

Abstract-- In this paper, we explore the behaviour of neural
network in predicting software readiness. Our neural network
model aims to predict the number of faults (including object-
oriented faults) of a software under development. We use Ward
neural network that is a backpropagation network with different
activation functions. Different activation functions are applied to
hidden layer slabs to detect different features in a pattern
processed through a network. In our experiments, hyperbolic
tangent, Gaussian, Gaussian-complement and linear functions are
used as activation functions to improve prediction. This paper
also compares the prediction results from multiple regression
model and neural network model. Object-oriented design metrics
are used as the independent variables in our study. Our study is
conducted on three industrial real-time systems that contain a
number of natural faults that has been reported over a period of
three years.

Index Terms—Neural Networks, Object-oriented Design
Metrics, QA in Software Development, Readiness, Reliability

I. INTRODUCTION

NE of the critical questions of a software company is “Is
the software ready to release now?” The answer should

be based on the number of remaining errors and required
number of changes in applications programs. Not only would a
reasonable estimate of this helps one in determining when to
stop testing, but also it could be used to estimate the
maintenance costs after the program is placed into production,
and also to estimate the program’s reliability.

Khoshgoftarr et al. [17] introduced the use of the neural
networks as a tool for predicting the number of faults in
programs. They compared the neural-network model with a
nonparametric disciminant model, and found the neural
network model had better predictive accuracy. However, since
their model used domain metrics derived from the complexity
metric data, and such metrics are not adequate for detecting
object-oriented faults, their model cannot be applied to object-
oriented programs. Since the object-oriented paradigm exhibits
different characteristics from the procedural paradigm,
software metrics in object-oriented paradigm need to be used.

Our neural network model is aimed to predict the number of
faults including object-oriented faults. We used software

metrics including both object-oriented metrics and traditional
complexity software metrics. They can be broadly classified
into metrics concerning with inheritance related measures,
complexity measures, coupling measure and memory
allocation measure.

We use Ward Network for our experiments. It is a
backpropagation neural network with different activation
functions being applied to hidden layer slabs to detect different
features in a pattern processed through a network to lead to a
better prediction. The network design use a Gaussian function
in one hidden slab to detect feature in the mid-range of the
data and use a Gaussian complement in another hidden slab to
detect features for the upper and lower extremes of the data.
Thus, the output layer will get “different views of the data”.
Combining the two feature sets in the output layer may lead to
a better prediction. Finally, we perform a comparative study
using result obtain from neural network modeling and those
from multiple regression models. The former is found to
outperform the latter.

II. RELATED WORK

A. Object-Oriented Metrics
There is great interest in the use of object-oriented approach

to software engineering. With the increasing use of object-
oriented methods in new software development there is a
growing need to both document and improve current practice
in object-oriented design and development [6]. Many measures
have been proposed (and validated using statistical methods)
in the literature to capture the structural quality of object-
oriented (OO) code and design [3]-[5], [8], [9], [21].

One such set of metrics is the set proposed by Chidamber
and Kemerer [8]. Six metrics were proposed. A later paper
refined the metrics and collected empirical data at two sites,
and also presented the empirical distributions [9]. Chidamber
and Kemerer (CK) also reported empirical data from two
commercial organizations and suggest ways in which the
metrics can be used to manage OO design efforts [9].

In [4], Lionel Briand, Prem Devanbu and Walcelio Melo
proposed a comprehensive suite of measures to quantify the
level of class coupling during the design of object-oriented
systems. That suite has taken into account the different OO
design mechanisms provided by the C++ language. They
proposed eighteen OO design metrics.

Saida Benlarbi and Walcelio L. Melo[2] defined and
empirically investigated the quality impact of polymorphism
on OO design. They validated their measues by evaluating

Prediction of Software Readiness Using Neural
Network

Jon T.S. Quah, Mie Mie Thet Thwin

O

their impact on class fault-proneness, a software quality
attribute.

Wei Li and Sallie Henry [20] have carried out the statistical
analyses of a prediction model incorporating CK metrics.
Their result has shown that there is a strong relationship
between metrics and maintenance effort in object-oriented
systems.

Basili et al. have reported on results of using the CK metrics
suite to predict the quality (fault proneness) of student C++
programs [1].

Lionel C. Briand et al. [6] have empirically explored the
relationship between existing object-oriented coupling,
cohesion, and inheritance measures and the probability of fault
detection in system classes during testing.

Mei-Huei Tang, Ming-Hung Kao and Mei-Hwa Chen [23]
proposed a set of new metrics: Inheritance Coupling (IC),
Coupling Between Method (CBM), Number of
Object/Memory Allocation (NOMA) and Average Method
Complexity (AMC) to identify the dynamic behavior of the
program and the scenarios that the instances of the classes are
referenced in the program. Emanm et. al.[10],[11] have
constructed a model to predict which classes in a future release
of a commercial Java application will be faulty.

L. Briand et al. [7] built a fault-proneness prediction model
based on a set of OO measures using data collected from a
mid-sized Java system, and then applied the model to a
different Java system developed by the same team. They then
evaluated the accuracy the model’s prediction in that system
and the model’s economic viability using a cost-benefit model.

B. Neural Network Model

The usefulness of connectionist models for software
reliability growth prediction was illustrated in [14], [15]. In
[14], the applicability of the connectionist approach was
explored using various network models, training regimes, and
data representation methods. An empirical comparison was
made between that approach and five well-known software
reliability growth models using actual data sets from several
different software projects. Their result showed that neural
networks could be used for predicting software reliability
growth.

SungBack Hong and Kapsu Kim [12] studied based on
hybrid metrics which include internal and external module
complexity. Using the neural network model, they classified
function block as either fault-prone or not fault prone based on
the proposed metrics. They can predict whether the newly
added function block is fault prone or not fault prone.

Khoshgoftaar et al. [16] presented a case study of real-time
avionics software to predict the testability of each module
from static measurements of source code. They found that
neural network is a promising technique for building the
predictive models, because it is able to model nonlinearities in
relationship.

III. DESIGN OF THE EMPIRICAL STUDY

A. Dependent and Independent Variables

The objective of this study is to estimate the software
readiness using neural network model. To estimate the
readiness, how many faults are remaining in the programs is
considered in this study. The number of faults is used as
dependent variable and the measures of coupling, inheritance,
complexity, object/memory allocation are used as independent
variables.

1) Inheritance related measures
A class hierarchy is the result of the inheritance relationship

between classes of a system. Inheritance, which is emphasized
in OO programming languages, is a binary, asymmetric
connection between two classes. Class inheritance enables
methods of one class to be accessed by its subclasses. As a
result of inheritance, classes with more general attributes and
methods are usually located in the upper part of the hierarchy
whereas classes dealing with specific operations are
consequently lowered down to the hierarchy. In our study, the
following two metrics are considered.

• Depth of Inheritance Tree (DIT). The DIT of a class
is the length of the longest path from the class to the
root in the inheritance hierarchy.

• Number of Children (NOC). The NOC metric
measures the number of immediate descendants of a
particular class.

2) Coupling measures
Coupling refers to the degree of inter dependence among the

components of a software system. Good software design
should obey the principle of low coupling. Strong coupling
makes a system more complex; highly interrelated modules are
harder to understand, change or correct. By minimizing
coupling, one can avoid propagating errors across modules.
These metrics are as follows:

• Coupling Between Objects (CBO). According to the
definition of this measure, a class is coupled to
another if methods of one class use methods or
attributes of the other, or vice versa. CBO for a class
is then defined as the number of other classes to
which it is coupled.

• Response For a Class (RFC). This is the number of
methods that can potentially be executed in response
to a message received by an object of that class.

• Inheritance Coupling (IC). The IC provides the
number of parent classes to which a given class is
coupled. A class is coupled to its parent class if one
of its inherited methods is functionally dependent on
the new or redefined methods in the class.

• Coupling Between Methods (CBM). The CBM
provides the total number of new/redefined methods
to which all the inherited methods are coupled. CBM
measures the total number of function dependency
relationships between the inherited methods and
new/redefined methods.

3) Complexity measures
Weighted Methods per Class and Average Method

Complexity are used to evaluate the complexity of an
individual class.

• Weighted Methods per Class (WMC). In this study,
WMC is defined as being the number of all member
functions and operators defined in each class.

• Average Method Complexity (AMC). The AMC
provides the average method size for each class.

4) Object/memory allocation measures
A class with more object/memory allocating activities tends

to introduce more the object management faults that are related
to object management such as object copying, dangling
reference, object memory usage faults and so on.

• Number of Object/Memory Allocation (NOMA). It
measures the total number of statements that allocate
new objects or memories in a class.

B. Neural Network Modeling

 The Ward Network[22] is used in this research. It is a
Backpropagation network that has three slabs (slab2, slab3 and
slab4) in the hidden layer. Hidden layers in neural network are
known as feature detectors. A slab is a group of neurons.
When each slab in the hidden layer has a different activation
function, it offers three ways of viewing the data. We apply
linear function to the output slab (slab5) as it is useful for this
study where the output is a continuous variable. The output
node does not represent categories. Although the linear

function detracts from the power of the network somewhat, it
sometimes prevents the network from producing outputs with
more error near the min or max of the output scale. In other
words the results may be more consistent throughout the scale
with smaller learning rates, momentums, and initial weight
sizes. We use hyperbolic tangent (tanh) function in one slab of
hidden layer (slab3) because it is better for continuous valued
outputs especially if the linear function is used on the output
layer. Gaussian function is used in another slab of hidden
layer (slab2). This function is unique, because unlike the
others, it is not an increasing function. It is the classic bell
shaped curve, which maps high values into low ones, and maps
mid-range values into high ones. Gaussian Complement is
used in yet another slab of hidden layer (slab4) to bring out
meaningful characteristics in the extremes of the data. The

learning rate and momentum are set to 0.1 and initial weight is
set to 0.3. Neural network summary is presented in Table I.

Table I. Neural network summary

 Number of neurons

 Slab1 Slab2 Slab3 Slab4 Slab5

System A 9 3 3 3 1

System B 9 4 4 4 1

System C 9 3 3 3 1

IV. PREDICTION RESULT
The applications used in this study are subsystems of an

HMI (Human Machine Interface) software, which is a fully
networked Supervisory Control and Data Acquisition system
[23]. Subsystem A is a user-interface oriented program that
consists of 20 classes. Subsystem B is real-time data logging
process that defines 48 classes. Subsystem C is a
communication-oriented program that defines 29 classes.

To measure the goodness of fit of the model, we use the
coefficient of multiple determination (R-squared) that is a
statistical indicator. It compares the accuracy of the model to
the accuracy of a benchmark model where the prediction is just
the mean of all of the samples. A perfect fit would result in an
R-square value of 1, a very good fit near 1, and a very poor fit
less than 0. It is calculated as follows:

∑
∑

−

−
−=

2

2
2

)(

)ˆ(
1

yy

yy
R

where y is the actual value for the dependent variable, ŷ is the
predicted value of y and y is the mean of the y values.

Table II shows the values of R-square that are obtained from
the regression model and neural network model. Table III, IV
and V show the comparison of prediction results of number of
faults in a particular class from regression model and neural
network model with the actual number of faults which are
reported for three years. These comparison results are also
shown in Fig. 5, Fig. 6 and Fig. 7 graphically.

Table II. R-square values for three systems

 Regression Neural Network
System A 0.956 0.9763
System B 0.789 0.9306
System C 0.976 0.9934

Fig. 2, Fig. 3 and Fig. 4 display the contribution factor bar

graphs for three neural networks. Contribution factor of a
variable is a measurement of the importance of that variable in
predicting the network's output, relative to the other input
variables in the same network. A higher number indicates that
the variable is contributing more to the prediction or
classification. Obviously, if a certain variable is highly
correlated with the output, the variable will have a high

Slab1

Slab4

Slab3

Slab2

Slab5

Fig. 1. Ward Neural Network.

contribution factor. The contribution factor is developed from
an analysis of the weights of the trained neural network [22].

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 WMC CBO NOC CBM RFC IC NOMA DIT AMC

Input Metrics

R
el

at
iv

e
C

on
tri

bu
tio

n
Fa

ct
or

Fig. 2. Contribution factor of input metric variables in

subsystemA

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 RFC WMC AMC CBM NOMA DIT NOC CBO IC

Input Metrics

R
el

at
iv

e
C

on
tr

ib
ut

io
n

fa
ct

or

Fig. 3 Contribution factor of input metric variables in

subsystemB

0

0.05

0.1

0.15

0.2

0.25

 RFC IC AMC CBM DIT WMC NOMA CBO NOC

Input Metrics

R
el

at
iv

e
C

on
tr

ib
ut

io
n

Fa
ct

or

Fig. 4. Contribution factor of input metric variables in

subsystemC

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20classes

no
. o

f f
au

lts

Regression Neural Network Actual

Fig. 5. Comparison chart of prediction result for
subsystemA

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

classes

no
. o

f f
au

lts

Regression Neural Network Actual

Fig. 6. Comparison chart of prediction result for

subsystemB

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

classes

no
. o

f f
au

lts

Regression Neural Network Actual

Fig. 7. Comparison chart of prediction result for

subsystemC

Table III. Prediction result for Subsystem A
Class Actual Regression Neural Network

1 2 1.91414 2 2.204922 2
2 9 8.53001 9 8.815842 9
3 0 0.13821 0 0.460422 0
4 3 3.31796 3 2.977333 3
5 2 1.87382 2 2.062163 2
6 2 2.30366 2 2.249439 2
7 4 3.41991 3 4.120771 4
8 0 -0.13344 0 0.312293 0
9 0 0.72204 1 0.747336 1
10 2 2.31635 2 2.099284 2
11 4 4.67788 5 4.062977 4
12 0 -0.59464 -1 0.119285 0
13 0 0.89329 1 0.433413 0
14 2 1.83481 2 2.107817 2
15 1 0.19308 0 0.260461 0
16 2 1.7856 2 1.850852 2
17 1 0.77365 1 0.813616 1
18 1 1.02925 1 1.067508 1
19 0 0.08047 0 0.277788 0
20 0 -0.07607 0 0.381536 0

Table IV. Prediction result for Subsystem B

Class Actual Regression Neural Network
1 1 0.57784 1 1.112232 1
2 0 0.87966 1 0.956696 1
3 0 2.81226 3 1.580051 2
4 2 2.45449 2 1.969271 2
5 10 9.30176 9 10.46048 10
6 8 7.88786 8 6.371044 6
7 5 3.06333 3 5.089035 5
8 4 1.50528 2 2.526809 3
9 1 1.17016 1 1.468316 1
10 1 0.53266 1 1.090944 1
11 1 1.09188 1 1.071907 1
12 0 0.39878 0 0.210687 0
13 1 0.77658 1 0.816 1
14 2 1.3464 1 1.554224 2
15 1 1.46517 1 0.792669 1
16 2 1.743 2 2.439447 2
17 1 0.58171 1 1.019993 1
18 1 0.80362 1 1.128049 1
19 0 0.38184 0 0.203242 0
20 0 0.39028 0 0.724395 1

21 0 0.32138 0 0.689982 1
22 3 2.42602 2 2.430226 2
23 1 1.71811 2 1.951091 2
24 1 0.94787 1 1.025429 1
25 1 1.11917 1 0.929054 1
26 0 0.99425 1 0.73153 1
27 0 0.48799 0 0.808253 1
28 0 0.37497 0 -0.12097 0
29 2 2.42924 2 2.124755 2
30 2 0.67527 1 1.958644 2
31 1 0.47276 0 0.936804 1
32 1 0.53935 1 1.160908 1
33 2 4.95835 5 2.196496 2
34 3 2.57792 3 2.218626 2
35 5 5.34077 5 4.74082 5
36 0 0.8026 1 -0.1157 0
37 1 0.53154 1 1.547117 2
38 0 0.53421 1 0.239422 0
39 2 2.05324 2 1.918721 2
40 8 6.7335 7 8.541753 9
41 1 0.79394 1 1.255774 1
42 0 -0.39619 0 0.150993 0
43 4 0.7219 1 2.614042 3
44 0 0.78841 1 -0.30424 0
45 1 1.35783 1 1.462041 1
46 0 0.48619 0 0.023016 0
47 0 0.54848 1 -0.24107 0
48 0 0.49637 0 -0.20256 0

V. CONCLUSION AND FUTURE WORK
One of the easiest ways to judge whether a program is ready

to be released is to measure its fault density, which is the
number of faults per line of code. To decide whether new
software version is reliable enough to ship, the estimated fault
density is compared with the identified faults that have been
detected for the new version of a software.

 This paper presents a multiple regression model and a
neural network model for predicting the number of faults in a
particular class using three industrial real-time subsystems
data. From the results shown above, object-oriented metrics
appear to be useful to predict the number of faults. Moreover,
neural network model can predict more accurately than
regression model.

Our future research direction aims to estimate the software
readiness using neural network model. To estimate the
readiness, three factors will be considered in our future study:
(1) how many faults are remaining in the programs (2) how
much changes to correct the errors and (3) amount of time
required to change the programs. Input to be used for
modeling the neural network includes software metrics on
polymorphism measures, inheritance related measures,
complexity measures, cohesion measures, coupling measure,
dynamic memory allocation measure, database operations
measures and size measures.

Table V. Prediction result for Subsystem C
Class Actual Regression Neural Network

1 0 0.51228 1 0.317737 0
2 1 2.03362 2 0.614106 1
3 1 0.39443 0 0.472311 0
4 0 0.8373 1 0.338698 0
5 0 0.03332 0 0.286367 0
6 1 0.70069 1 0.625033 1
7 1 0.43744 0 0.453838 0
8 0 -0.42252 0 0.1502 0
9 0 0.12329 0 0.066168 0
10 0 0.15139 0 0.046733 0
11 6 7.77116 8 6.73549 7
12 5 6.17734 6 4.93935 5
13 0 0.29568 0 -0.16793 0
14 10 6.92235 7 8.649171 9
15 6 5.99938 6 5.622892 6
16 5 4.26267 4 4.546377 5
17 0 0.95936 1 0.424839 0
18 6 5.614 6 5.752192 6
19 1 0.58141 1 0.419876 0
20 4 4.18052 4 4.208034 4
21 0 0.03838 0 0.355994 0
22 1 0.57634 1 0.351029 0
23 1 0.67345 1 0.669363 1
24 28 28.13152 28 27.7595 28
25 3 2.7853 3 2.733317 3
26 0 0.28628 0 0.249484 0
27 2 1.90343 2 1.7681 2
28 0 0.75768 1 0.170828 0
29 3 2.2824 2 3.00577 3

ACKNOWLEDGMENT
The authors would like to thank Associate Professor Dr.

Mei-Hwa Chen, Computer Science Department, University at
Albany, State University of New York, for sharing their
industrial real time operations data [23].

REFERENCES
[1] V.R. Basili, et al., “A Validation of Object-Oriented Design Metrics as

Quality Indicators,” IEEE Transactions on Software Engineering, vol.
22, pp. 751-761, 1996.

[2] S. Benlarbi, W.L Melo, “Polymorphism measures for early risk
prediction,” Proceedings of the 1999 International Conference on
Software Engineering, pp. 334-344, 1999.

[3] J.M. Bieman, B.K. Kang, “Cohesion and Reuse in an Object-Oriented
System,” Proceeding of ACM Symposium on Software Reusability
(SSR'94), 259-262.

[4] L. Briand, P. Devanbu, and W. Melo, “An investigation into coupling
measures for C++”, Proceedings of the 19th International Conference on
Software Engineering, pp. 412-421, 1997.

[5] L. Briand, J. Daly, J. Wuest, “A Unified Framework for Coupling
Measurement in Object-Oriented Systems,” IEEE Transactions on
Software Engineering, 1999.

[6] L. Briand, J. Daly, V. Porter, and J. Wuest, “Predicting Fault-Prone
Classes based on Design Measures in Object-Oriented Systems,” IEEE
International Symposium on Software Reliability Engineering (ISSRE),
1998.

[7] L.C. Briand, W.L. Melo, J. Wust, “Assessing the applicability of fault-
proneness models across object-oriented software projects,” IEEE
Transactions on Software Engineering, vol. 28, Issue: 7, pp. 706 –720,
Jul. 2002.

[8] S.R. Chidamber, and C.F. Kemerer, “Towards a Metrics Suite for
Object Oriented Design,” Proceeding of the 6th ACM Conference on
Object Oriented Programming, Systems, Languages and Applications,
pp. 197-211, 1991.

[9] S.R. Chidamber, and C.F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Transactions on Software Engineering, vol. 20,
476-493, 1994.

[10] El Emam, W. Melo, J.C. Machado, “The Prediction of Faulty Classes
Using Object-Oriented Design Metrics,” Journal of Systems and
Software, vol. 56, pp. 63-75, Feb. 2001.

[11] D. Glasberg, El Emam, W. Melo, and N. Madhavji, “Validating Object-
oriented Design Metrics on a Commercial Java Application,” Technical
Report, NRC/ERB-1080, NRC 44146, 2000.

[12] S. Hong, and K. Kim, “Identifying fault-prone function blocks using the
neural networks - an empirical study,” Communications, Computers and
Signal Processing, 1997. 10 Years PACRIM 1987-1997, IEEE Pacific
Rim Conference on Networking the Pacific Rim, vol. 2, pp. 790-793,
1997.

[13] S. Hong, and K. Kim, “Identifying fault prone modules: an empirical
study in telecommunication system,” Proceedings of the Second
Euromicro Conference on Software Maintenance and Reengineering,
179-183, 1998.

[14] N. Karunanithi, D. Whitley, and Y.K. Malaiya, “Prediction of software
reliability using connectionist models,” IEEE Transactions on Software
Engineering, vol. 18, 563-574, 1992.

[15] N. Karunanithi, et al., “Prediction of software reliability using neural
networks,” Proceedings IEEE International Sym. Software Reliability
Engineering, pp. 124-130, 1991.

[16] T. M. Khoshgoftaar, E.B. Allen, Z. Xu, “Predicting testability of
program modules using a neural network”, Proceedings of the 3rd IEEE
Symposium on Application-Specific Systems and Software Engineering
Technology, pp. 57-62, 2000.

[17] T. M. Khoshgoftaar, A.S. Pandya, and H.B. More, “A neural network
approach for predicting software development faults”, Proceedings of
Third International Symposium on Software Reliability Engineering, pp.
83-89, 1992.

[18] T. M. Khoshgoftaar, D.L. Lanning, and A.S. Pandya, “A Comparative
Study of Pattern Recognition Techniques for Quality Evaluation of
Telecommunications Software,” IEEE Journal on Selected Areas in
Communications, vol. 12, pp. 279-291, 1994.

[19] T. M. Khoshgoftaar, R. M. Szabo, and P.J. Guasti, “Exploring the
behaviour of neural network software quality models,” Software
Engineering Journal, vol. 10, pp. 89-96, 1995.

[20] W. Li, and S. Henry, “Object-Oriented Metrics that Predict
Maintainability,” Journal of Systems and Software, vol. 23, pp. 111-
122, 1993.

[21] H. Lounis, and W. Melo, “Identifying and Measuring Coupling on
Modular Systems,” Procedings of the 8 th International Conference on
Software Technology, 1997.

[22] NeuroShell 2 Help, Ward Systms Group, Inc.
[23] Mei-Huei Tang, Ming-Hung Kao, Mei-Hwa Chen, “An empirical study

on object-oriented metrics,” Proceedings of the Sixth IEEE International
Symposium on Software Metrics, pp. 242-249, 1999.

