
 

     

Abstract-- In this paper, we explore the behaviour of neural 
network in predicting software readiness.  Our neural network 
model aims to predict the number of faults (including object-
oriented faults) of a software under development. We use Ward 
neural network that is a backpropagation network with different 
activation functions. Different activation functions are applied to 
hidden layer slabs to detect different features in a pattern 
processed through a network. In our experiments, hyperbolic 
tangent, Gaussian, Gaussian-complement and linear functions are 
used as activation functions to improve prediction. This paper 
also compares the prediction results from multiple regression 
model and neural network model. Object-oriented design metrics 
are used as the independent variables in our study. Our study is 
conducted on three industrial real-time systems that contain a 
number of natural faults that has been reported over a period of 
three years. 
 

Index Terms—Neural Networks, Object-oriented Design 
Metrics, QA in Software Development, Readiness, Reliability  

I. INTRODUCTION 

NE of the critical questions of a software company is “Is 
the software ready to release now?” The answer should 

be based on the number of remaining errors and required 
number of changes in applications programs. Not only would a 
reasonable estimate of this helps one in determining when to 
stop testing, but also it could be used to estimate the 
maintenance costs after the program is placed into production, 
and also to estimate the program’s reliability.  

Khoshgoftarr et al. [17] introduced the use of the neural 
networks as a tool for predicting the number of faults in 
programs. They compared the neural-network model with a 
nonparametric disciminant model, and found the neural 
network model had better predictive accuracy. However, since 
their model used domain metrics derived from the complexity 
metric data, and such metrics are not adequate for detecting 
object-oriented faults, their model cannot be applied to object-
oriented programs. Since the object-oriented paradigm exhibits 
different characteristics from the procedural paradigm, 
software metrics in object-oriented paradigm need to be used. 

Our neural network model is aimed to predict the number of 
faults including object-oriented faults. We used software 

 

 
 

 

 

metrics including both object-oriented metrics and traditional 
complexity software metrics. They can be broadly classified 
into metrics concerning with inheritance related measures, 
complexity measures, coupling measure and memory 
allocation measure. 

We use Ward Network for our experiments. It is a 
backpropagation neural network with different activation 
functions being applied to hidden layer slabs to detect different 
features in a pattern processed through a network to lead to a 
better prediction. The network design use a Gaussian function 
in one hidden slab to detect feature in the mid-range of the 
data and use a Gaussian complement in another hidden slab to 
detect features for the upper and lower extremes of the data. 
Thus, the output layer will get “different views of the data”. 
Combining the two feature sets in the output layer may lead to 
a better prediction. Finally, we perform a comparative study 
using result obtain from neural network modeling and those 
from multiple regression models. The former is found to 
outperform the latter.  

II. RELATED WORK 

A. Object-Oriented Metrics 
There is great interest in the use of object-oriented approach 

to software engineering. With the increasing use of object-
oriented methods in new software development there is a 
growing need to both document and improve current practice 
in object-oriented design and development [6]. Many measures 
have been proposed (and validated using statistical methods) 
in the literature to capture the structural quality of object-
oriented (OO) code and design [3]-[5], [8], [9], [21]. 

One such set of metrics is the set proposed by Chidamber 
and Kemerer [8].  Six metrics were proposed. A later paper 
refined the metrics and collected empirical data at two sites, 
and also presented the empirical distributions [9]. Chidamber 
and Kemerer (CK) also reported empirical data from two 
commercial organizations and suggest ways in which the 
metrics can be used to manage OO design efforts [9].  

In [4], Lionel Briand, Prem Devanbu and Walcelio Melo 
proposed a comprehensive suite of measures to quantify the 
level of class coupling during the design of object-oriented 
systems. That suite has taken into account the different OO 
design mechanisms provided by the C++ language. They 
proposed eighteen OO design metrics. 

Saida Benlarbi and Walcelio L. Melo[2] defined and 
empirically investigated the quality impact of polymorphism 
on OO design. They validated their measues by evaluating 
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their impact on class fault-proneness, a software quality 
attribute. 

Wei Li and Sallie Henry [20] have carried out the statistical 
analyses of a prediction model incorporating CK metrics. 
Their result has shown that there is a strong relationship 
between metrics and maintenance effort in object-oriented 
systems. 

Basili et al. have reported on results of using the CK metrics 
suite to predict the quality (fault proneness) of student C++ 
programs [1].  

Lionel C. Briand et al. [6] have empirically explored the 
relationship between existing object-oriented coupling, 
cohesion, and inheritance measures and the probability of fault 
detection in system classes during testing.  

Mei-Huei Tang, Ming-Hung Kao and Mei-Hwa Chen [23] 
proposed a set of new metrics: Inheritance Coupling (IC), 
Coupling Between Method (CBM), Number of 
Object/Memory Allocation (NOMA) and Average Method 
Complexity (AMC) to identify the dynamic behavior of the 
program and the scenarios that the instances of the classes are 
referenced in the program. Emanm et. al.[10],[11] have 
constructed a model to predict which classes in a future release 
of a commercial Java application will be faulty.  

L. Briand et al. [7] built a fault-proneness prediction model 
based on a set of OO measures using data collected from a 
mid-sized Java system, and then applied the model to a 
different Java system developed by the same team. They then 
evaluated the accuracy the model’s prediction in that system 
and the model’s economic viability using a cost-benefit model. 

B. Neural Network Model 

The usefulness of connectionist models for software 
reliability growth prediction was illustrated in [14], [15]. In 
[14], the applicability of the connectionist approach was 
explored using various network models, training regimes, and 
data representation methods. An empirical comparison was 
made between that approach and five well-known software 
reliability growth models using actual data sets from several 
different software projects. Their result showed that neural 
networks could be used for predicting software reliability 
growth. 

SungBack Hong and Kapsu Kim [12] studied based on 
hybrid metrics which include internal and external module 
complexity. Using the neural network model, they classified 
function block as either fault-prone or not fault prone based on 
the proposed metrics. They can predict whether the newly 
added function block is fault prone or not fault prone.  

Khoshgoftaar et al. [16] presented a case study of real-time 
avionics software to predict the testability of each module 
from static measurements of source code. They found that 
neural network is a promising technique for building the 
predictive models, because it is able to model nonlinearities in 
relationship. 

III. DESIGN OF THE EMPIRICAL STUDY 

A. Dependent and Independent Variables 

The objective of this study is to estimate the software 
readiness using neural network model. To estimate the 
readiness, how many faults are remaining in the programs is 
considered in this study. The number of faults is used as 
dependent variable and the measures of coupling, inheritance, 
complexity, object/memory allocation are used as independent 
variables. 

1)  Inheritance related measures 
A class hierarchy is the result of the inheritance relationship 

between classes of a system. Inheritance, which is emphasized 
in OO programming languages, is a binary, asymmetric 
connection between two classes. Class inheritance enables 
methods of one class to be accessed by its subclasses. As a 
result of inheritance, classes with more general attributes and 
methods are usually located in the upper part of the hierarchy 
whereas classes dealing with specific operations are 
consequently lowered down to the hierarchy. In our study, the 
following two metrics are considered. 

• Depth of Inheritance Tree (DIT). The DIT of a class 
is the length of the longest path from the class to the 
root in the inheritance hierarchy.  

• Number of Children (NOC). The NOC metric 
measures the number of immediate descendants of a 
particular class. 

2) Coupling measures 
Coupling refers to the degree of inter dependence among the 

components of a software system. Good software design 
should obey the principle of low coupling. Strong coupling 
makes a system more complex; highly interrelated modules are 
harder to understand, change or correct. By minimizing 
coupling, one can avoid propagating errors across modules. 
These metrics are as follows: 

• Coupling Between Objects (CBO). According to the 
definition of this measure, a class is coupled to 
another if methods of one class use methods or 
attributes of the other, or vice versa. CBO for a class 
is then defined as the number of other classes to 
which it is coupled. 

• Response For a Class (RFC). This is the number of 
methods that can potentially be executed in response 
to a message received by an object of that class. 

• Inheritance Coupling (IC). The IC provides the 
number of parent classes to which a given class is 
coupled. A class is coupled to its parent class if one 
of its inherited methods is functionally dependent on 
the new or redefined methods in the class. 

• Coupling Between Methods (CBM). The CBM 
provides the total number of new/redefined methods 
to which all the inherited methods are coupled. CBM 
measures the total number of function dependency 
relationships between the inherited methods and 
new/redefined methods. 



 

3) Complexity measures 
Weighted Methods per Class and Average Method 

Complexity are used to evaluate the complexity of an 
individual class. 

• Weighted Methods per Class (WMC). In this study, 
WMC is defined as being the number of all member 
functions and operators defined in each class. 

• Average Method Complexity (AMC). The AMC 
provides the average method size for each class.  

4) Object/memory allocation measures 
A class with more object/memory allocating activities tends 

to introduce more the object management faults that are related 
to object management such as object copying, dangling 
reference, object memory usage faults and so on. 

• Number of Object/Memory Allocation (NOMA). It 
measures the total number of statements that allocate 
new objects or memories in a class. 

B. Neural Network Modeling  

 The Ward Network[22] is used in this research. It is a 
Backpropagation network that has three slabs (slab2, slab3 and 
slab4) in the hidden layer. Hidden layers in neural network are 
known as feature detectors. A slab is a group of neurons.  
When each slab in the hidden layer has a different activation 
function, it offers three ways of viewing the data. We apply 
linear function to the output slab (slab5) as it is useful for this 
study where the output is a continuous variable. The output 
node does not represent categories. Although the linear 

function detracts from the power of the network somewhat, it 
sometimes prevents the network from producing outputs with 
more error near the min or max of the output scale.  In other 
words the results may be more consistent throughout the scale 
with smaller learning rates, momentums, and initial weight 
sizes. We use hyperbolic tangent (tanh) function in one slab of 
hidden layer (slab3) because it is better for continuous valued 
outputs especially if the linear function is used on the output 
layer.  Gaussian function is used in another slab of hidden 
layer (slab2). This function is unique, because unlike the 
others, it is not an increasing function.  It is the classic bell 
shaped curve, which maps high values into low ones, and maps 
mid-range values into high ones. Gaussian Complement is 
used in yet another slab of hidden layer (slab4) to bring out 
meaningful characteristics in the extremes of the data.  The 

learning rate and momentum are set to 0.1 and initial weight is 
set to 0.3. Neural network summary is presented in Table I. 

Table I. Neural network summary 

 Number of neurons 

 Slab1 Slab2 Slab3 Slab4 Slab5 

System A 9 3 3 3 1 

System B 9 4 4 4 1 

System C 9 3 3 3 1 

IV. PREDICTION RESULT 
The applications used in this study are subsystems of an 

HMI (Human Machine Interface) software, which is a fully 
networked Supervisory Control and Data Acquisition system 
[23]. Subsystem A is a user-interface oriented program that 
consists of 20 classes. Subsystem B is real-time data logging 
process that defines 48 classes. Subsystem C is a 
communication-oriented program that defines 29 classes.   

To measure the goodness of fit of the model, we use the 
coefficient of multiple determination (R-squared) that is a 
statistical indicator. It compares the accuracy of the model to 
the accuracy of a benchmark model where the prediction is just 
the mean of all of the samples. A perfect fit would result in an 
R-square value of 1, a very good fit near 1, and a very poor fit 
less than 0. It is calculated as follows: 
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where y is the actual value for the dependent variable, ŷ  is the 
predicted value of y and y  is the mean of the y values. 

Table II shows the values of R-square that are obtained from 
the regression model and neural network model. Table III, IV 
and V show the comparison of prediction results of number of 
faults in a particular class from regression model and neural 
network model with the actual number of faults which are 
reported for three years. These comparison results are also 
shown in Fig. 5, Fig. 6 and Fig. 7 graphically. 

 
Table II. R-square values for three systems 

 Regression Neural Network 
System A 0.956 0.9763 
System B 0.789 0.9306 
System C 0.976 0.9934 

 
Fig. 2, Fig. 3 and Fig. 4 display the contribution factor bar 

graphs for three neural networks. Contribution factor of a 
variable is a measurement of the importance of that variable in 
predicting the network's output, relative to the other input 
variables in the same network. A higher number indicates that  
the variable is contributing more to the prediction or 
classification. Obviously, if a certain variable is highly 
correlated with the output, the variable will have a high 
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Fig. 1. Ward Neural Network. 



 

contribution factor.  The contribution factor is developed from 
an analysis of the weights of the trained neural network [22].  
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Fig. 2. Contribution factor of input metric variables in 

subsystemA 
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Fig. 3  Contribution factor of input metric variables in 

subsystemB 
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Fig. 4. Contribution factor of input metric variables in 

subsystemC 
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Fig. 5. Comparison chart of prediction result for 
subsystemA 
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Fig. 6. Comparison chart of prediction result for 

subsystemB 
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Fig. 7. Comparison chart of prediction result for 

subsystemC 

 

 



 

Table III. Prediction result for Subsystem A 
Class Actual Regression Neural Network 

1 2 1.91414 2 2.204922 2 
2 9 8.53001 9 8.815842 9 
3 0 0.13821 0 0.460422 0 
4 3 3.31796 3 2.977333 3 
5 2 1.87382 2 2.062163 2 
6 2 2.30366 2 2.249439 2 
7 4 3.41991 3 4.120771 4 
8 0 -0.13344 0 0.312293 0 
9 0 0.72204 1 0.747336 1 
10 2 2.31635 2 2.099284 2 
11 4 4.67788 5 4.062977 4 
12 0 -0.59464 -1 0.119285 0 
13 0 0.89329 1 0.433413 0 
14 2 1.83481 2 2.107817 2 
15 1 0.19308 0 0.260461 0 
16 2 1.7856 2 1.850852 2 
17 1 0.77365 1 0.813616 1 
18 1 1.02925 1 1.067508 1 
19 0 0.08047 0 0.277788 0 
20 0 -0.07607 0 0.381536 0 

 
Table IV. Prediction result for Subsystem B 

Class Actual Regression Neural Network 
1 1 0.57784 1 1.112232 1 
2 0 0.87966 1 0.956696 1 
3 0 2.81226 3 1.580051 2 
4 2 2.45449 2 1.969271 2 
5 10 9.30176 9 10.46048 10 
6 8 7.88786 8 6.371044 6 
7 5 3.06333 3 5.089035 5 
8 4 1.50528 2 2.526809 3 
9 1 1.17016 1 1.468316 1 
10 1 0.53266 1 1.090944 1 
11 1 1.09188 1 1.071907 1 
12 0 0.39878 0 0.210687 0 
13 1 0.77658 1 0.816 1 
14 2 1.3464 1 1.554224 2 
15 1 1.46517 1 0.792669 1 
16 2 1.743 2 2.439447 2 
17 1 0.58171 1 1.019993 1 
18 1 0.80362 1 1.128049 1 
19 0 0.38184 0 0.203242 0 
20 0 0.39028 0 0.724395 1 

21 0 0.32138 0 0.689982 1 
22 3 2.42602 2 2.430226 2 
23 1 1.71811 2 1.951091 2 
24 1 0.94787 1 1.025429 1 
25 1 1.11917 1 0.929054 1 
26 0 0.99425 1 0.73153 1 
27 0 0.48799 0 0.808253 1 
28 0 0.37497 0 -0.12097 0 
29 2 2.42924 2 2.124755 2 
30 2 0.67527 1 1.958644 2 
31 1 0.47276 0 0.936804 1 
32 1 0.53935 1 1.160908 1 
33 2 4.95835 5 2.196496 2 
34 3 2.57792 3 2.218626 2 
35 5 5.34077 5 4.74082 5 
36 0 0.8026 1 -0.1157 0 
37 1 0.53154 1 1.547117 2 
38 0 0.53421 1 0.239422 0 
39 2 2.05324 2 1.918721 2 
40 8 6.7335 7 8.541753 9 
41 1 0.79394 1 1.255774 1 
42 0   -0.39619 0 0.150993 0 
43 4 0.7219 1 2.614042 3 
44 0 0.78841 1 -0.30424 0 
45 1 1.35783 1 1.462041 1 
46 0 0.48619 0 0.023016 0 
47 0 0.54848 1 -0.24107 0 
48 0 0.49637 0 -0.20256 0 

V. CONCLUSION AND FUTURE WORK 
One of the easiest ways to judge whether a program is ready 

to be released is to measure its fault density, which is the 
number of faults per line of code.  To decide whether new 
software version is reliable enough to ship, the estimated fault 
density is compared with the identified faults that have been 
detected for the new version of a software.  

 This paper presents a multiple regression model and a 
neural network model for predicting the number of faults in a 
particular class using three industrial real-time subsystems 
data. From the results shown above, object-oriented metrics 
appear to be useful to predict the number of faults. Moreover, 
neural network model can predict more accurately than 
regression model. 

Our future research direction aims to estimate the software 
readiness using neural network model. To estimate the 
readiness, three factors will be considered in our future study: 
(1) how many faults are remaining in the programs (2) how 
much changes to correct the errors and (3) amount of time 
required to change the programs. Input to be used for 
modeling the neural network includes software metrics on 
polymorphism measures, inheritance related measures, 
complexity measures, cohesion measures, coupling measure, 
dynamic memory allocation measure, database operations 
measures and size measures.  



 

Table V. Prediction result for Subsystem C 
Class Actual Regression Neural Network 

1 0 0.51228 1 0.317737 0 
2 1 2.03362 2 0.614106 1 
3 1 0.39443 0 0.472311 0 
4 0 0.8373 1 0.338698 0 
5 0 0.03332 0 0.286367 0 
6 1 0.70069 1 0.625033 1 
7 1 0.43744 0 0.453838 0 
8 0 -0.42252 0 0.1502 0 
9 0 0.12329 0 0.066168 0 
10 0 0.15139 0 0.046733 0 
11 6 7.77116 8 6.73549 7 
12 5 6.17734 6 4.93935 5 
13 0 0.29568 0 -0.16793 0 
14 10 6.92235 7 8.649171 9 
15 6 5.99938 6 5.622892 6 
16 5 4.26267 4 4.546377 5 
17 0 0.95936 1 0.424839 0 
18 6 5.614 6 5.752192 6 
19 1 0.58141 1 0.419876 0 
20 4 4.18052 4 4.208034 4 
21 0 0.03838 0 0.355994 0 
22 1 0.57634 1 0.351029 0 
23 1 0.67345 1 0.669363 1 
24   28 28.13152 28 27.7595 28 
25 3 2.7853 3 2.733317 3 
26 0 0.28628 0 0.249484 0 
27 2 1.90343 2 1.7681 2 
28 0 0.75768 1 0.170828 0 
29 3 2.2824 2 3.00577 3 
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