

Proceedings of 10th International Conference on Science and Engineering 2019,
7-8 December 2019, Yangon, Myanmar

ICSE2019-ICT-21

Statistics Measurement of Network Traffic in Software Defined
Networking

Ohmmar Min Mon#1, Myat Thida Mon#2

Faculty of Computer Systems and Technologies, University of Information Technology,

Yangon, Myanmar
1 ommm@uit.edu.mm

2 myattmon@uit.edu.mm

Abstract - The recent developments in existing network
infrastructure need high bandwidth capacity and multiple
paths between high-end switches. Software-Defined
Networking (SDN) provides QoS for network flows. Statistics
measurement is an essential task in traffic engineering.
Traditional equal cost multi-path (ECMP) routing used to
statically steer flows among multiple equal-cost paths but it
cannot guarantee optimal resource utilization. This static hash
collision can degrade throughput and high latency for the
flows. Flow Path Computing algorithm (FPCA) can minimize
the network congestion by rerouting the flows over the
alternative paths in SDN. The FPCA algorithm evaluates the
existing
existing flow is shifted from the congested path to the
alternative light loaded path. In this paper, this paper also
takes a look at statistics measurement in SDN to improve the
performance of HTTP and FTP traffic over ECMP. The
evaluations indicate that FPCA algorithm enforces the
required end to-end QoS for each traffic flow.

Keywords - Software Defined Network, ECMP, QoS, Port
statistics, OpenFlow

I. INTRODUCTION

Software Defined Networking is introduced to provide
programmable solutions and to bring network flexibility by
separating the control plane and data plane. The demand for
multimedia applications is increasing on the enterprise
network. Statistics measurement solutions in SDN provide
reliable traffic measurement of traffic engineering
parameters such as delay variation, bandwidth to detect to
an enormous range of network applications. To guarantee
the desired service performance with peak demands,
network operators provide accommodations for high QoS
applications. To efficiently report such a challenge, the
increasing of new applications and services need severe
performance demands.

The active research topic SDN has more advanced
features while using traditional network function. The SDN
architecture can support high QoS applications such as
voice, video and real-time applications. The SDN
Controller gets the commands from the application layer
and interconnects back to the applications including port
statistics and events from the network devices. Based on
the traffic statistics along with the network bandwidth
information, a controller can construct the network
topology. The controller provides network control decision
and network devices forward packets through a well-known
protocol such as OpenFlow. OpenFlow allows network
traffic control from the controller and it also offers many
concepts like traffic engineering.

To select the optimal path for the absence of failures, the
existing forwarding protocols are improved. Conventional
enterprise networks use the Equal Cost Multi-path (ECMP).
ECMP is one of the most general solutions for traffic
engineering to increase the fast protection performance of
interior gateway protocols. These static flows do not
account for resulting collisions degrading overall switch
utilization for existing network utilization. Congestion
control is a key factor in ensuring network stability and
robustness. In this paper, this paper compares FPCA
against ECMP on network parameters such as throughput
for HTTP and FTP traffic and the FPCA algorithm
guarantees the demanded QoS stage.

The rest of the paper is designed as follows:
The related work for the statistics measurement is

discussed in Section II. Then this paper discusses the traffic
measurement scheme and the FPCA algorithm used to
measure the statistics in Section III. The evaluation results
are discussed in Section IV. In Section V, this paper
concludes and future work is provided.

II. RELATED WORK

The proposed method is based on Traffic Engineering. In
this section, this paper will discuss the literature works.

In [1], an efficient algorithm exploits the SR assignment
by finding the optimal solution with the shortest list of
SIDs by using Shortest Path First algorithm to allocate SR
path. It implements equal cost multi-path routing (ECMP).
This paper simplifies the control plane operation by
representing the available network segments for calculating
the segment list to reduce the available payload area.

The authors proposed an application to allocate the
optimal paths between the networks and to offer the end-to-
end connection among the users at the end of the network.
This paper is applied to the SDN routing computation SRC
to select the optimal path for the multi-domain environment
in [2]. This SRC application does not consider when there
is no abrupt change in the network like traffic growth.

An efficient method based on SDN discussed for
reduction of congestion in data-center networks for
rerouting of selected network flows in the switches with the
congested links [3].

D.J.Hamad, et al in [4], implements fine-grained traffic
engineering procedures using the statistics on the switches
that calculate the link utilizations and link capacities on the
links. This system collects link usage information in terms
of the number of bytes and they do not consider the traffic
congestion for each link when generated traffic is greater
than the link bandwidth from the ports in the network.

This method controls the congestion in SDN based
OpenFlow using the traffic statistics of the network devices
and flows are rerouted through paths with more free
resources. The authors in [5] consider two parameters such
as throughput and average packet delay reduction.

The authors in [6] provide bandwidth guarantees for
priority flows for efficient use of network resources. To be
able to satisfy the bandwidth requirement, the Dijkstra
algorithm is used to reduce traffic routing for providing
QoS flows of the network.

The authors presented that link utilization is calculated
in the SDN controller and recalculated rerouting algorithm
is applied to switches which would be configured by using
OpenFlow configuration protocol [7].

In [8], the authors proposed an efficient congestion
avoidance method based on the flow requirements. This
paper is compared with ECMP to prevent congestion and
the waste of resources by allocating resources.

The authors in [9], BCMPO problem proposed to obtain
more flexible control and better allocation of resources
using the Genetic Algorithm but it is not able to realize the
parallel optimization.

Ian F. Akyildiz, et al. [10] provides an overview of
traffic engineering mechanisms to manage data flow
efficiently at both the control plane and the data plane in
SDN architectures. They also discuss classical TE
mechanisms developed for ATM, IP and MPLS networks,
and then survey in detail the state-of-the-art in TE for SDN
from both academia and industry perspectives.

III. TRAFFIC MEASUREMENT SCHEME

Software-Defined Networking is a new management
approach for planning networks that separates the control
plane and forwarding plane of a network. For traffic
engineering (TE), the problem of finding the optimal paths
for traffic demands is to define routes dynamically. Traffic
engineering is the avoidance of congestion on any one path
and ensures bandwidth guarantee across the network. TE
has the capability how to distribute QoS issue traffic when
the network congestion occurs.

In SDN, the forwarding plane lies under the control
plane and all the routing decisions are made by the control
plane. The SDN controller monitors traffic metrics to
install forwarding rules into the switches. The result is sent
back in a form of a new entry to flow table in the switch for
subsequent flows. The application layer lies above the
control plane. The SDN controller in the control plane
communicates with the application layer by North Bound
API and to the data plane by South Bound API like
OpenFlow as shown in Figure 1. Statistics measurement in
SDN trusts on gathering statistical data about network
flows from the switches in real-time. Statistics
measurement is a crucial task in traffic engineering. It
includes three main tasks: topology measurement, statistics
measurement, and performance measurement. OpenFlow is
a well-known open protocol that offers the control plane to
data plane. It allows network administrators to modify the
flow-table by permitting the network to be changed
programmatically by the network applications and services.
So, the network administrators can implement QoS by
collecting network statistics. Real-time applications are
provisioning to support network changes and to allocate
network resources.

Fig. 1 Architecture of Software Defined Network

Traditional enterprise networks use Equal Cost
Multipath (ECMP). A key limitation of ECMP is that two
or more large, long-lived flows can collide on their core
switches and the utilization of bandwidth in these links may
exceed the network threshold. ECMP cannot handle to
select the path dynamically. This paper describes the
proposed SDN-based statistics measurement for rerouting
between source and destination. In this system, the route
selection of the flows is done by considering the paths from
the controller to the switches. Congested links are
identified as over-utilized links that cause network
congestion and packet loss.

The main contribution of this paper is to implement the
SDN-based statistics measurement with OpenFlow and the
FPCA algorithm that is outperformed the conventional
ECMP in fat-tree network. And then the traffic through
these congested links is rerouted through the light-loaded
alternate path and the total network throughput increases.

The performance of the system is measured by
throughput for HTTP and FTP traffic. When the routing
module receives a Packet-in request, the controller checks
the paths that satisfy the flow. If the flow demand is
exceeded 10% of link bandwidth, it computes the light
loaded path based on port statistics and the existing flow is
shifted from the congested path to light loaded path.

The method for finding the QoS path for a flow is
described in the Algorithm. This system uses this
information to build up the network G(V, E) as shown in
Figure 3, where the vertex V corresponds to the switches
and the edge E corresponds to the links. In this case, the
free bandwidth is defined the free bandwidth in Equation.
(1).

)
1000

8
*max(PortSpeedtyLinkCapaciFreebw

 -----(1)

In Figure 2, the pseudo-code is presented for flow path
computing algorithm (FPCA). Then fD represents flow
demand, bwmax defines the maximum bandwidth, bwf

represents feasible bandwidth and Ch defines the congested
path.

Fig. 2 Flow Path computing algorithm

IV. EXPERIMENTAL SETUP

The evaluation was performed on the topology depicted
in Figure 3. The VM image has a 64-bits Ubuntu 16.04
installed as the guest OS. The system was run with
Core(TM) (i5) 1.6 GHz CPU and 4 GB of RAM. These are
the minimum requirements to run the environment. To
emulate the algorithm, this paper use the topology of Fat-
tree network with k=4, which consists of K-port switches
with k pods. Each pod is composed of two layers of k/2
switches. In addition, each aggregation is composed of
(k/2)2 core switches with one port attached to each k pod.
Each edge switch is directly connected to (k/2) hosts and
the remaining k/2 port of edge switches is connected to a
(k/2) aggregation switch. The testbed consists of 16 hosts
interconnected using a fat-tree of 20 (4-port) switches as
shown in Figure 3.

Fig. 3 Experiment with Fat-tree Network topology

The evaluation was performed on the Mininet testbed to
create a network topology with OpenFlow virtual switches.
The network topology is based on Fat-tree topology to
provide better performance in throughput for each traffic
flow. All flows are generated with iperf between iperf
servers and clients. Throughput results from the flows are
generated via algorithm is
implemented in Mininet using Python to create flows. In
the FPCA algorithm, the threshold of link bandwidth
utilization is 10% of link bandwidth. If the flow demand of
a switch exceeds the specified threshold, it will forward
some flows to the light loaded path based on port statistics
and finally, the throughput of each traffic flow will be
improved. In the measurement, this paper has been tested
with flow size 23 MB and default window size is 85.3 kB
for both tests.

Experimental results are based on the different
parameters for the network topology. Two types of traffic
are tested in the experiments: HTTP traffic and FTP traffic.
The FPCA algorithm is performed by generating the
different numbers of flows as shown in Figure. 4, 5 and
Table I.

TABLE I
NUMBER OF FLOWS

No. Flows Source->Destination
HTTP
Traffic H005->H001, H006->H002,

H007->H003, H008->H004

FTP
Traffic H005->H001, H006->H001,

H007->H003, H008->H003

Table II shows the list of the results of four HTTP flows
(h001-h005, h002-h006, h003-h007, h004-h008) in this
experiment. Table III shows the list of the results of FTP
flows (h001-h005, h001-h006, h003-h007, h003-h008) in
this experiment.

TABLE II
THROUGHPUT OF HTTP TRAFFIC

Data
Flow

100
MB

200
MB

300
MB

400
MB

500
MB

FPCA 91.2 182.4 272.8 365.6 449.6

ECMP 57.6 163.2 232.8 359.2 434.4

TABLE IIII
THROUGHPUT OF FTP TRAFFIC

Data
Flow

100
MB

200
MB

300
MB

400
MB

500
MB

FPCA 91.3 183.76 273.19 361.44 449.36

ECMP 90.6 138.16 193.04 356.32 436.16

The list of the results of flow completion time for four
HTTP flows (h001-h005, h002-h006, h003-h007, h004-
h008) is shown in Table IV. FPCA achieves better
performance than ECMP. ECMP increases significantly
due to congestion. FPCA outperforms ECMP.

Input: link bandwidth, Topology: G(V,E)
Output: Number of selected path
p= selected path;
Initialize: L.capacity =bwmax;
Begin
Loop

For each p in link do

if bwf + fD

f + fD

return p
else
p= Ch(hash),
return p = p (Ch)

end Loop
end

TABLE IV
FLOW COMPLETION TIMES BETWEEN FPCA AND ECMP

Flows ECMP
(ms)

FPCA
(ms)

4 (HTTP) 3.71 2.0

4 (FTP) 3.75 1.99

Fig. 4 Port Statistics from the controller

Fig. 5 Demand estimation between flows

The fat-tree network topology as shown in Figure 3 is
created by using Mininet emulator. For example, assuming
that flow f from h005 to h001 uses the primary path (3005

2005 1001 2001 3002), the alternate paths used
to protect every link on the primary path of flow obtained
using Algorithm. Flows interfere locally at the Aggregation
switch due to a hash collision. The algorithm tries to select
the best rule that can protect the flow without interfere
other backup paths. Therefore, the congested traffic will be
rerouted through (3005 2006 1003 2002 3002).

Fig. 6 Throughput between HTTP traffic

This paper compares the throughput per flow under a
different number of OpenFlow switches deployed using the
proposed FPCA and ECMP. The test result of throughput
between HTTP traffic is shown in Figure 6. HTTP traffic in
ECMP decreases 3.38% than FPCA. The FPCA receives

packets at desired around 2 seconds. ECMP flows increase
significantly 3.71s due to congestion. Throughput results of
HTTP in FPCA in all traffic with different bandwidths also
achieves better performance than in ECMP.

Fig. 7 Throughput between FTP traffic

The test result of throughput between FTP traffic is
shown in Figure 7. FPCA also achieves better performance
than in ECMP. ECMP decreases by 2.93% than in FPCA.
The FPCA receives packets at desired around 2 seconds.
ECMP flows increase significantly 3.75s due to congestion.
Throughput results of FTP in FPCA in all traffic with
different bandwidth also achieves better performance than
in ECMP. So the topology of FPCA in SDN architecture is
suitable for fat-tree networks than ECMP.

V. CONCLUSIONS

In this paper, this paper focused on the problem of
ECMP and congestion control through fat-tree network
architecture
of link bandwidth, the flow is rerouted to the light loaded
path using port statistics. This paper has implemented for
statistics measurement in SDN to improve the performance
of HTTP and FTP traffic over ECMP. This paper was
considered with three metrics: (i) flow demand, (ii) port
speed and (iii) free bandwidth. The experimental results
proved that 3.38% and 2.93% throughput improvement for
HTTP traffic and FTP traffic compared with ECMP. Based
on the simulation results, the performance of the FPCA
algorithm outperforms the conventional flow hashing-based
ECMP. This paper would like to enrich the congestion
control of fat-tree network management in the future.

REFERENCES

[1] S. Salsano, L. Veltri, L. Davoli, P.L. Ventre, and G. Siracusano,
Poor Man's Segment Routing, a minimalistic approach to

2016-2016 IEEE/IFIP Network Operations and Management
Symposium, 2016, pp. 598-604.

[2] H. C
Path Computation Architecture for the Cloud-Network on
Software-
pp. 5413-5430.

[3] -based Traffic
-Pacific

Network Operations and Management Symposium pp. 1-6. IEEE.
[4]

statistics from network devices in an SDN environment using
OpenFl -956.

[5]

654-657.
[6]

framework for QoS provision
forum TELFOR 2014, Serbia, Belgrade, November 2014.

[7] S. Seungbeom, L. Jaiyong, S. Kyuho, J. Hangyong and L. Jihoon,

IEEE.
[8] M.M Tajiki, B. Akbari, M. Shojafar, M., S.H Ghasemi, M.L

computationally efficient congestion-avoidance and traffic
engineering in software-
Computing, 2018, pp.1881-1897.

[9] L. Yilan, P. Yun, Y. Muxi, W. Wen
Multi-Path Routing Problem i
2015, 11th International Conference on Natural Computation
(ICNC).

[10] I.F Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, A roadmap
for traffic engineering in SDN- 2014,
Computer Networks, pp.1-30.

