
Application of Neural Networks for Estimating Software Maintainability Using

Object-Oriented Metrics

Mie Mie Thet Thwin, Tong-Seng Quah

School of Electronic & Electrical Engineering
Nanyang Technological University

miethet@pmail.ntu.edu.sg

Abstract

This paper presents the application of neural networks
in software maintainability estimation using object-
oriented metrics. Maintenance effort can be measured as
the number of lines changed per class. In this paper, the
number of lines changed per class (modification volume)
is predicted using Ward neural network and General
Regression neural network (GRNN). Object-oriented
design metrics concerning with inheritance related
measures, complexity measures, cohesion measures,
coupling measures and size measures are applied in this
study. Principal components, which are derived from
these object-oriented metrics, are used as independent
variables.

1. Introduction

Many object-oriented metrics have been proposed over

the last decade. Prediction models using object-oriented

design metrics can be used for obtaining assurances about

software quality. In practice, quality estimation means

either estimating reliability or maintainability. Reliability

is typically measured as the number of defects. These can

be pre-release or post-release. The estimated number of

defects can also be normalized by a size measure to

obtain a defect density estimate. Maintainability is

typically measured as change effort. Change effort can

mean either the average effort to make a change to a

class, or the total effort spent on changing a class.

Khoshgoftarr et al. introduced the use of the neural

networks as a tool for predicting software quality. In [19],

they presented a discriminant model and a neural network

model of the large telecommunications system,

classifying modules as not fault-prone or fault-prone.

They compared the neural-network model with a

nonparametric disciminant model, and found the neural

network model had better predictive accuracy.

We conduct our study in the object-oriented paradigm.

However since the object-oriented paradigm exhibits

different characteristics from the procedural paradigm,

different software metrics have to be defined and used.

Our neural network models aim to predict object

oriented software maintainability by estimating the

number of lines changed per class. We used software

metrics concerning with inheritance related measures,

cohesion measures, coupling measures, complexity

measures and size measure.

We also introduce using Ward neural network and

General Regression neural network to improve prediction

result for estimating software maintainability. Ward

neural network is a backpropagation network with

different activation functions. They are applied to hidden

layer slabs to detect different features in a pattern

processed through a network to lead to better prediction.

We use a Gaussian function in one hidden slab to detect

feature in the mid-range of the data and a Gaussian

complement in another hidden slab to detect features for

the upper and lower extremes of the data. Thus, the

output layer will get different “views of the data”.

Combining the two feature sets in the output layer leads

to a better prediction.

Another architecture that we have chosen is the

General Regression Neural Network (GRNN). Specht

[18] has stated that it is a memory-based network that

provide estimates of continuous variables and converges

to the underlying (linear or nonlinear) regression surface.

This is a one-pass learning algorithm with a highly

parallel structure. Even with sparse data is a

multidimensional measurement space; the algorithm

provides smooth transitions from one observed value to

another.

2. Related work

There is great interest in the use of object-oriented

approach in software engineering. With the increasing use

of object-oriented methods in new software development

there is a growing need to both document and improve

current practices in object-oriented design and

development.

Many measures have been proposed in the literature to

capture the quality of object-oriented (OO) code and

design and used for detecting fault-proneness of classes

[3, 4, 6, 8, 15]. Many investigations using statistical

methods had been made to predict software quality.

Emanm and Melo [4] have constructed a model to

predict which classes in a future release of a commercial

Java application will be faulty. The model was then

validated on a subsequent release of the same application.

Their results indicated that the prediction model had a

high accuracy.

Fioravanti and Nesi have extracted over 200 different

object-oriented metrics to identify a suitable model for

detecting fault-proneness of classes [8]. They came to the

conclusion that only few of them were relevant for

identifying fault-prone classes.

A set of object-oriented metrics in terms of their

usefulness in predicting fault-proneness, an important

software quality indicator is empirically validated in [17].

Their validation is carried out using two data analysis

techniques: regression analysis and discriminant analysis.

L. Briand et al., the relationships between existing

object-oriented coupling, cohesion, and inheritance

measures and the probability of fault detection in system

classes during testing explored empirically. Their

univariate analysis have shown that many coupling and

inheritance measures are strongly related to the

probability of fault detection in a class. Their multivariate

analysis results showed that by using some of the

coupling and inheritance measures, very accurate models

could be derived to predict in which classes most of the

faults actually lie [10].

Wei Li and Sallie Henry [16] have done the statistical

analyses of a prediction model incorporating ten object-

oriented metrics. Their result has shown that there is a

strong relationship between metrics and maintenance

effort in object-oriented systems.

Marcela Genero et al.[9] have presented a set of

metrics for measuring the structural complexity of UML

class diagrams and to use them for predicting their

maintainability that will heavily be correlated with object-

oriented information system maintainability.

Most of these prediction models are built using

statistical models. Neural networks have seen an

explosion of interest over the years, and are being

successfully applied across a range of problem domains,

in areas as diverse as finance, medicine, engineering,

geology and physics. Indeed, anywhere that there are

problems of prediction, classification or control, neural

networks are being introduced. Neural network can be

used as a predictive model because it is very sophisticated

modeling techniques capable of modeling complex

functions.

In [2], Khoshgoftaar et al presented a case study of

real-time avionics software to predict the testability of

each module from static measurements of source code.

They found that neural network is a promising technique

for building predictive models, because they are able to

model nonlinear relationships.

Our neural network models aim to predict object

oriented software maintainability by estimating the

number of lines changed per class. We also introduce

using Ward neural network and General Regression

neural network to improve prediction result for estimating

software maintainability.

3. Design of the study

3.1. Object-oriented metrics

As discussed in section I, we are introducing the

research on maintenance efforts predictions into object

oriented paradigm using neural networks. As such object

oriented metrics have to be selected and used in our

study. To predict the maintenance effort, the following

software metrics are used:

Depth of Inheritance Tree (DIT) of a class is the length

of the longest path from the class to the root in the

inheritance hierarchy. This determines the complexity of

a class based on its ancestors, since a class with many

ancestors is likely to inherit much of the complexity of its

ancestors. The deeper a class is in the hierarchy, the

greater the number of methods it is likely to inherit

making it more complex to predict its behavior. This has

direct relationship to maintainability.

Number of Children (NOC) measures the number of

immediate descendants of a particular class. This

measures an amount of potential reuse of the class. The

more reuse a class might have, the more complex it may

be, and the more classes are directly affected by changes

in it implementation. This increases the magnitude of

ripple effects.

Message Passing Coupling (MPC) gives an indication

of how many message are passed among objects of the

classes. The number of messages sent out from a class

indicates how dependent the implementation of the local

methods is on the methods in other classes.

Response For a Class (RFC) is the number of methods

that can potentially be executed in response to a message

received by an object of that class. The response set of a

class consists of the set of M methods of the class, and the

set of methods directly or indirectly invoked by methods

in M.

Lack of Cohesion in Methods (LCOM) is the number

of pairs of methods in the class using no attributes in

common, minus the number of pairs of methods that do.

If this difference is negative, LCOM is set to zero.

Data Abstraction Coupling (DAC) is the number of

attributes in a class that have as their type another class.

Weighted Methods per Class (WMC) is the summation

of McCabe’s cyclomatic complexity of each local

method. The more control flows a class’s methods have,

the harder it is to understand them, thus, the harder it is to

maintain them. A method with a low cyclomatic

complexity is generally better.

The number of local methods (NOM) defined in a

class indicates the operation property of a class. The more

methods a class has, the more complex will be the class’s

interface.

SIZE1 is calculated by counting the number of

executable statements (measured by number of

semicolons) in a class.

SIZE2 is the total number of attributes and methods of

a class.

3.2. Neural network modeling

The first neural network architecture that we have

chosen is the Ward Network[20]. It is a Backpropagation

network that has three slabs in the hidden layer. Hidden

layers in neural network are known as feature detectors.

A slab is a group of neurons. When each slab in the

hidden layer has a different activation function, it offers

three ways of viewing the data. We use linear function to

the output slab. We use hyperbolic tangent (tanh) function

is used in one slab of hidden layer because it is better for

continuous valued outputs especially if the linear function

is used on the output layer. Gaussian function is used in

another slab of the hidden layer. This function is unique,

because unlike the others, it is not an increasing function.

It is the classic bell shaped curve, which maps high values

into low ones, and maps mid-range values into high ones.

Gaussian Complement is used in the third slab of the

hidden layer to bring out meaningful characteristics in the

extremes of the data. The learning rate and momentum

are set to 0.1 and initial weight is set to 0.3 in this study.

Another neural network architecture that we have

chosen is the General Regression Neural Network

(GRNN). GRNN is based on a one-pass learning

algorithm with a highly parallel structure. GRNN is a

powerful memory based network that could estimates

continuous variables and converges to the underlying

regression surface. The strength of GRNN is that it is able

to deal with sparse data effectively. Specht [18] claims

that the algorithm in GRNN is able to provide a smooth

transition from one observed value to another, even with

sparse data in a multidimensional measurement space.

GRNN applications are able to produce continuous

valued outputs. For GRNN networks, the number of

neurons in the hidden layer is usually the number of

patterns in the training set because each pattern in the

training set is represented by on neurons. The primary

advantage to the GRNN is the speed at which the network

can be trained. Training a GRNN is performed in one

pass. The smoothing factor allows the GRNN to

interpolate between the patterns or spectra in the training

set.

3.3. Principal component analysis

If a group of variables in a data set are strongly

correlated, these variables are likely to measure the same

underlying dimension (i.e., class property) of the object to

be measured. Many object-oriented metrics have high

correlation with each other. For example, the number of

local method (NOM) is strongly correlated with class

size. The confounding effect of class size is studied in [7].

Principal component analysis (PCA) is a standard

technique to identify the underlying, orthogonal

dimensions that explain relations between the variables in

a data set. Principal components (PCs) are linear

combinations of the standardized independent variables.

It is also a data reduction technique. The varimax rotation

method was adopted in this study. It is an orthogonal

rotation method that minimizes the number of variable

that have high loadings on each factor. It simplifies the

interpretation of the factors. We have selected the PCs

only PCs whose eigenvalue is larger than 1.0.

4. Prediction of maintenance effort

To predict the maintenance effort two commercial

software products QUES(Quality Evaluation System)

data and UIMS(User Interface System) data are used in

this investigation. These data are presented in [16]. The

maintenance effort is measured by using the number of

lines changed per class. A line change could be an

addition or a deletion. A change of the content of a line is

counted as a deletion followed by an addition. This

measurement is used in this study to estimate the

maintainability of the object-oriented systems. In this

study, DIT, MPC, RFC, LCOM, DAC, WMC, NOM,

SIZE1 and SIZE2 are used in QUES system and DIT,

NOC, MPC, RFC, LCOM, DAC, WMC, NOM, SIZE1

and SIZE2 are used in UIMS to produce principal

components. Both system were designed and developed

with Class-Ada. First, each data pattern was examined for

erroneous entries, outliers, blank entries and redundancy.

After standardizing the metric data, we performed the

principal component analysis. Table 1 and Table 2

present the relationship between the original object-

oriented metrics and the domain metrics for these

systems.

In QUES system, PCA identified three PCs, which

capture 89% of the data set variance. Table 1 shows for

each rotated component the coefficients of the measure,

with coefficients larger than 0.6 set in boldface. The eigen

value, the percentage of the data set variance each PC

describes, and the cumulative variance percentage are

also provided. Based on the analysis of the coefficients

associated with each metrics within each of the three

rotated components, the PCs are interpreted as follows:

The first component is highly correlated with NOM,

SIZE2, RFC, LCOM, WMC, SIZE1 and DAC. NOM is a

better representative, however, because it is less

correlated with the other two components. The second

component is most highly correlated with MPC. The third

component is most highly correlated with DIT. This

suggests that NOM, MPC and DIT metrics should be

focused on further analysis for QUES system.

In UIMS system, PCA also identified three PCs, which

capture 84% of the data set variance as shown in Table 2.

The first component is highly correlated with SIZE2,

WMC, RFC, LCOM, NOM, SIZE1 and MPC. SIZE2 is a

better representative. The second component is highly

correlated with DIT and NOC. The third component is

most highly correlated with DAC.

We sorted the data according to the number of changes

values and divided data into training, testing, and

production sets using 3:1:1 ratio. Test set is used to

prevent over training network so they will generalize

well. We used the production data set to evaluate model

performance. It can be tested the network’s results with

the data the network has never seen before.

We used Ward network and GRNN network for

predicting number of changes. Table 3 and Table 4 show

the summary of Ward network design. In our General

Regression neural network design, there were three

neurons in input layer and 1 neuron in output layer for

both systems. We used 71 hidden layered neurons in

QUES system and 39 hidden layered neurons in UIMS

system.

Table 1. Rotated principle components for QUES
system

Metrics PC1 PC2 PC3

DIT 0.060 0.027 0.966

MPC -0.023 0.966 0.037

RFC 0.877 0.333 0.043

LCOM 0.869 -0.156 0.059

DAC 0.796 0.027 0.427

WMC 0.832 0.258 -0.27

NOM 0.971 -0.132 0.097

SIZE1 0.812 0.475 -0.089

SIZE2 0.963 -0.093 0.190

Eigenvalues 5.384 1.388 1.248

% Variance 59.826 15.424 13.863

Cummulative

% Variance
59.826 75.250 89.113

4.1. Goodness of fit test

To measure the goodness of fit of the model, we use

the coefficient of multiple determination (R-square), the

coefficient of correlation(r), r-square, mean square error,

mean absolute error, minimum absolute error and

maximum absolute error. These statistical measures are

shown in Table 5 and Table 6. The correlation of the

predicted change and the observed change is represented

by the coefficient of correlation (r). An r value of 0.747 in

Ward neural network and 0.8590 in GRNN network

represents high correlations for cross-validation for

QUES system.

Table 2. Rotated principle components for UIMS
system

metrics PC1 PC2 PC3

DIT -0.14615 -0.86673 -0.01882

NOC 0.094873 0.788682 0.077122

MPC 0.606777 -0.28106 0.541778

RFC 0.941184 0.106288 0.23338

LCOM 0.881172 0.06539 -0.00822

DAC 0.13152 0.154133 0.94183

WMC 0.945789 0.11411 0.073862

NOM 0.876694 0.267267 0.274151

SIZE1 0.803835 0.323392 0.368195

SIZE2 0.960316 0.064614 0.122886

Eigenvalues 5.309595 1.684767 1.472685

% Variance 53.09595 16.84767 14.72685

Cummulative

% Variance
53.09595 69.94361 84.67047

Table 3. Ward neural network summary for QUES
system

Slab1 Slab2 Slab3 Slab4 Slab5
No. of

neurons
3 3 3 3 1

Table 4. Ward neural network summary for UIMS
system

Slab1 Slab2 Slab3 Slab4 Slab5
No. of

neurons
3 2 2 2 1

For UIMS system, r value is 0.7798 in Ward neural

network and 0.6984 in GRNN network. The significance

level of a cross-validation is indicated by an p value. A

commonly accepted p value is 0.05. An two tailed

probability p values of 0.000 in both cross-validation

shows a high degree of confidence for the successful

validations. We conclude that the impact of model

prediction is valid in the population.

5. Conclusion

This empirical study presents the prediction

maintenance effort using two neural network models.

From the results presented above, object-oriented metrics

chosen in this study appear to be useful in predicting

software maintainability. Network models are found to be

useful to predict modification volume.

Table 5. Experimental result for QUES system
Ward GRNN

R-square 0.5545 0.7220

r (correlation

coefficient)
0.747 0.8590

r- square 0.558 0.7379

Mean square error 817.004 509.790

Mean absolute error 20.782 12.182

Min absolute error 0.094 0

Max absolute error 114.161 109.385

t values 9.329047 13.98484

p values 0.000 0.000

Table 6. Experimental result for UIMS system
Ward GRNN

R-square 0.5444 0.3547

r (correlation

coefficient)
0.7798 0.6984

r- square 0.6081 0.4877

Mean square error 2294.174 3249.564

Mean absolute error 31.908 29.259

Min absolute error 1.567 0.300

Max absolute error 204.179 266.249

t values 7.576655 5.934987

p values 0.000 0.000

Our future research direction aims to estimate the

software readiness using neural network models. To

estimate the readiness, three factors will be considered in

our future study: (1) how many faults are remaining in the

programs (2) how many changes are required to correct

the errors and (3) how much time is required in changing

the programs.

6. References

[1] El Emam, ”A primer on object-oriented measurement”, Proc.

Seventh International Software Metrics Symposium, 2001, pp.

185 –187.

[2] T. M. Khoshgoftaar, E.B. Allen, Z. Xu, “Predicting

testability of program modules using a neural network”,

Proceedings of the 3rd IEEE Symposium on Application-

Specific Systems and Software Engineering Technology, 2000,

pp. 57-62.

[3] L.C. Briand, J.W. Daly, J.K. Wust, “A unified framework

for coupling measurement in object-oriented systems”, IEEE

Transactions on Software Engineering, 1999, pp. 91-121.

[4] El Emam, W. Melo, C.M. Javam, “The Prediction of Faulty

Classes Using Object-Oriented Design Metrics”, Journal of

Systems and Software, Elsevier Science, 2001, pp. 63-75.

[5] Mei-Huei Tang, Ming-Hung Kao, Mei-Hwa Chen,”An

empirical study on object-oriented metrics”, Proceedings of the

Sixth IEEE International Symposium on Software Metrics,

1999, pp. 242-249.

[6] A. Mounir Boukadoum, Houari A. Sahraoui and Hakim

Lounis, “Machine Learning Approach to Predict Software

Evolvability using fuzzy binary trees”, International Conference

on Artificial Intelligence, 2001.

[7] El Emam, K., Benlarbi, S., Goel, N. and Rai, S.N., “The

confounding effect of class size on the validity of object-

oriented metrics”, IEEE Transactions on Software Engineering,

vol. 27, pp. 630-650, 2001.

[8] F. Fioravanti, P. Nesi, “A study on fault-proneness detection

of object-oriented systems”, Fifth European Conference on

Software Maintenance and Reengineering, 2001, pp. 121 –130,

2001.

[9] M. Genero, J. Olivas, M. Piattini, F. Romero, “"Using

metrics to predict OO information systems maintainability",

Proceedings. of the 13th International Conference Advanced

Information Systems Engineering, Interlaken, Switzerland,

2001.

[10] L. Briand, J. Wüst, John W. Daly and V. Porter, "Exploring

the Relationships between Design Measures and Software

Quality in Object-Oriented Systems", Journal of Systems and

Software, 51(2000) p 245-273.

[11] M. Cartwright, and M. Shepperd, "An Empirical

Investigation of Object Oriented Software System", IEEE

Transactions on Software Engineering, vol. 26, pp. 786-796,

2000.

[12] N.E. Fenton and N. Ohlsson, ”Quantitative analysis of

faults and failures in a complex software system”, IEEE

Transactions on Software Engineering, vol. 26, pp. 797-814,

2000.

[13] D. Glasberg, K. El Emam, W. Melo, and N. Madhavji,

"Validating Object-oriented Design Metrics on a Commercial

Java Application". Technical Report, NRC/ERB-1080, NRC

44146, 2000.

[14] Todd L. Graves, Alan F. Karr, J.S. Marron, and Harvey

Siy, “Predicting Fault Incidence Using Software Change

History”, IEEE Transactions on Software Engineering, vol. 26,

2000.

[15] L.C. Briand, W.L Melo, J. Wust, “Assessing the

applicability of fault-proneness models across object-oriented

software projects”, IEEE Transactions on Software Engineering,

vol. 28 pp. 706 –720, 2002.

[16] Wei Li and S. Henry, “Object-Oriented Metrics that Predict

Maintainability”, Journal of Systems and Software, 1993, pp.

111-122, 1993.

[17] Ping Yu, T. Systa, and H. Muller, “Predicting fault-

proneness using OO metrics. An industrial case study”,

Proceedings. of 6th European Conference on Software

Maintenance and Reengineering, 2002, pp. 99 –107, 2002.

[18] D.F, Specht, “A general regression neural network”.IEEE

Transactions on Neural Networks, vol. 2, Issue: 6, pp. 568-576,

1991.

[19] T.M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl, and S.J.

Aud, “Application of neural networks to software quality

modeling of a very large telecommunications system”, IEEE

Transactions on Neural Network, vol. 8, pp. 902-909, 1997.

[20] NeuroShell 2 Help, Ward Systms Group, Inc.

http://www.wardsystems.com.

