legal music

service. A central server maintains the keywords

as artist name, album title or song and

information about all nodes and objects in the

system. Even Napster has the simple routing

mechanism with central server; it is poor in

scalability and can also have a single point of

failure. To overcome single point of failure,

Gnutella is proposed as a fully decentralized

protocol for file sharing. It uses flooding-based

technique for communication and, as a

consequence, they produce high message

overhead as each node has to forward every

message to every neighbor.

Structured P2P overlay network systems such

as CAN [11], Chord [15], Pastry [12] and

Tapestry [20] use distributed hash table (DHT) to

provide exact match query with good

performance quality. The DHT index allows the

P2P system to sustain insert throughput and large

data volumes, while ensuring fault-tolerance, and

high availability. Most of the DHTs are one-

dimensional indexing mechanism to locate data

present in the system by implementing a

Distributed Hashing Table. DHT is actually a data

structure for storing of pairs (key, data) in a

mailto:yiyimar.yym@googlemail.com
mailto:yiyimar.yym@googlemail.com

distributed manner, which allows fast locating

data when a key is given. For example, DHT

based P2P systems can use the exact-match query

interface with the filename as the keyword to

publish and lookup files.

Figure 1.Structured P2P overlay network

 Figure 1 shows the structured P2P overlay

network. For an efficient information discovery

service in distributed computing systems, the

processing of complex query (multi-dimensional

and/or range query) may be a challenge for DHTs.

To address this issue, an indexing scheme is

required to be built over underlying DHTs. In

recent approaches, complex queries are provided

by a single index which is created with the

replication and combination of all attributes, and

multiple indexes which combine the results of

each attribute’s index. One important fact is that

any indexing scheme over DHT may also need to

keep the load balancing among peers, i.e. one

major issue in large amount of resource sharing in

P2P system. This issue can be handled by using a

balanced data structure over DHT [8].

 This paper focuses on the usage of balanced

kd-tree to build the proposed tree-based multi-

dimensional indexing scheme over Chord.

Optimal splitting threshold value (TSP) can make

the kd-tree balanced. To keep kd-tree balance, in

this paper, the difference TSP values are tested

with many simulated results.

 The rest of the paper is organized as follows.

In Section 2, the existing indexing approaches

over DHT-based P2P systems are discussed as a

related work. In Section 3, the architecture of the

proposed indexing system is discussed and the

required steps to build the indexing mechanism

are described. The steps in complex query

processing by using the proposed indexing

scheme is discussed in Section 4. In Section 5, the

required parameters for simulation setup are

described. To show how kd-tree can affect the

indexing scheme, the performance of kd-tree is

also evaluated based on the various metrics in

Section 5. This paper summarizes about the

proposed indexing scheme in Section 6.

2. Related Work

 In recent years, there are many researches for

supporting query processing over DHT-based P2P

environment. These indexing schemes use various

data structures such as tree, graph, and grid.

 Prefix Hash Tree, PHT [10] is the first

indexing scheme over DHT that enables more

sophisticated query. To process range query, PHT

proposed two algorithms. The first algorithm

resulted in high latency because all leaves are

sequentially traversed until the query is

completely solved. In second algorithm, it is

parallelized and recursively forward the query

until the leaf nodes overlapping the query. When

the requested range is small, it may lead over

loading.

 To solve the overhead in PHT, DST [21] fill

the internal nodes with data to violate traversing

down to leaf node. So it stores keys not only in

leaf nodes but also in internal nodes. To process a

range query, it is decomposed into a union of

minimum node intervals of segment tree. Then

the query is solved by the union of keys returned

from the corresponding DST nodes. However, it

may leads maintenance overhead because keys

are replicated over internal nodes and leaves.

Distributed arbitrary segment tree,

 DAST [4] is built for range query processing.

It constructs an arbitrary segment tree and

encapsulate the (key, data) pairs with segmentIds.

When processing range query, it divides the

requested query into the segments as in AST

(arbitrary segment tree). And then it retrieves the

data related with segmentIds. DAST can reduce

the number of DHT retrievals. But AOR

(accuracy of range) can drop because the union of

segmentIds can also contain the irrelevant

segmentIds.

 Distributed Hilbert R-trees (DHR-trees) [18]

provides range query processing structure for P2P

systems. It can achieve efficient query processing.

But it cannot handle multidimensional query with

one index, whereas it reduce the m-dimensions to

one-dimension.

 There is an indexing middleware that was

proposed for DHT-based P2P systems. This

system is performed over Pastry [12]. Unlike

other systems, this system requires the object to

register and each peer needs to keep meta-data of

<attribute, value> pairs. Meta-data are fragmented

and duplicated on peers. This system uses the

meta-data to search the location (peerID) of

requested data. This system can have an overhead

of updating because meta-data of value are

replicated over the peers.

 In [17], m-LIGHT also used kd-tree to build

efficient indexing scheme over underlying DHT.

It proposes a new data aware splitting strategy to

distribute data on kd-tree. And then it also

proposed a new mechanism to map data from kd-

tree to peer nodes. It is high efficient in query

processing but still has the drawback in

bandwidth and latency consuming.

 In this paper, a tree-based indexing scheme

with a balanced kd-tree over underlying DHT is

proposed. This indexing scheme can support

complex query and also can keep load balancing

among peers.

3. System Architecture for Proposed

Indexing Scheme

 In this proposed tree-based indexing scheme,

there are two phases.

[1] data locating phase

[2] building of indexing mechanism phase

 In this paper, the real bibliographic dataset,

DBLP [1] is used. DBLP data set is composed of

bibliography data. It consists of published records

for each author represented with multi-

dimensional attributes, such as author name, year,

title, book title, URL and conference. In these

attributes such as author name, title, book title

and URL are converted to floating points in the

range of [0, 1] for data partitioning over kd-tree.

To evaluate the performance of the proposed

indexing scheme, DBLP dataset with three data

sizes – 200 000, 500 000, and 700 000 is used,

where data size is the total number of records in

each system.

3.1. Data Locating to Underlying Network

 Before distributing data among peers,

balanced kd-tree is used to partition the large data

set with the purpose of supporting data locality.

Then the partitioned data are distributed among

with optimal load balance. Kd-tree is a data

structure and very useful in several applications,

such as searches involving a multi-dimensional

and range query [6, 9], geographic information

system and computer graphic systems. Data

locating phase, shown in figure 2, is an important

role in this tree-based indexing scheme. The two

steps are,

[1] Data partitioning using kd-tree

[2] Mapping data of kd-tree to overlay

network

Figure 2.Data locating in P2P overlay network

3.1.1. Data Partitioning

 In partitioning data, a balanced kd-tree is

used. In figure 3, a balanced kd-tree is built

according to two attributes or two dimensions,

author name and year. Data are recursively

partitioned into two sets along with different

dimensions in an alternative fashion. The

partitioning process continues until each node

does not have the amount of data more than Tsp.

Half points of each dimension are generated while

building kd-tree. Data are only stored in leaves of

kd-tree. In addition, half points of dimensions are

also stored in leaves of kd-tree. In this indexing

system, each peer needs to keep half points of

leaves on kd-tree into local half point database

(Hdb).

 Labels or keys of data are defined while

building kd-tree. Each node in kd-tree is labeled

with “#” plus binary sequence “100...” The label

of root node is “#” and the label of branch and

leaf nodes are the concatenation of its own label

(0/1) and the label of parent’s node label. The

label of left child is label of parent’s plus “0” and

right child has the label of parent’s plus “1”.

Figure 3.Kd-tree with labels

Figure 4.2-dimensional cell regions

 In figure 4, leaves of kd-tree are represented

in the form of rectangular cell regions. Each cell

has a name with binary sequence. These names

are labels of leave nodes of kd-tree. Each cell

contains the related data (records) regarding with

2D partitioning. In this proposed indexing

scheme, each leaf node’s label is considered as a

data key of data records in the same cell region.

These data keys are used in mapping data to

peers.

 A major drawback in kd-tree may be highly

imbalanced load on tree nodes [13]. An adaptive

solution is to divide the data to two subgroups

with equal amounts of data [19]. Optimal TSP

value can keep the load balance among kd-tree

nodes. To get the optimal value, TSP is tested by

assigning the values between 100 and 1,000. In

this paper, an optimal TSP is defined by using the

following two metrics

[1] number of empty nodes on kd-tree

[2] number of peers when data size is zero

 After the kd-tree has been built, all data have

data keys according the labels of leaves in kd-

tree. To store data into DHT on each peer, data

IDs are generated from hashing of the data keys

by using a consistent hashing such as SHA-1 [5].

SHA-1 is a consistent hashing as which has good

distributional properties. In this paper, data keys

are values and data IDs are keys which are stored

in DHT as pairs.

3.1.2. Mapping to Peer Nodes

 This section discusses how to map the data

keys of kd-tree to peers in an underlying overlay

network. In this paper, the proposed indexing

scheme is built over an underlying DHT overlay

network, Chord [15]. Chord is a well known

DHT. It uses keys to store and retrieve data. . In

Chord overlay network, peer nodes’ identifiers are

organized in a ring topology. In order to distribute

data among peers, data keys need to be mapped

with the peer nodes in a balanced manner.

 Random choice can provide balanced

distribution [16]. So the set of keys and nodes are

required to be randomly chosen. For this purpose,

standard hash function can be used to distribute

data keys and nodes IP hashed in randomness.

Data IDs and peer IDs are computed by using

SHA-1. In this paper, peer IDs are computed by

hashing the IP address and data IDs by hashing of

data keys. Then data IDs are distributed to the

peer nodes whose IDs are closest (less than) or

equal to the peer IDs.

 Load balancing is an issue in any P2P system.

Resource sharing among peers needs to be

balanced. In this paper, we consider load on each

node is balanced while each peer has the load no

more than Tpl, where Tpl is the maximum load on

each node. If most of peers in the network hold

Tpl, the P2P system will be balanced. Tpl can be

computed according to (1), where Tr is the total

amount of data in the system and N is the total

number of peers in network.

Tpl = Tr /N (1)

 After mapping to peers, the overlay network

can have the peers with zero data size where Tpl

on peers is 0 because of consistent hashing. In

this paper, TSP is defined at the optimal value

where a few number of peers with the zero data

size.

3.2. Proposed Indexing Mechanism

 The major objective of proposed indexing

mechanism is to reduce the communication cost

by generating locations of data in terms of data

keys or labels before occurring DHT lookup

operation. The proposed indexing mechanism can

reduce the number of message forwarding or

number of visited peers, and time consuming in

query processing.

Figure 5.Process flow of the proposed indexing

mechanism

 Figure 5 shows the process flow of proposed

indexing mechanism. This indexing mechanism

starts when a complex query is requested. Then

local kd-tree is built by using half points stored in

Hdb. Then it generates the data labels or keys for

the requested query.

4. Complex Query Processing in DHT-

based Overlay Network

 Figure 6 shows the step by step processing of

a complex query over the proposed indexing

mechanism.

Figure 6.Indexing in DHT-based overlay

network

 When a query is sent to one of peers in the

network, this peer works as an initiator. Firstly,

the indexing scheme at the initiator checks in its

own storage. If data are not found in local nodes,

the indexing scheme generates the labels or keys

of data. These labels can cover the requested

query. Then this initiator forwards the labels of

data to the peers where each peer’s ID is closest

the data labels. The forwarding occurs until the

requested query can be retrieved.

5. Experimental Setup

 The proposed indexing scheme shown in

figure 6 is implemented with the use of java

language as a simulated model. In this

experiment, the required parameters are shown in

table 1.

Table 1.Parameters for simulation

Parameters for overlay network simulation

Number of peers in

overlay network
1000

 sizes of data source

(1) DBLP-200 000

(2) DBLP- 500 000

(3) DBLP- 700 000

(1) 200 000 records

(2) 500 000 records

(3) 700 000 records

Range of Tsp values 100 to 1000

dimension multi dimensions

 To keep kd-tree balanced, TSP is defined via

simulation results. This simulated model is tested

with the various parameters as shown in table 1.

In this paper, experimental simulations can

demonstrate the effectiveness of the proposed

approach. Tsp is considered based on three

factors,

[1] kd-tree is balanced or imbalanced,

[2] the effects of kd-tree which can affect

the resource sharing among peers with

load balance or imbalance and

[3] how kd-tree can affect the indexing

scheme while generation of labels (data

localities) of requested query.

5.1 Performance Evaluation of Kd-tree

 In this section, simulated experiments for

kd-tree are shown. Kd-tree is used in various

forms such as data structure only, an index

for range searching, and so on. Therefore TSP

value can vary based on the applications. In

this paper, kd-tree is used for data

partitioning and supporting half points which

are used in the proposed indexing

mechanism. In this section, TSP value is

defined using three metrics to get a balanced

kd-tree.
 Firstly, Tsp is considered what value is optimal

value to keep kd-tree balanced. After partitioning

data on kd-tree, it becomes either balanced or

imbalanced. Empty nodes are generated while the

kd-tree is built. If there are large amount of empty

nodes on kd-tree, it will be imbalanced.

Figure 7.Percentage of empty nodes on kd-tree

 As shown in figure 7, the percentage of

empty nodes is the least at the value of Tsp with

200 while the data sizes are 500 000 and 700 000.

While in data size 200 000, the least value

occurred at Tsp with 100. According to these

results, the value of Tsp that can keep kd-tree

balanced is 200.

 Secondly, TSP is considered how it can affect

the load balancing among peers. Load balancing

is an important fact in P2P system. Therefore the

indexing scheme over underlying DHT-based P2P

system should keep load balancing. While

mapping data among peers, some of peer nodes

can have no data because of consistent hashing.

The higher number of peers with zero data size

can imbalance P2P network.

Figure 8.Percentage of peers with empty data

set

 Figure 8 shows that the greater the value of

Tsp, the higher the percentage of empty peer

nodes. For this case, the value of Tsp can only be

the lowest value, 100.

Figure 9.Number of wrong labels

 Figure 9 shows the number of wrong labels

generated by the indexing scheme. At data sizes

500 000 and 700 000, there are no wrong labels

produced where Tsp is greater than equal 500. At

Tsp 20000 and 400, the number of wrong label is

one, and while at 100 with wrong labels more

than one. At data size 200,000, there no wrong

labels from 200 to 1,000, whereas one wrong

label at 100. In our indexing system, query

processing is depends on the labels or locality of

data. Therefore the number of wrong labels can

increase the number of DHT operations on

irrelevant peer nodes. The indexing scheme can

perform more efficiently if the number of wrong

labels can be reduced.

 According the above figures (7), (8) and (9),

Tsp value 200 is defined an optimal value. Tsp

with can keep kd-tree balanced, load balancing

among peers and can make our indexing scheme

generate mostly true labels or data keys.

5.2 Communication Cost of Tree-based

Indexing Scheme

 Figure 10 shows the communication cost in

terms of number of peers visited or number of

message forwarding, and query response time or

time consuming for a 4-dimensional range query.

A 4-dimensional query is tested in this simulation

model. This query is to retrieve a paper, i.e.,

“Generating a Device Driver with a Formal

Specification Language” in the book of “Applied

Informatics” by the author “Tetsuro Katayama” in

the year “between 1990 and 2000”.” This query is

a 4-dimensional range query which uses four

attributes such as author name, paper title, book

title and year in the range of 1990 to 2000.

(a) Number of visited peers

(b) Query response time

Figure 10.Communication cost for a query for

a 4-dimensional query

 Figure 10(a) shows the number of peers

visited for the above 4-dimensional query, where

y-axis is the number of visited peers and x-axis is

the various data sizes. Figure 10(b) shows the

query response time, where x-axis is the various

data sizes and y-axis is the response time

perceived for this query. According to figure 10,

the proposed indexing scheme is reliable because

it can handle various amounts of data.

6. Conclusion

 In this paper, the performance of tree based

indexing mechanism is considered by building a

simulated model. Based upon our simulation

results, 200 is the optimal value for Tsp for

building a balanced kd-tree. In this proposed

system, there is no need to modify the underlying

Chord DHT overlay network. In this paper, the

indexing scheme can handle multi-dimensions

(multiple attributes) by a single DHT-based P2P

system. The evaluation results show that the

proposed indexing scheme over structured P2P

overlay network can also handle a large amount

of data.

References

[1] DBLP. http://dblp.uni-trier.de/xml

[2] Gnutella. http://rfc-gnutella.sourceforge.net/

[3] Napster. http://www.napster.co.uk

[4] X. Chen and S. A. Jarvis, “Distributed

Arbitrary Segment Trees: Providing Efficient

Range Query Support over Public DHT

Services”, The 18th Annual IEEE

International Symposium on Personal,

Indoor and Mobile Radio Communications

(PIMRC’07), 2007.

[5] FIPS. PUBS 180-2 Secure Hash Standard

U.S. Department of Commerce/NIST, August

1, 2002.

[6] H. M. Kakde, “Range Searching using Kd

Tree”, 2005

[7] D. Liu and W. Xie, “Spatial Query on

GroupP2P Networks”, In Proceeding of the

2009 International Conference on Networks

Security, Wireless Communications and

Trusted Computing, Volume 02, 2009.

[8] L. Lymberopoulos, S. Papayassiliou and V.

Maglaris, “ A Novel Load Balancing

Mechanism for P2P Networking”, GridNets,

Lyon, France, Octorber 17-19, 2007.

[9] A. W. Moore, “An Introductory Tutorial on

Kd-Trees”, PhD. Thesis, University of

Cambridge, 1991.

[10] S. Ramabladran, S. Ratnasamy, J. M.

Hellerstein, and S. Shenker, “Prefix Hash

Tree : An Indexing Data Structure over

Distributed Hash Tables”, PODC, 2004

[11] S. Ranasamy, P. Francis, M. Handley, R.

Karp and S. Shenker, “ A Scalable Content-

Addessable Network”, SIGCOMM’01, San

Diego, California, USA, August 27-31, 2001.

[12] A. Rowstorn and P. Druschel, “Pastry: A

Scalable, decentralized object location and

routing for large scale peer-to-peer systems”,

In Proceeding of the 18th IFIP/ACM

International Conference on Distributed

Systems Platforms (Middleware 2001),

Heidelberg, Germany, November 2001.

[13] S. Sarmady, “A peer-to-peer Dictionary

Using Chord DHT”, Report, School of

Computer Science, University of Sains

Malaysia, 2007

[14] S. Saroiu, K. P. Gummadi and S. D. Gribble,

“Measuring and analyzing the characteristics

of Napster and Gnutella hosts”, Multimedia

Systems, Volume 9 Issue 2, August 2003

[15] I. Stoica, R. Morris, D. Karger, M. F.

Kaashoek, and H. Balakrishnan, “Chord: A

scalable Peer-to-Peer Lookup Service for

Internet Applications”, In Proceedings of

ACM SIGCOMM’01, San Diego, September

2001.

[16] I. Stoica, R. Morris, D. L. Nowell, D. R.

Karger, M. F. Kaashoek, F. Dabek and H.

Balakrishnan, “Chord: A Scalable Peer-to-

peer Lookup Protocol for Internet

Applications.

[17] Y. Tang, J. Xu, S. Zhou and W. Lee, “m-

LIGHT: Indexing Multi-Dimensional Data

over DHTs”, 29th IEEE International

Conference on Distributed Computing

Systems, 2009.

[18] X. Wei and K. Sezaki, “DHR Trees- A

Distributed Multidimensional Indexing

Structure for P2P systems”, Scalable

Computing: Practice and Experience,

Volume 8, November 3, 2007, pp-291.

[19] M. Wu, “On R-tree Index Structures and

Nearest Neighbor Queries”, Master Thesis,

University of Houston, December, 2006

[20] B. Y. Zhao, L. Huang, J. Strilling, S. C.

Rhea, A. D. Joseph and J. D> Kubiatowicz,

“Tapestry: A Resilient Global-scale over for

the Service Deployment”, IEEE Journal On

Selected Areas in Communications, Vol. 22,

No. 1, January 2004.

[21] C. Zheng, G. Shen, S. Li and S. Shenker,

“Distributed Segment Tree: Support of range

query and cover query over DHT”, In the 5th

International Workshop on Peer-to-Peer

Systems (IPTPS), February 2006.

http://dblp.uni-trier.de/xml
http://rfc-gnutella.sourceforge.net/
http://www.napster.co.uk/

