Prediction of software development faults in PL/SQL files
using neural network models

Tong-Seng Quah, Mie Mie Thet Thwin

Abstract

Database application constitutes one of the largest and most important software domains in the world. Some classes or modules in such
applications are responsible for database operations. Structured Query Language (SQL) is used to communicate with database middleware in
these classes or modules. It can be issued interactively or embedded in a host language. This paper aims to predict the software development
faults in PL/SQL files using SQL metrics. Based on actual project defect data, the SQL metrics are empirically validated by analyzing their
relationship with the probability of fault detection across PL/SQL files. SQL metrics were extracted from Oracle PL/SQL code of a
warehouse management database application system. The faults were collected from the journal files that contain the documentation of all
changes in source files. The result demonstrates that these measures may be useful in predicting the fault concerning with database accesses.
In our study, General Regression Neural Network and Ward Neural Network are used to evaluate the capability of this set of SQL metrics in

predicting the number of faults in database applications.

Keywords: Structured Query Language metrics; Software prediction; Neural network; Software metrics

1. Introduction

Software metrics have been used as a quantitative means
of assessing software development process as well as the
quality of software products. Many researchers have studied
the correlation between software design metrics and the
likelihood of occurrence of software faults. They classified
the software modules (or classes) as not fault-prone or fault-
prone modules (or classes) and predicted the number of
faults in modules (or classes) using various software metrics
[1-12,14-16,18,20].

Although database applications are essential to every
organization, studies on product measures for static
database operation statements are rarely found in literature.
Structured Query Language (SQL) is the standard language
for relational database management systems. The relation-
ship between the fault occurrence for database applications
and SQL metrics is studied in this paper. We defined SQL
metrics that have strong relationship with faults and then
performed empirical validation for these metrics.

In our study, we analyzed the fault reports of develop-
ment projects involving database applications using
PL/SQL code and found that faults are related to the
number of SQL statements and the complexity of SQL
statements. SQL commands are mainly composed in the
PL/SQL files to perform database operations. SQL com-
plexity can be measured using product metrics such as the
number of table names in from-clauses: the number of join-
queries criteria in where-clauses.

A variety of statistical techniques are used in software
quality modeling. Models are often based on statistical
relationships between measures of quality and measures of
software metrics. However, relationships between static
software metrics and quality factors are often complex and
nonlinear, limiting the accuracy of conventional
approaches. Artificial neural networks are adopt at modeling
nonlinear functional relationships that are difficult to model
with other techniques, and thus, are attractive for software
quality modeling. In our previous studies, we predicted
software development faults using Object-Oriented Design
Metrics and neural network [16,20]. In these studies, we
found that neural network models had better predict
accuracy than regression models. In this study, the General



Regression Neural Network (GRNN) and Ward Neural
Network are used to predict faults in PL/SQL codes using
SQL metrics.

2. SQL metrics

Database application constitutes one of the largest and
most important software domains in the world [17]. Some
classes or modules in those applications are responsible for
handling database accesses. We analyzed the fault reports of
these classes or modules and found that faults are related to
the number of SQL statements, which are invoked from a
class or module; and the complexity of SQL statements. For
example, retrieving wrong database records. In such cases,
developers need to check and modify the corresponding
SQL statements to correct the error. To be able to predict the
number of such faults for these classes or modules are very
important in developing database applications.

The following SQL metrics are defined and used in this
study. Metrics having weak relationships with fault
occurrences, such as the number of Data Definition
Language (DDL) commands and Data Control Language
(DCL) commands are omitted in this study.

3. Neural network modeling

The first neural network architecture that we have chosen
is the Ward Network [21]. It is a backpropagation network
that has three slabs (slab2, slab3 and slab4) in the hidden
layer (Fig. 1). Hidden layers in neural network are known as
feature detectors. A slab is a group of neurons. Each slab in
the hidden layer has a different activation function, this
offers three ways of viewing the data. We use linear function
for the output slab (slab5). Hyperbolic tangent (tanh)
function is used in one slab of hidden layer (slab3) because
it is better for continuous valued outputs especially if the
linear function is used on the output layer. Gaussian
function is used in another slab of the hidden layer
(slab2). This function is unique, because unlike the others,
it is not an increasing function. It is the classic bell shaped
curve, which maps high values into low ones, and maps
mid-range values into high ones. Gaussian complement is
used in the third slab of the hidden layer (slab4) to bring out
meaningful characteristics in the extremes of the data. The
learning rate and momentum are set to 0.1 and initial weight
is set to 0.3 in this study.

Another neural network architecture that we have chosen
is the GRNN. GRNN is based on a one-pass learning
algorithm with a highly parallel structure. GRNN is a
powerful memory based network that could estimate
continuous variables and converge to the underlying
regression surface. The strength of GRNN is that it is able
to deal with sparse data effectively. Specht [19] shown that
the algorithm in GRNN is able to provide a smooth

Slab2 *

Slal

] stabs A

Fig. 1. Ward Neural Network.

transition from one observed value to another, even with
sparse data in a multidimensional measurement space.
GRNN applications are able to produce continuous valued
outputs. For GRNN networks, the number of neurons in the
hidden layer is usually the number of patterns in the training
set because each pattern in the training set is represented by
one neuron. The primary advantage of GRNN is the speed at
which the network can be trained. There are no training
parameters such as learning rate and momentum in back-
propagation network, but there is a smoothing factor that is
applied after the network is trained. The smoothing factor
allows the GRNN to interpolate between patterns or spectra
in the training set. The smoothing factor determines how
tightly the network matches its predictions to the data in the
training patterns. For GRNN networks, the smoothing factor
must be greater than 0 and usually range from 0.01 to 1 with
good results.

4. Data collection

The experiment data are collected from a set of
warehouse management applications that is developed
using C, JAM and PL/SQL languages. This set of
applications has more than a thousand source files of C,
JAM and PL/SQ codes and uses Oracle database. The
warehouse system has been customized and used by many
companies. Data access faults were collected from the
journal files that contain the documentation of all changes in
source files such as status of module, start date, end date,
developer, nature of changes, etc. Data on six SQL metrics
(Table 1) were extracted from 108 PL/SQL files of the
above-mentioned warehouse application using metric

Table 1

Proposed SQL metrics

SQL metrics Description

NSC Number of select commands

NIUO Number of insert/update operations

NDO Number of delete operations

NT Number of table in from-clause

NSCC Number of search condition criteria in where-clause
NJQ Number of join-queries criteria




extraction tool that we developed using VC++ incorporat-
ing MKS LEX and YACC utilities as embedded languages.

5. Experiment

Firstly, each data pattern was examined for erroneous
entries, outliers, blank entries and redundancy. We standar-
dized the SQL metrics to a mean of zero and a variance of
one for each metric. Many raw software metrics have
incompatible units of measures. This step converts all of
them to a unit of one standard variation. After standardizing
SQL metric data, we performed principal component
analysis (PCA). It is a standard technique to identify the
underlying, orthogonal dimensions that explain relations
between the variables in the data set. The varimax rotation
method was adopted in this study. Table 2 presents the
relationship between the original SQL metrics and the
domain metrics, based on experiment data extracted from
the warehouse management applications.

PCA identified two sets of principle components (PCs),
which capture 58.34 and 25.39%, respectively, of the data
set variance, which gives a representation of about 84% of
the population. Table 2 shows the coefficient measure for
each rotated component, with coefficients larger than 0.8 set
in boldface. The Eigen value, the percentage of data set each
PC describes, and the cumulative variance percentage are
also shown. Based on the analysis of the coefficients
associated with each metric within each of the two sets of
rotated components, the PCs are interpreted as follows:

The first set of principle components shows high
correlation between metrics NT, NSCC, NSC and NJQ.
However, NT is a better representative because it is less
correlated with the other components. The second set of
principle components shows high correlation between
metrics NIUO and NDO. We therefore chose NT and
NIUO metrics for further analysis.

We divided our data into training, testing, and production
sets using 3:1:1 ratio, which is the commonly accepted
proportion used by most neural network researchers. We
extracted 21 patterns for the test set and another 21 patterns

Table 2
Principle components

SQL metrics PC1 PC2

NSC 0.962 0.116
NIUO 0.029 0.872
NDO 0.052 0.859
NT 0.979 0.101
NSCC 0.967 —-0.038
NJQ 0.823 0.008
Eigenvalues 3.500 1.524
% Variance 58.336 25.394
Cumulative % variance 58.336 83.730

Table 3
Ward Neural Network architecture used

Slabl Slab2 Slab3 Slab4 Slab5

No. of neurons 2 3 3 3 1

Table 4
GRNN architecture used

Input layer Hidden layer Output layer

No. of neurons 2 108 1

for the production set. The remaining 66 patterns are used as
training set. We used the production data set to evaluate
model performance.

The dependent variable was the number of software
faults and the independent variables were the two principal
components identified above (out of the six SQL metrics).
We used both Ward Network and GRNN Network for
predicting faults. Table 3 shows the summary of Ward
Network design whereas Table 4 shows the structure of
GRNN network used.

For GRNN network, there were 108 neurons in hidden
layer, two neurons in input layer and one neuron in output
layer. In our experiment smoothing factor 0.075 was used.

6. Experimental results

To measure the goodness of fit of the model, we use the
coefficient of multiple determination (R 2), the coefficient of
correlation (r), r2, mean square error, mean absolute error,
minimum absolute error and maximum absolute error.

Tables 5 and 6 show the values that are obtained from the
two neural network models used for our experiments.

Table 7 shows the experimental result of the production
set. The correlation of the predicted change and the
observed change is represented by the coefficient of
correlation (r). The r value of 0.8586 in Ward Neural
Network and 0.7096 in GRNN network represents
high correlations for cross-validation. The number of

Table 5
Experimental result of training set

Ward Net GRNN
R? 0.8159 0.7717
R 0.9093 0.8889
r? 0.8269 0.7901
Mean squared error 1.731 2.145
Mean absolute error 0.832 0.858
Min. absolute error 0.004 0

Max. absolute error 4.187 5.673




Table 6
Experimental result of test set
Ward net GRNN

R? 0.3754 0.1247
R 0.6881 0.5530
r? 0.4735 0.3058
Mean square error 1.779 2.493
Mean absolute error 0.653 0.936
Min. absolute error 0.019 0.288
Max. absolute error 5.605 6.317
Table 7
Experimental result of production set

Ward Net GRNN
R? 0.6889 0.3993
r 0.8586 0.7096
r? 0.7372 0.5035
Mean square error 0.518 1.000
Mean absolute error 0.552 0.718
Min. absolute error 0.004 0.106
Max. absolute error 1.845 2.830
t-Value 5.389928 4.389928
P-value 0.0001 0.0003

observations is 21. The significance level of a cross-
validation is indicated by p value. A commonly accepted
p value is 0.05 [13]. In our experiment, a two tailed
probability p values is less than 0.0003 in both cross-
validations. This shows a high degree of confidence for the
successful validations. The results clearly indicate close
relationship between metrics NSC, NIUO, NDO, NT,
NSCC and NJQ (independent variables) and predictable
faults in software applications (dependent variable).

7. Conclusions

We studied the relationship between fault occurrence for
database applications and SQL metrics. First we proposed
SQL metrics that have strong relationship with faults and
then performed empirical validation for these metrics. We
analyzed the fault reports kept by project teams of
developing database applications using PL/SQL code and
found that faults are related to the number of SQL
statements and the complexity of SQL statements. The
relationship between the fault occurrence for database
applications and SQL metrics has been empirically
validated in this study. From the results presented above,
our proposed SQL metrics in this study proved to be useful
in predicting faults in PL/SQL files.

These findings paved the way for future research into
using neural network for predicting software maintainabil-
ity. In addition, our research results also provide a new

avenue for software project manger to determine the
readiness of software under development.

8. Future plan

We intend to extend this investigation with wide range of
applications and various types of data access techniques.
Our future research direction aims to estimate software
readiness by using metrics for defect tracking. To estimate
readiness, three factors will be considered in our future
study: (1) how many faults are remaining in the programs;
(2) how many changes are required to correct the errors; and
(3) how much time is required in changing the programs.
Software metrics concerning with polymorphism measures,
inheritance related measures, complexity measures,
cohesion measures, coupling measure, dynamic memory
allocation measure, SQL measures and size measures will
be used.

Acknowledgements

We gratefully acknowledged CAIB GmbH, Murrhardt,
Germany for providing us with the software development
data used in our research.

References

[1] A. Mounir Boukadoum, H.A. Sahraoui, H. Lounis, Machine
learning approach to predict software evolvability using fuzzy
binary trees, International Conference on Artificial Intelligence, 2001.

[2] L.C. Briand, J.W. Daly, J.K. Wust, A unified framework for coupling
measurement in object-oriented systems, IEEE Transactions on
Software Engineering 25 (1) (1999) 91-121.

[3] L.C. Briand, W.L. Melo, J. Wust, Assessing the applicability of fault-
proneness models across object-oriented software projects, IEEE
Transactions on Software Engineering 28 (2002) 706—720.

[4] L. Briand, J. Wiist, J.W. Daly, V. Porter, Exploring the relationships
between design measures and software quality in object-oriented
systems, Journal of Systems and Software 51 (2000) 245-273.

[5] M. Cartwright, M. Shepperd, An empirical investigation of object
oriented software system, IEEE Transactions on Software Engineer-
ing 26 (2000) 786—796.

[6] K. El Emam, A primer on object-oriented measurement, Proceedings
of the Seventh International Software Metrics Symposium, 2001, pp.
185-187.

[7]1 K. El Emam, S. Benlarbi, N. Goel, S.N. Rai, The confounding effect
of class size on the validity of object-oriented metrics, IEEE
Transactions on Software Engineering 27 (2001) 630-650.

[8] El Emam, W. Melo, C.M. Javam, The prediction of faulty classes
using object-oriented design metrics, Journal of Systems and
Software, Elsevier Science 56 (1) (2001) 63-75.

[9] L. Etzkorn, H. Delugach, Towards a semantic metrics suite for object-
oriented design, Proceedings of 34th International Conference on
Technology of Object-Oriented Languages and Systems, 2000, pp.
71-80.

[10] N.E.Fenton, N. Ohlsson, Quantitative analysis of faults and failures in
a complex software system, IEEE Transactions on Software
Engineering 26 (2000) 797-814.



[11] F. Fioravant, A metric framework for the assessment of object-
oriented systems, Proceedings of IEEE International Conference on
Software Maintenance, 2001, pp. 557-560.

[12] F. Fioravanti, P. Nesi, A study on fault-proneness detection of object-
oriented systems, Fifth European Conference on Software Mainten-
ance and Reengineering, 2001, pp. 121-130.

[13] J.E. Frenund, F.J. Williams, B.M. Perles, The Elementary Business
Statistics—The Modern Approach, Prince-Hill, 1993.

[14] T.L. Graves, A.F. Karr, J.S. Marron, H. Siy, Predicting fault incidence
using software change history, IEEE Transactions on Software
Engineering 26 (7) (2000) 653-661.

[15] T.M. Khoshgoftaar, E.B. Allen, Z. Xu, Predicting testability of
program modules using a neural network, Proceedings of the Third
IEEE Symposium on Application-Specific Systems and Software
Engineering Technology, 2000, pp. 57-62.

[16] J.T.S. Quah, M.M. Thet Thwin, Prediction of software readiness using
neural network, Proceedings of First International Conference on

[17]

(18]

[19]

[20]

[21]

Information Technology and Applications (ICITA 2002), Australia,
25-28 Nov (2002).

G. Ramarkrishnan, Database Management Systems, Third ed.,
McGraw-Hill, New York, 2003.

R. ReiBing, Towards a model for object-oriented design measure-
ment, Proceedings of the Fifth International ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering,
2001, pp. 71-84.

D.F. Specht, A general regression neural network, IEEE Transactions
on Neural Networks 2 (6) (1991) 568-576.

M.M. Thet Thwin, T.-S. Quah, Application of neural network for
predicting software development faults using object-oriented
design, Proceedings of Ninth International Conference on Neural
Information Processing, Singapore, 18—22 Nov 2002, vol. 5, 2002,
pp. 2312-2316.

NeuroShell 2 Help, Ward Systems Group Inc., http://www.
wardsystems.com


http://www.wardsystems.com
http://www.wardsystems.com

	Prediction of software development faults in PL/SQL files using neural network models
	Introduction
	SQL metrics
	Neural network modeling
	Data collection
	Experiment
	Experimental results
	Conclusions
	Future plan
	Acknowledgements
	References


