
Application of Neural Networks for Estimating Software Maintainability Using 

Object-Oriented Metrics 

Mie Mie Thet Thwin, Tong-Seng Quah 

School of Electronic & Electrical Engineering
Nanyang Technological University 

miethet@pmail.ntu.edu.sg

Abstract

This paper presents the application of neural networks 
in software maintainability estimation using object-
oriented metrics.  Maintenance effort can be measured as 
the number of lines changed per class. In this paper, the 
number of lines changed per class (modification volume) 
is predicted using Ward neural network and General 
Regression neural network (GRNN). Object-oriented 
design metrics concerning with inheritance related 
measures, complexity measures, cohesion measures, 
coupling measures and size measures are applied in this 
study. Principal components, which are derived from 
these object-oriented metrics, are used as independent 
variables.

1. Introduction 

Many object-oriented metrics have been proposed over 

the last decade. Prediction models using object-oriented 

design metrics can be used for obtaining assurances about 

software quality. In practice, quality estimation means 

either estimating reliability or maintainability. Reliability 

is typically measured as the number of defects. These can 

be pre-release or post-release. The estimated number of 

defects can also be normalized by a size measure to 

obtain a defect density estimate. Maintainability is 

typically measured as change effort. Change effort can 

mean either the average effort to make a change to a 

class, or the total effort spent on changing a class.

Khoshgoftarr et al. introduced the use of the neural 

networks as a tool for predicting software quality. In [19], 

they presented a discriminant model and a neural network 

model of the large telecommunications system, 

classifying modules as not fault-prone or fault-prone. 

They compared the neural-network model with a 

nonparametric disciminant model, and found the neural 

network model had better predictive accuracy. 

We conduct our study in the object-oriented paradigm. 

However since the object-oriented paradigm exhibits 

different characteristics from the procedural paradigm, 

different software metrics have to be defined and used. 

Our neural network models aim to predict object 

oriented software maintainability by estimating the 

number of lines changed per class. We used software 

metrics concerning with inheritance related measures, 

cohesion measures, coupling measures, complexity 

measures and size measure. 

We also introduce using Ward neural network and 

General Regression neural network to improve prediction 

result for estimating software maintainability. Ward 

neural network is a backpropagation network with 

different activation functions. They are applied to hidden 

layer slabs to detect different features in a pattern 

processed through a network to lead to better prediction. 

We use a Gaussian function in one hidden slab to detect 

feature in the mid-range of the data and a Gaussian 

complement in another hidden slab to detect features for 

the upper and lower extremes of the data. Thus, the 

output layer will get different “views of the data”. 

Combining the two feature sets in the output layer leads 

to a better prediction. 

Another architecture that we have chosen is the 

General Regression Neural Network (GRNN). Specht 

[18] has stated that it is a memory-based network that 

provide estimates of continuous variables and converges 

to the underlying (linear or nonlinear) regression surface. 

This is a one-pass learning algorithm with a highly 

parallel structure. Even with sparse data is a 

multidimensional measurement space; the algorithm 

provides smooth transitions from one observed value to 

another. 

2. Related work 

There is great interest in the use of object-oriented 

approach in software engineering. With the increasing use 

of object-oriented methods in new software development 

there is a growing need to both document and improve 

current practices in object-oriented design and 

development. 

Many measures have been proposed in the literature to 

capture the quality of object-oriented (OO) code and 

design and used for detecting fault-proneness of classes 



[3, 4, 6, 8, 15]. Many investigations using statistical 

methods had been made to predict software quality. 

Emanm and Melo [4] have constructed a model to 

predict which classes in a future release of a commercial 

Java application will be faulty. The model was then 

validated on a subsequent release of the same application. 

Their results indicated that the prediction model had a 

high accuracy. 

Fioravanti and Nesi have extracted over 200 different 

object-oriented metrics to identify a suitable model for 

detecting fault-proneness of classes [8]. They came to the 

conclusion that only few of them were relevant for 

identifying fault-prone classes. 

A set of object-oriented metrics in terms of their 

usefulness in predicting fault-proneness, an important 

software quality indicator is empirically validated in [17]. 

Their validation is carried out using two data analysis 

techniques: regression analysis and discriminant analysis. 

L. Briand et al., the relationships between existing 

object-oriented coupling, cohesion, and inheritance 

measures and the probability of fault detection in system 

classes during testing explored empirically. Their 

univariate analysis have shown that many coupling and 

inheritance measures are strongly related to the 

probability of fault detection in a class. Their multivariate 

analysis results showed that by using some of the 

coupling and inheritance measures, very accurate models 

could be derived to predict in which classes most of the 

faults actually lie [10].  

Wei Li and Sallie Henry [16] have done the statistical 

analyses of a prediction model incorporating ten object-

oriented metrics. Their result has shown that there is a 

strong relationship between metrics and maintenance 

effort in object-oriented systems. 

Marcela Genero et al.[9] have presented a set of 

metrics for measuring the structural complexity of UML 

class diagrams and to use them for predicting their 

maintainability that will heavily be correlated with object-

oriented information system maintainability. 

Most of these prediction models are built using 

statistical models.  Neural networks have seen an 

explosion of interest over the years, and are being 

successfully applied across a range of problem domains, 

in areas as diverse as finance, medicine, engineering, 

geology and physics. Indeed, anywhere that there are 

problems of prediction, classification or control, neural 

networks are being introduced. Neural network can be 

used as a predictive model because it is very sophisticated 

modeling techniques capable of modeling complex 

functions. 

In [2], Khoshgoftaar et al presented a case study of 

real-time avionics software to predict the testability of 

each module from static measurements of source code. 

They found that neural network is a promising technique 

for building predictive models, because they are able to 

model nonlinear relationships. 

Our neural network models aim to predict object 

oriented software maintainability by estimating the 

number of lines changed per class. We also introduce 

using Ward neural network and General Regression 

neural network to improve prediction result for estimating 

software maintainability. 

3. Design of the study 

3.1. Object-oriented metrics 

As discussed in section I, we are introducing the 

research on maintenance efforts predictions into object 

oriented paradigm using neural networks. As such object 

oriented metrics have to be selected and used in our 

study. To predict the maintenance effort, the following 

software metrics are used: 

Depth of Inheritance Tree (DIT) of a class is the length 

of the longest path from the class to the root in the 

inheritance hierarchy. This determines the complexity of 

a class based on its ancestors, since a class with many 

ancestors is likely to inherit much of the complexity of its 

ancestors. The deeper a class is in the hierarchy, the 

greater the number of methods it is likely to inherit 

making it more complex to predict its behavior. This has 

direct relationship to maintainability. 

Number of Children (NOC) measures the number of 

immediate descendants of a particular class. This 

measures an amount of potential reuse of the class. The 

more reuse a class might have, the more complex it may 

be, and the more classes are directly affected by changes 

in it implementation. This increases the magnitude of 

ripple effects. 

Message Passing Coupling (MPC) gives an indication 

of how many message are passed among objects of the 

classes. The number of messages sent out from a class 

indicates how dependent the implementation of the local 

methods is on the methods in other classes. 

Response For a Class (RFC) is the number of methods 

that can potentially be executed in response to a message 

received by an object of that class. The response set of a 

class consists of the set of M methods of the class, and the 

set of methods directly or indirectly invoked by methods 

in M. 

Lack of Cohesion in Methods (LCOM) is the number 

of pairs of methods in the class using no attributes in 

common, minus the number of pairs of methods that do. 

If this difference is negative, LCOM is set to zero. 

Data Abstraction Coupling (DAC) is the number of 

attributes in a class that have as their type another class. 

Weighted Methods per Class (WMC) is the summation 

of McCabe’s cyclomatic complexity of each local 

method. The more control flows a class’s methods have, 



the harder it is to understand them, thus, the harder it is to 

maintain them. A method with a low cyclomatic 

complexity is generally better.  

The number of local methods (NOM) defined in a 

class indicates the operation property of a class. The more 

methods a class has, the more complex will be the class’s 

interface.

SIZE1 is calculated by counting the number of 

executable statements (measured by number of 

semicolons) in a class. 

SIZE2 is the total number of attributes and methods of 

a class. 

3.2. Neural network modeling 

The first neural network architecture that we have 

chosen is the Ward Network[20]. It is a Backpropagation 

network that has three slabs in the hidden layer. Hidden 

layers in neural network are known as feature detectors. 

A slab is a group of neurons.  When each slab in the 

hidden layer has a different activation function, it offers 

three ways of viewing the data. We use linear function to 

the output slab. We use hyperbolic tangent (tanh) function 

is used in one slab of hidden layer because it is better for 

continuous valued outputs especially if the linear function 

is used on the output layer.  Gaussian function is used in 

another slab of the hidden layer. This function is unique, 

because unlike the others, it is not an increasing function.  

It is the classic bell shaped curve, which maps high values 

into low ones, and maps mid-range values into high ones. 

Gaussian Complement is used in the third slab of the 

hidden layer to bring out meaningful characteristics in the 

extremes of the data.  The learning rate and momentum 

are set to 0.1 and initial weight is set to 0.3 in this study. 

Another neural network architecture that we have 

chosen is the General Regression Neural Network 

(GRNN). GRNN is based on a one-pass learning 

algorithm with a highly parallel structure. GRNN is a 

powerful memory based network that could estimates 

continuous variables and converges to the underlying 

regression surface. The strength of GRNN is that it is able 

to deal with sparse data effectively. Specht [18] claims 

that the algorithm in GRNN is able to provide a smooth 

transition from one observed value to another, even with 

sparse data in a multidimensional measurement space. 

GRNN applications are able to produce continuous 

valued outputs. For GRNN networks, the number of 

neurons in the hidden layer is usually the number of 

patterns in the training set because each pattern in the 

training set is represented by on neurons. The primary 

advantage to the GRNN is the speed at which the network 

can be trained. Training a GRNN is performed in one 

pass. The smoothing factor allows the GRNN to 

interpolate between the patterns or spectra in the training 

set.

3.3. Principal component analysis 

If a group of variables in a data set are strongly 

correlated, these variables are likely to measure the same 

underlying dimension (i.e., class property) of the object to 

be measured. Many object-oriented metrics have high 

correlation with each other. For example, the number of 

local method (NOM) is strongly correlated with class 

size. The confounding effect of class size is studied in [7]. 

Principal component analysis (PCA) is a standard 

technique to identify the underlying, orthogonal 

dimensions that explain relations between the variables in 

a data set. Principal components (PCs) are linear 

combinations of the standardized independent variables. 

It is also a data reduction technique. The varimax rotation 

method was adopted in this study. It is an orthogonal 

rotation method that minimizes the number of variable 

that have high loadings on each factor. It simplifies the 

interpretation of the factors. We have selected the PCs 

only PCs whose eigenvalue is larger than 1.0. 

4. Prediction of maintenance effort 

To predict the maintenance effort two commercial 

software products QUES(Quality Evaluation System) 

data and UIMS(User Interface System) data are used in 

this investigation. These data are presented in [16]. The 

maintenance effort is measured by using the number of 

lines changed per class. A line change could be an 

addition or a deletion. A change of the content of a line is 

counted as a deletion followed by an addition. This 

measurement is used in this study to estimate the 

maintainability of the object-oriented systems. In this 

study, DIT, MPC, RFC, LCOM, DAC, WMC, NOM, 

SIZE1 and SIZE2 are used in QUES system and DIT, 

NOC, MPC, RFC, LCOM, DAC, WMC, NOM, SIZE1 

and SIZE2 are used in UIMS to produce principal 

components. Both system were designed and developed 

with Class-Ada. First, each data pattern was examined for 

erroneous entries, outliers, blank entries and redundancy. 

After standardizing the metric data, we performed the 

principal component analysis. Table 1 and Table 2 

present the relationship between the original object-

oriented metrics and the domain metrics for these 

systems. 

In QUES system, PCA identified three PCs, which 

capture 89% of the data set variance. Table 1 shows for 

each rotated component the coefficients of the measure, 

with coefficients larger than 0.6 set in boldface. The eigen 

value, the percentage of the data set variance each PC 

describes, and the cumulative variance percentage are 

also provided. Based on the analysis of the coefficients

associated with each metrics within each of the three 

rotated components, the PCs are interpreted as follows: 



The first component is highly correlated with NOM,

SIZE2, RFC, LCOM, WMC, SIZE1 and DAC. NOM is a

better representative, however, because it is less

correlated with the other two components. The second

component is most highly correlated with MPC. The third

component is most highly correlated with DIT. This

suggests that NOM, MPC and DIT metrics should be

focused on further analysis for QUES system.

In UIMS system, PCA also identified three PCs, which

capture 84% of the data set variance as shown in Table 2.

The first component is highly correlated with SIZE2, 

WMC, RFC, LCOM, NOM, SIZE1 and MPC. SIZE2 is a 

better representative. The second component is highly

correlated with DIT and NOC. The third component is

most highly correlated with DAC.

We sorted the data according to the number of changes 

values and divided data into training, testing, and

production sets using 3:1:1 ratio. Test set is used to

prevent over training network so they will generalize

well. We used the production data set to evaluate model

performance. It can be tested the network’s results with

the data the network has never seen before. 

We used Ward network and GRNN network for 

predicting number of changes. Table 3 and Table 4 show

the summary of Ward network design. In our General

Regression neural network design, there were three

neurons in input layer and 1 neuron in output layer for 

both systems. We used 71 hidden layered neurons in

QUES system and 39 hidden layered neurons in UIMS

system.

Table 1. Rotated principle components for QUES 
system

Metrics PC1 PC2 PC3

DIT 0.060 0.027 0.966

MPC -0.023 0.966 0.037

RFC 0.877 0.333 0.043

LCOM 0.869 -0.156 0.059

DAC 0.796 0.027 0.427

WMC 0.832 0.258 -0.27

NOM 0.971 -0.132 0.097

SIZE1 0.812 0.475 -0.089

SIZE2 0.963 -0.093 0.190

Eigenvalues 5.384 1.388 1.248

% Variance 59.826 15.424 13.863

Cummulative

% Variance 
59.826 75.250 89.113

4.1. Goodness of fit test 

To measure the goodness of fit of the model, we use

the coefficient of multiple determination (R-square), the

coefficient of correlation(r), r-square, mean square error, 

mean absolute error, minimum absolute error and 

maximum absolute error. These statistical measures are 

shown in Table 5 and Table 6. The correlation of the

predicted change and the observed change is represented

by the coefficient of correlation (r). An r value of 0.747 in

Ward neural network and 0.8590 in GRNN network

represents high correlations for cross-validation for 

QUES system.

Table 2. Rotated principle components for UIMS 
system

metrics PC1 PC2 PC3

DIT -0.14615 -0.86673 -0.01882

NOC 0.094873 0.788682 0.077122

MPC 0.606777 -0.28106 0.541778

RFC 0.941184 0.106288 0.23338

LCOM 0.881172 0.06539 -0.00822

DAC 0.13152 0.154133 0.94183

WMC 0.945789 0.11411 0.073862

NOM 0.876694 0.267267 0.274151

SIZE1 0.803835 0.323392 0.368195

SIZE2 0.960316 0.064614 0.122886

Eigenvalues 5.309595 1.684767 1.472685

% Variance 53.09595 16.84767 14.72685

Cummulative

% Variance 
53.09595 69.94361 84.67047

Table 3. Ward neural network summary for QUES 
system

Slab1 Slab2 Slab3 Slab4 Slab5
No. of

neurons
3 3 3 3 1

Table 4. Ward neural network summary for UIMS 
system

Slab1 Slab2 Slab3 Slab4 Slab5
No. of

neurons
3 2 2 2 1

For UIMS system, r value is 0.7798 in Ward neural

network and 0.6984 in GRNN network. The significance

level of a cross-validation is indicated by an p value. A

commonly accepted p value is 0.05. An two tailed

probability p values of 0.000 in both cross-validation

shows a high degree of confidence for the successful

validations. We conclude that the impact of model

prediction is valid in the population.

5. Conclusion 

This empirical study presents the prediction

maintenance effort using two neural network models.

From the results presented above, object-oriented metrics

chosen in this study appear to be useful in predicting



software maintainability. Network models are found to be 

useful to predict modification volume.  

Table 5. Experimental result for QUES system 
Ward GRNN

R-square 0.5545 0.7220

r (correlation 

coefficient)
0.747 0.8590

r- square 0.558 0.7379

Mean square error 817.004 509.790

Mean absolute error 20.782 12.182

Min absolute error 0.094 0

Max absolute error 114.161 109.385

t values 9.329047 13.98484

p values 0.000 0.000

Table 6. Experimental result for UIMS system 
Ward GRNN

R-square 0.5444 0.3547

r (correlation 

coefficient)
0.7798 0.6984

r- square 0.6081 0.4877

Mean square error 2294.174 3249.564

Mean absolute error 31.908 29.259

Min absolute error 1.567 0.300

Max absolute error 204.179  266.249

t values 7.576655 5.934987

p values 0.000 0.000

Our future research direction aims to estimate the 

software readiness using neural network models. To 

estimate the readiness, three factors will be considered in 

our future study: (1) how many faults are remaining in the 

programs (2) how many changes are required to correct 

the errors and (3) how much time is required in changing 

the programs. 
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