
ONTOLOGY BASED INFORMATION RETRIEVAL

SYSTEM FOR DIGITAL LIBRARY

THET THET AUNG

M.C.Sc. MAY 2021

ONTOLOGY BASED INFORMATION RETRIEVAL

SYSTEM FOR DIGITAL LIBRARY

BY

THET THET AUNG

B.C.Sc.(Hons:)

A Dissertation Submitted in Partial Fulfillment of the

Requirement for the Degree of

Master of Computer Science

(M.C.Sc.)

University of Computer Studies, Yangon

May 2021

i

ACKNOWLEDGEMENTS

To complete this thesis, many things are needed like my hard work and the

supporting of many people who gave a lot of idea to me to complete this thesis.

Firstly, I would like to express my respectful thanks to

 Prof. Dr. Mie Mie Thet Thwin, Rector and Dr. Yadanar Thein, Pro- Rector of the

University of Computer Studies, Yangon, for their kind permission to submit this

thesis.

My sincere thanks and regards to Dr. Thi Thi Soe Nyunt, Professor, Faculty

of Computer Science Department of the University of Computer Studies, Yangon, and

Dr. Soe Lae Phoo and Dr. Ei Phyoe Wai, University of Computer Studies, Yangon,

Dr. Nilar Thein, Dr. Yaza Na, Pro- Rectors and Dr. May Phyoe Oo, Pro- Rector of

the University of Computer Studies, Hinthada, for their administrative supports and

encouragement throughout the completion of this thesis.

I would like to express my sincere gratitude to

Daw Khin Lay Myint and Dr. Aye Aye Seint for their helpful suggestions in the

preparation of this thesis.

I would like to express my respectful thanks to my supervisor

 Dr. Hlaing Htake Khaung Tin, Professor and Head of Faculty of Information

Science Department of the University of Computer Studies, Hinthada, for her

valuable guidance, encouragement and helpful suggestions throughout the progress of

the research and in the preparation of this thesis.

My gratitude also goes to Daw Nyunt Nyunt Htwe, Lecturer and Head of

Department Language Development (English) of University of Computer studies,

Hinthada, for her editing this thesis from the language point of view.

I especially give thanks to my parent, all of my colleagues, and friends, for

their encouragement and help in writing this thesis.

Finally, I would like to express special thanks to all of the teachers, staffs from

the University of Computer Studies, Hinthada for their support.

ii

ABSTRACT

Using semantic web technology through Information Retrieval (IR) process is

becoming an efficient way to enhance the accuracy of the search process and retrieve

more relevant results in the web-based systems, especially in the Digital Library. In the

Digital Library fields, Ontology can be used to organize bibliographic descriptions,

represent and expose the contents of the document, and share knowledge between users.

Therefore, the IR model for digital libraries based on the adaptation of the

Vector Space Model (VSM) combined with the Semantic Web technologies: Web

Ontology Language (OWL) and SPARQL protocol is proposed in this research. The

main concept of the proposed IR model is that metadata of resources are stored in

Resource Description Framework (RDF) format and retrieved not only by the

keywords contained in the user query but also by the contexts defined in Domain

Ontology. In the proposed IR model, preprocessing, context matching, and calculating

similarity values steps are included. The algorithm for the formatting of SPARQL

query is developed in the context matching step of IR model.

Based on the proposed IR model, Ontology-based IR system for Digital

Library is implemented in Service-Oriented Architecture (SOA) by using the XML

Web Service technology and ASP.NET. The architecture of the proposed system

consists of file storage for documents, one ontology dataset, and two programming

components: Digital Library Web Service and Web Application. In this proposed

system, Web Ontology Language (OWL) is used to design Ontology for Digital

Library using Protégé v3.5 tool. Functions for publication and retrieving of

documents are implemented as a web service by using the C# programming language.

The user interface is designed and implemented as a web application in ASP.NET

platform for consuming the functions of web service.

To show the performance of the proposed IR system, 415 training documents

including various file types (.doc, .pdf, .txt) were tested and 33 queries for different

properties of document were presented. To evaluate the performance of proposed IR

system, the precision, recall, and F-values are measured and compared. According to

the comparison results, the Ontology-based IR system is more accurate in searching

for ObjectProperty type. As a result, the proposed system serves user-friendly, high-

performance and scalable semantic search for information from the digital library.

iii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS .. i

ABSTRACT ... ii

TABLE OF CONTENTS .. iii

LIST OF FIGURES ... vi

LIST OF TABLES ... viii

CHAPTER 1 INTRODUCTION

1.1 Information Retrieval ...1

1.2 Motivation of the Thesis ..2

1.3 Objectives of the Thesis ...3

1.4 Contributions of the Thesis ..3

1.5 Organization of the Thesis ...4

CHAPTER 2 BACKGROUND THEORY

2.1 Digital Library ..5

2.1.1 Common Features of Digital Library ...5

2.1.2 Metadata Creation ..6

2.2 Ontology in Digital Library ...7

2.3 Web Ontology Language (OWL) ..8

2.3.1 Classes..9

2.3.2 Properties ...9

2.3.3 Individuals..11

2.4 SPARQL Query Language ..11

2.4.1 Forms of SPARQL Queries ...12

2.4.2 Filtering in SPARQL Queries ..14

iv

2.5 Models of Information Retrieval ...16

2.5.1 Boolean Model ...17

2.5.2 Language Model ..18

2.5.3 Probabilistic model ..18

2.5.4 Vector Space Model ...18

2.6 Summary ..19

CHAPTER 3 ONTOLOGY BASED INFORMATION

RETRIEVAL

3.1 Building Ontology for Digital Library ...20

3.1.1 Defining Classes ..21

3.1.2 Defining Properties ..23

3.1.3 Defining Individuals ..25

3.2 Ontology based IR Model ..29

3.2.1 Preprocessing Query ..29

3.2.2 Context Matching...29

3.2.3 Calculating TF-IDF and Similarity ..32

3.3 Summary ..37

CHAPTER 4 SYSTEM DESIGN AND IMPLEMENTATION

4.1 Overview Design of the System ..38

4.2 Ontology Structure of the System ..39

4.3 Implementation of the System ...40

4.3.1 Implementation of Digital Library Web Service41

4.3.2 Implementation of Digital Library Web Application49

4.4 Performance Analysis ..54

v

4.5 Summary ..56

CHAPTER 5 CONCLUSION AND FURTHER EXTENSIONS

5.1 Conclusion ...57

5.2 Advantages and Limitations of the System ...57

5.3 Further Extensions ...58

AUTHOR’S PUBLICATIONS ..64

REFERENCES ..65

vi

LIST OF FIGURES
 Page

Figure 1.1 General Architecture of IR System 2

Figure 2.1 Representations of Classes (Containing Individuals) 9

Figure 2.2 Representation of Properties 10

Figure 2.3 The Different types of OWL Properties 10

Figure 2.4 Representation of Individuals 11

Figure 3.1 The Classes Tab 21

Figure 3.2 The Class Hierarchy Pane 22

Figure 3.3 The Class Editor Pane 22

Figure 3.4 The Classes of Digital Library Ontology 22

Figure 3.5 The Properties Tab 23

Figure 3.6 The Properties Creation Buttons 23

Figure 3.7 The Properties Editor 24

Figure 3.8 The Properties of Digital Library Ontology 25

Figure 3.9 The Individuals Tab 26

Figure 3.10 Instances Manipulation Buttons 26

Figure 3.11 The Individual Editor 27

Figure 3.12 Individuals of “DocumentType” Class 27

Figure 3.13 Individuals of “FileType” Class 28

Figure 3.14 Individuals of “Category” Class 28

Figure 3.15 Algorithm for formatting of SPARQL 30

Figure 4.1 Overview Design of the System 38

Figure 4.2 Ontology Structure of the System 40

vii

Figure 4.3 Architecture of the System 41

Figure 4.4 Testing the getOwlClass Function of Web Service 42

Figure 4.5 Testing the getIndividuals Function of Web Service 42

Figure 4.6 Result of Document Class Structure returned by getOwlClass Function 43

Figure 4.7 Result of File Type Instances returned by getIndividuals Function 44

Figure 4.8 Dataset uploaded to Digital Library Ontology on Apache Jena Fuskei

Server 44

Figure 4.9 Testing the toSPARQL Function of Web Service 45

Figure 4.10 The Formatted SPARQL query returned by toSPARQL Function 45

Figure 4.11 Login Page of Digital Library Web Application 46

Figure 4.12 Home Page of Digital Library Web Application 46

Figure 4.13 Edit Page of Digital Library Web Application 47

Figure 4.14 Publish Page for Browsing the Document 47

Figure 4.15 Publish Page with Metadata Values 48

Figure 4.16 Administration Page with User Information 49

Figure 4.17 Search Page of Digital Library Web Application 49

Figure 4.18 Result Page of Digital Library Web Application 50

Figure 4.19 Comparison Results of Precision, Recall and F-Measure 51

Figure 4.20 Processing Time Comparison for Proposed and Traditional IR 52

Figure 4.21 Processing Time Comparison for Proposed and Traditional IR 52

Figure 4.22 Processing Time Comparison for Proposed and Traditional IR 53

Figure 4.23 Processing Time Comparison for Proposed and Traditional IR 53

Figure 4.24 Processing Time Comparison for Proposed and Traditional IR 54

Figure 4.25 Processing Time Comparison for Proposed and Traditional IR 54

viii

Figure 4.26 Processing Time Comparison for Proposed and Traditional IR 58

Figure 4.27 Processing Time Comparison for Proposed and Traditional IR 61

ix

LIST OF TABLES

 Page

Table 3.1 Extracted Terms from Documents 34

Table 3.2 Term Frequency Result for Extracted Terms 34

Table 3.3 Inverse Document Frequency Result for Extracted Terms 34

Table 3.4 TF-IDF Result for Extracted Terms 35

Table 3.5 Similarity Results for Documents 37

Table 3.6 Ranked Results for Documents 37

Table 4.1 Precision, Recall and F-measure Results for ObjectProperty 56

Table 4.2 Precision, Recall and F-measure Results for DatatypeProperty 57

Table 4.3 Average Processing Time Results for ObjectProperty 59

Table 4.4 Average Processing Time Results for DatatypeProperty 60

1

CHAPTER 1

INTRODUCTION

Nowadays, the amount of available information in both printed media and

electronic/digital mediums had increased dramatically. Moreover, the number of

digital documents had rapidly increased and required easy and accessed mechanized

methods. In the information retrieval systems, the information is usually searched by

means of a full-text search; every term in the texts of the documents can function as a

search key.

Digital libraries (DLs) had become the digital counterpart of the traditional

library system. There are various ways to improve the search technology for accessing

documents from DL. In this thesis, Ontology-based IR system is proposed for Digital

Library. Ontologies have the potential to play an important role in DL, because

ontology defines a common vocabulary for researchers who need to share information

in a domain.

The proposed system intends to provide for students to retrieve the relevant

information with their concept and to be able to search, read and download the

textbooks, old questions (included tutorial, exam, multiple, assignments), journals,

thesis papers, reference papers, novels efficiently in the short time.

1.1 Information Retrieval

Information retrieval is the study of helping users to find information that

matches their information needs. Technically, IR studies the acquisition, organization,

storage, retrieval, and distribution of information. Historically, IR is about document

retrieval, emphasizing document as the basic unit [2]. General architecture of the IR

system is shown in Figure 1.1.

In the general architecture of the IR system, the user with information needs

issues a query (user query) to the retrieval system through the query operations module.

The retrieval module uses the document index to retrieve those documents that contain

some query terms (such documents are likely to be relevant to the query); compute

relevance scores for them, and then rank the retrieved documents according to the

scores. The ranked documents are then presented to the user. The document collection is

also called the text database, which is indexed by the indexer for efficient retrieval [2].

2

Figure 1.1 General Architecture of IR System

Information Retrieval (IR) systems provide populations of users with access to

a large collection of stored information. These systems are concerned with the

structure, analysis, organization, storage, and searching for such information. Dr.

Glöckner [11] described a good IR system is able to accept a user query, understand

from the user query what the user requires, search a database for relevant documents,

retrieve the documents to the user, and rank the documents according to their

relevance.

Information retrieval systems are everywhere: Web search engines, library

catalogs, store catalogs, cookbook indexes, and so on. Information retrieval (IR), also

called information storage and retrieval (ISR or ISAR) or information organization

and retrieval, is the art and science of retrieving from a collection of items a subset

that serves the user’s purpose [26]

1.2 Motivation of the Thesis

The Digital Libraries (DL) is a collection of documents organized in an

electronic form [33]. There are some limitations facing his electronic process. Some

of these limitations are:

• sorting materials by topic or by the material type.

• finding and using particular information's on web-based systems is a

major challenge for most users.

User Query

Query Operations

Retrieval System
Document

Index

Indexer

Document

Collection

Ranked

Documents

3

• Retrieving huge amounts of data in a short time.

• Retrieving more relevant and specific results.

Due to these limitations, an extreme need for semantic digital library appeared

to enhance the digital libraries performance and gives accurate results to fulfill users

and needs, where Semantic web technologies, such as Ontology, can provide more

functions for the digital library to improve the result of searching and retrieving

processes.

1.3 Objectives of the Thesis

In the information retrieval systems, the information is usually searched by

means of a full-text search; every term in the texts of the documents can function as a

search key. There are various ways to improve the search technology for accessing

documents from digital library. The objectives of the thesis are as follows:

(i) To implement a Digital Library which contains digital documents with

the various formats, such as text, e-Book, MS Word document, or pdf.

(ii) To develop the domain ontology for Digital Library.

(iii) To study the semantic or context-based Information Retrieval (IR).

(iv) To develop an Ontology-based IR system for Digital Library.

(v) To improve the accuracy of IR results by combining semantic web

technologies and vector space models.

(vi) To reduce the consuming time of searching for information.

1.4 Contributions of the Thesis

The system develops domain ontology for digital libraries and Ontology-based

IR models. The proposed IR system is very useful in digital library domain area. The

contributions of the thesis are as follows:

(i) Domain Ontology for the digital library is developed.

(ii) IR model for digital libraries based on the adaptation of the vector

space model combined with the semantic web technologies (OWL and

SPARQL) is proposed.

4

1.5 Organization of the Thesis

This thesis is organized into five chapters, abstract, acknowledgments and

references. The Ontology-based Information Retrieval system is introduced for the

digital libraries in the chapter one. This chapter also describes the motivation,

contribution, aim, and objectives of the research work.

The features of the Digital Library, technologies of Semantic Web, and

models of Information Retrieval (IR) are presented in the chapter two. Various types

and models of IR, SPARQL query language, and Web Ontology Language (OWL) are

briefly explained in this chapter.

The model of Information Retrieval based on Ontology is explained details in

the chapter three. Design of the Domain Ontology for Digital Library is described,

and then the detail explanation about context matching process, formatting of

SPARQL query, and calculation of similarity by vector space model is finally

presented.

Design and implementation of Ontology-based Information Retrieval System

for Digital Library are presented in the chapter four. And then, the overview of system

design, the architecture of the system, and the structure of Digital Library Ontology

are described in this chapter. And then, the implementation of programming modules

for the proposed system is explained with Graphical User Interfaces. Finally, the

experimental results are shown by charts and tables.

The conclusion of the research work is drawn in the chapter five. In this

chapter, further extensions that propose some improvements which could be made are

presented. The limitations of the system are also described in this chapter.

5

CHAPTER 2

BACKGROUND THEORY

This chapter presents the features of Digital Library, technologies of Semantic

Web, and models of Information Retrieval (IR). Firstly, this chapter describes the

features and metadata of a Digital Library. Secondly, this chapter describes the

overview of Ontology that is important to build a domain Ontology for Digital

Library. And then, it explains Web Ontology Language (OWL) which is the most

popular specification for defining domain Ontology and SPARQL query language

which is the standard query language for Ontology. Finally, it presents various types

and models of IR.

2.1 Digital Library

Digital libraries are a set of electronic resources and associated technical

capabilities for creating, searching, and using information. They combine the structure

and gathering of information, which libraries and archives have always done, with the

digital representation that computers have made possible. The main purpose of a

digital library is to collect, manage, and preserve in perpetuity digital content [6].

The Digital Libraries Federation in 1998 defines digital libraries as: "Digital

libraries are organizations that provide the resources, including the specialized staff,

to select, structure, offer intellectual access to, interpret, distribute, preserve the

integrity of, and ensure the persistence over time of collections of digital works so

that they are readily and economically available for use by a defined community or set

of communities" [10].

2.1.1 Common Features of Digital Library

Common features of the digital library are as follows:

• providing round the clock services to users, within and without the library

environment. Users can access the digital objects at any time and

anywhere i.e. 24 hours and 7 days a week with only a computer and

internet connection;

• providing a coherent view of all information contained within a library, no

matter its form or format (e.g., text, audio, image and video);

6

• accessing a digital object by several users at the same time in different

locations;

• requiring no large spaces, unlike traditional libraries where physical space

is required for the construction and maintenance of the collections [14].

These Common features show the flexibility, portability, and accessibility of

Digital libraries. Nevertheless, the principles underlying the functionality of digital

libraries were simple, the premise that digital libraries dealing with traditional

problems of searching for information delivery to users and to preserve it for

posterity. Digital information takes up less space than information on paper and

therefore, can help traditional libraries reduce costs is no longer enough anymore, so

many more models are defined to meet specific needs that will be stumbling over time

and with changing new technologies.

2.1.2 Metadata Creation

The word “metadata” means “data about data”. Metadata articulates a context

for the object of interest, “resources” such as MP3 files, library books, or images, in

the form of “resource description” [18]. It is machine-understandable information

about web resources or other things [3]. Metadata serves many important purposes

like data description, data browsing, data transfer, and metadata has an important role

in digital resource management [12].

Traditional physical libraries employ metadata in the library catalogs. In

digital libraries, metadata is obtained by cataloging resources such as books,

periodicals, web pages, digital images, and DVDs, etc. The data is stored in the

integrated system, using the MARC metadata standard. The purpose is to direct users

to the location of the items and a detailed description of the items. Recently, standards

for metadata in the digital libraries include Dublin Core, DDI [18]. Different metadata

elements are needed to perform different tasks, for example, author, title and subject

support the function of discovery. A DL may require many more forms of metadata

than analog for management and use. According to the National Information Standard

Organization’s (NISO) publication “Understanding Metadata”, there are three types of

metadata [4].

• Administrative Metadata: Administrative metadata provides information

to manage to resource e.g. when and how the resource has created.

7

• Descriptive Metadata: Descriptive metadata provides the source purpose

e.g. title, abstract, author, etc.

• Structural Metadata: Information necessary to record the internal

structure of an item so that it can be rendered to the user in a sensible form

(for instance, a book must be delivered in its page order.) This type of

metadata is necessary as an item may often be comprised of multiple

(often thousands) of files. For example, the images of individual pages that

make up a digitized book.

2.2 Ontology in Digital Library

The term ontology has been used for many years, to mean different things like

glossaries and data dictionaries, thesauri and taxonomies, controlled vocabulary,

schema and data models, and formal ontologies and inference. And also in many

areas, such as philosophy, artificial intelligence, knowledge-based systems, it has

been used to organize information. There are found in the literature several definitions

of ontologies, several types proposed for application in different areas of knowledge,

and proposals for building ontologies (methodologies, tools, and languages).

The philosophical field of ontology was not as successful as computer

scientists, where they built some large and robust ontology, such as WordNet and Cyc

[27]. Ontologies have aroused the interest of many researchers in Computer Science,

being able to highlight main areas: Database, Software Engineering, Semantic Web,

Information Architecture, Knowledge Engineering, Knowledge Representation,

Qualitative Modeling, Language Engineering, Information Retrieval, and Extraction,

Knowledge Management and Organization, and Artificial Intelligence as a form of

knowledge representation about the world or some part this, describing: individuals,

classes, attributes, relationships and events [20].

In the Digital Libraries fields, ontologies can be used to: organize

bibliographic descriptions, represent and expose the contents of the document, and

share knowledge between users. It’s important to note that the use of ontologies in

digital libraries allows us to transfer the profile, the user's browsing behavior to other

digital libraries and databases, so that when a user of a particular DL leaves service to

connect to another DL, the user profile (including preferences and navigation

behaviour) can be transferred from one base to another by using the appropriate

8

semantic web services because all databases share a common domain of discourse that

can be played by rules inference and application logic. For this we have a vast list of

ontology languages that allow us to design ontologies according to our needs,

however, when it comes to design ontology for digital libraries pertinent examples

exist such as RDF (Resource Description Framework), in the family of W3C which is

used for describing resources; XML (Extensible Markup Language), for describing

data, information, and knowledge; OWL(Web Ontology Language), is becoming the

standard for describing ontologies and accessing resources through the web [13].

2.3 Web Ontology Language (OWL)

The ontology describes the concepts in the domain and also the relationships

that hold between those concepts. Different ontology languages provide different

facilities. The most recent development in standard ontology languages is OWL from

the World Wide Web Consortium (W3C).

Web Ontology Language (OWL) is a language for defining and instance

ontologies in the Web. This includes descriptions of classes and their properties and

their relationships. OWL was designed for use by applications that need to process the

content of information, instead of just presenting it to humans. It further facilitates the

possibility for interpretation by machines of Web content by providing additional

vocabulary with formal semantics. OWL is a W3C recommendation [9].

OWL is intended to be used when the information contained in documents

needs to be processed by applications, as opposed to situations where the content only

needs to be presented to humans. OWL can be used to explicitly represent the

meaning of terms in vocabularies and the relationships between those terms. This

representation of terms and their interrelationships is called ontology. OWL has more

facilities for expressing meaning and semantics than XML, RDF, and RDF-S, and

thus OWL goes beyond these languages in its ability to represent machine

interpretable content on the Web [32]. OWL ontology consists of three components:

Individuals, Properties, and Classes.

9

2.3.1 Classes

OWL classes are interpreted assets that contain individuals. They are

described using formal (mathematical) descriptions that state precisely the

requirements for membership of the class [17]. For example, the class Document

would contain all the individuals that are documented in our domain of interest

(Digital Library). Classes may be organized into a superclass-subclass hierarchy,

which is also known as taxonomy. Subclasses specialize (‘are subsumed by’) their

super-classes. For example, consider the classes Resource and Document - Document

might be a subclass of Resource (so Resource is the superclass of Document). This

says that “All documents are resources”, “All members of the class Document are

members of the class Resource”, “Being a Document implies that it is a Resource”,

and “Document is subsumed by Resource”. Figure 2.1 shows a representation of some

classes containing individuals - classes are represented as circles or ovals, rather like

sets in Venn diagrams.

Figure 2.1 Representations of Classes (Containing Individuals)

2.3.2 Properties

Properties are binary relations on individuals - i.e. properties link two

individuals together. There are two main types of properties, Object properties, and

Datatype properties [17].

Object properties are relationships between two individuals [17]. For example,

the property hasAuthor might link the individual “Document_1” to the individual

“Author_1”, Datatype properties link an individual to an XML Schema Datatype

:doc2

:doc1

:pdf

:docx

:Aung

:Thet

Document
Author

Format

:hasFormat

:hasAuthor

10

value or an RDF literal. In other words, they describe relationships between individual

and data values. For example, A datatype property numberOfPages linking the

individual “Document_1” to the data literal ‘125’, which has a type of an xsd: integer.

Figure 2.2 shows a representation of some properties linking some individuals

together.

Figure 2.2: Representation of Properties

OWL also has a third type of property - Annotation properties. Annotation

properties can be used to add information (metadata - data about data) to classes,

individuals, and object/datatype properties. Figure 2.3 depicts an example of each

type of property.

Figure 2.3: The Different types of OWL Properties

:numberOfPages

“125”^^xsd:integer

:doc1

:doc1

A datatype property linking the individual “doc1” to the data literal ‘125’, which

has a type of an xsd:integer.

An object property linking the individual “doc1” to the individual “Aung”

:hasAuthor

:Aung

:title

“Semantic Web” :doc1

An annotation property, linking the class ‘doc1’ to the data literal (string)

“Semantic Web”.

:numberOfPages
:hasType

:hasAuthor
:doc2

:doc1

:ebook

:journal

:Aung

:Thet

“125”^^xsd:integer

11

Properties can have inverses. For example, the inverse of hasAuthor is

isAuthoredBy. Properties can be limited to having a single value - i.e. to being

functional. They can also be either transitive or symmetric [17].

2.3.3 Individuals

Individuals represent objects in the domain in which we are interested. OWL

does not use the Unique Name Assumption (UNA) for individuals. This means that

two different names could actually refer to the same individual. For example, “Queen

Elizabeth”, “The Queen” and “Elizabeth Windsor” might all refer to the same

individual. In OWL, it must be explicitly stated that individuals are the same as each

other, or different from each other otherwise they might be the same as each other, or

they might be different from each other. Figure 2.4 shows a representation of some

individuals in some domain represented as diamonds in diagrams.

Figure 2.4: Representation of Individuals

2.4 SPARQL Query Language

SPARQL is a query language and a protocol for accessing RDF designed by

the W3C RDF Data Access Working Group. As a query language, SPARQL is “data-

oriented” in that it only queries the information held in the models; there is no

inference in the query language itself [1].

RDF is a directed, labeled graph data format for representing information in

the Web [22]. This specification defines the syntax and semantics of the SPARQL

query language for RDF. SPARQL can be used to express queries across diverse data

sources, whether the data is stored natively as RDF or viewed as RDF via middleware

[29]. SPARQL contains capabilities for querying required and optional graph patterns

:doc2

:doc1

:ebook

:journal

:Aung

:Thet

:pdf

:docx

12

along with their conjunctions and disjunctions. SPARQL also supports aggregation,

subqueries, negation, and creating values by expressions, extensible value testing, and

constraining queries by source RDF graph. The results of SPARQL queries can be

result sets or RDF graphs [31].

2.4.1 Forms of SPARQL Queries

SPARQL has four query forms. These query forms use the solutions from

pattern matching to form result sets or RDF graphs [31]. The query forms are:

• SELECT: Returns all, or a subset of, the variables bound in a query pattern

match.

• CONSTRUCT: Returns an RDF graph constructed by substituting

variables in a set of triple templates.

• ASK: Returns a boolean indicating whether a query pattern matches or not.

• DESCRIBE: Returns an RDF graph that describes the resources found.

The SELECT form of results returns variables and their bindings directly. It

combines the operations of projecting the required variables with introducing new

variable bindings into a query solution.

Sample Data

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix : <http://example.org/book/> .

@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .

:book1 ns:price 42 .

:book2 dc:title "The Semantic Web" .

:book2 ns:price 23 .

SELECT Query

PREFIX dc: <http://purl.org/dc/elements/1.1/> .

PREFIX : <http://example.org/book/> .

PREFIX ns: <http://example.org/ns#> .

SELECT ?book ?title

WHERE

{

?book dc:title ?title .

?book ns:price ?price . FILTER (?price < 40)

}

Result

Book title

:book2 “The Semantic Web”

13

The CONSTRUCT query form returns a single RDF graph specified by a

graph template. The result is an RDF graph formed by taking each query solution in

the solution sequence, substituting for the variables in the graph template, and

combining the triples into a single RDF graph by the set union.

If any such instantiation produces a triple containing an unbound variable or

an illegal RDF construct, such as a literal in subject or predicate position, then that

triple is not included in the output RDF graph. The graph template can contain triples

with no variables (known as ground or explicit triples), and these also appear in the

output RDF graph returned by the CONSTRUCT query form [31].

Sample Data

comp:A rov:haslegalName “Niké” .

comp:A org:hasRegisteredSite site:1234 .

comp:B rov:haslegalName “BARCO” .

site:1234 locn:fullAddress “Dahliastraat 24, 2160 Wommelgem” .

CONSTRUCT Query

PREFIX comp: < http://example/org/org/>

PREFIX org: < http://www.w3.org/TR/vocab-regorg/ >

PREFIC rdfs: <http://www.w3.org/TR/rdf-schema/>

CONSTRUCT {?comp rdfs:label ?name}

WHERE

{ ?comp org:haslegalName ?name. }

Resulting Graph

@prefix comp: <http://example/org/> .

@prefix rdfs: <http://www.w3.org/TR/rdf-schema/>

comp:a rdfs:label “Niké" .

comp:b rdfs:label “BARCO" .

Applications can use the ASK form to test whether or not a query pattern has a

solution. No information is returned about the possible query solutions, just whether

or not a solution exists [31]. The following example describes the ASK query “Are

there any organizations having “1234” as their registered site?” for the above sample

data.

ASK Query

PREFIX org: < http://www.w3.org/TR/vocab-regorg/

ASK

WHERE

{?organisation org:hasRegisteredSite site:1234}

Result

TRUE

14

The DESCRIBE form returns a single result RDF graph containing RDF data

about resources. This data is not prescribed by a SPARQL query, where the query

client would need to know the structure of the RDF in the data source, but, instead, is

determined by the SPARQL query processor. The query pattern is used to create a result set.

The DESCRIBE form takes each of the resources identified in a solution, together

with any resources directly named by IRI, and assembles a single RDF graph by

taking a "description" which can come from any information available including the

target RDF Dataset. The description is determined by the query service. The syntax

DESCRIBE * is an abbreviation that describes all of the variables in a query [31]. The

following example DESCRIBE query return all triples associated with a particular

resource (organization) for the above sample data.

DESCRIBE query

PREFIX comp: <http://example/org/>

DESCRIBE comp:A

Result

@prefix comp: <http://example/org/> .

@prefix org: <http://www.w3.org/TR/vocab-regorg/> .

comp:A rov:haslegalName “Niké” .

comp:A org:hasRegisteredSite site:1234 .

2.4.2 Filtering in SPARQL Queries

Filtering of query solutions is done within a FILTER expression. SPARQL

FILTERs restrict the solutions of a graph pattern match according to a given

constraint [31]. This section describes how the values in a solution can be restricted.

There are many comparisons available - we just cover two cases here: string matching

and testing values.

SPARQL provides an operation to test strings, based on regular expressions.

This includes the ability to ask SQL “LIKE” style tests, although the syntax of the

regular expression is different from SQL. The regular expression language is the same

as the XQuery regular expression language which is a codified version of that found

in Perl [30].

The syntax is:

FILTER regex(?x, "pattern" [, "flags"])

15

The flags argument is optional. The flag “i” means a case-insensitive pattern

match is done. The following sample data and example query find books by title with

a case-insensitive pattern in them.

Sample Data

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix : <http://example.org/book/> .

@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .

:book1 ns:price “42"^^xsd:integer .

:book2 dc:title "The Semantic Web" .

:book2 ns:price “23"^^xsd:integer .

SPARQL Query with String Filter

PREFIX dc: <http://purl.org/dc/elements/1.1/> .

PREFIX : <http://example.org/book/> .

PREFIX ns: <http://example.org/ns#> .

SELECT ?book ?title

WHERE{

?book dc:title ?title .

FILTER REGEX(?title, “semantic”, “i”)

}

Result

book title

:book2 “The Semantic Web”

In the above data simple data file, we have added an extra field for

numberOfpages. A query with a value filter to find the title of books that have more

than 10 pages is shown below.

Sample Data

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix dl: <http://example.org/book/> .

@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .

:book1 dl:numberOfPages “15”^^xsd:integer .

:book2 dc:title "The Semantic Web" .

:book2 dl:numberOfPages “10”^^xsd:integer.

SPARQL Query with Value Filter

PREFIX dc: <http://purl.org/dc/elements/1.1/> .

PREFIX : <http://example.org/book/> .

PREFIX ns: <http://example.org/ns#> .

SELECT ?book ?pages

WHERE{

?book dc:numberOfPages ?pages .

FILTER (?pages > “10”^^xsd:integer)

}

16

Result

book title

:book1 “SPARQL Tutorial”

2.5 Models of Information Retrieval

The typical IR model of the search process consists of three essentials: query,

documents, and search results. The goal of an IR system is to retrieve documents

containing information that might be useful or relevant to the specific purpose it’s

being used. Information retrieval systems can also be distinguished by the scale at

which they operate. Tasks of information retrieval are as follows [25]:

• Routing and filtering: To direct documents to interested parties

• Multimedia retrieval: To retrieve e.g. images or speech data

• Cross-language Retrieval: To find documents in one language that is

relevant to an information need expressed in another language

• Summarization: To capture the essence of a text in fewer words

• Translation: To express in one language the meaning of a document

written in another language

• Question-answering: To find text that answers a particular question

• Topic detection: To identify stories that discuss the same topic

• Classification: To assign documents to known classes

• Clustering: To assign documents to previously unknown groupings

• Novelty detection: To determine when a new topic is introduced

There are two good reasons for having models of information retrieval. The

first is that models guide to research and provide the means for academic discussion.

The second reason is that models can serve as a blueprint to implement an actual

retrieval system.

Mathematical models are used in many scientific areas with the objective to

understand and reason about some behavior or phenomenon in the real world. A

model of information retrieval predicts and explains what a user will find relevant

given the user query. The correctness of the model’s predictions can be tested in a

controlled experiment. In order to do predictions and reach a better understanding of

information retrieval, models should be firmly grounded in intuitions, metaphors, and

some branch of mathematics [24].

17

Intuitions are important because they help to get a model accepted as

reasonable by the research community. Metaphors are important because they help to

explain the implications of a model to a bigger audience. For instance, by comparing

the earth’s atmosphere with a greenhouse, non-experts will understand the

implications of certain models of the atmosphere. Mathematics is essential to

formalize a model, to ensure consistency, and to make sure that it can be implemented

in a real system. As such, a model of information retrieval serves as a blueprint that is

used to implement an actual information retrieval system [7].

An IR model governs how a document and a query are represented and how

the relevance of a document to a user query is defined. There are four main IR

models: Boolean model, vector space model, language model, and probabilistic

model.

Although these models represent documents and queries differently, they used

the same framework. They all treat each document or query as a “bag” of words or

terms. Term sequence and position in a sentence or a document are ignored. That is, a

document is described by a set of distinctive terms. A term is simply a word whose

semantics helps remember the document’s main themes. The term here may not be a

natural language word in a dictionary. Each term is associated with a weight. Given a

collection of documents D, let V = {t1, t2,..., t|V|} be the set of distinctive terms in the

collection, where it is a term. The set V is usually called the vocabulary of the

collection, and |V| is its size, i.e., the number of terms in V. A weight wij > 0 is

associated with each term ti of a document dj Є D. For a term that does not appear in

document dj, wij = 0. Each document dj is thus represented with a term vector, dj =

(w1j, w2j,...,w|V|j), where each weight wij corresponds to the term ti Є V, and

quantifies the level of importance of ti in document dj. The sequence of the

components (or terms) in the vector is not significant. With this vector representation,

a collection of documents is simply represented as a relational table (or a matrix).

Each term is an attribute, and each weight is an attribute value. In different retrieval

models, wij is computed differently [2].

2.5.1 Boolean Model

In Boolean retrieval, a document is represented as a set of terms dj = t1,…,tk,

where each ti is a term that appears in document dj. A query is represented as a

18

Boolean expression of terms using the standard Boolean operators: and, or and not. A

document matches the query if the set of terms associated with the document stratifies

the Boolean expression representing the query. The result of the query is the set of

matching documents [15].

2.5.2 Language Model

Statistical language models (or simply language models) are based on

probability and have foundations in statistical theory [5]. The basic idea of this

approach to retrieval is simple. It first estimates a language model for each document

and then ranks documents by the likelihood of the query given the language model.

Similar ideas have previously been used in natural language processing and speech

recognition.

2.5.3 Probabilistic model

This family of IR models is based on the general principle that documents in a

collection should be ranked by decreasing the probability of their relevance to a

query. This is often called the Probabilistic Ranking Principle (PRP). Since true

probabilities are not available to an IR system, probabilistic IR models estimate the

probability of relevance of documents for a query. This estimation is the key part of

the model, and this is where most probabilistic models differ from one another. The

probabilistic model is based on probability theory. It can be estimated the relevance of

a given document for a user based upon their query.

2.3.4 Vector Space Model

In the vector space model text is represented by a vector of terms. The

definition of a term is not inherent in the model, but terms are typically words and

phrases. If words are chosen as terms, then every word in the vocabulary becomes an

independent dimension in a very high dimensional vector space. Any text can then be

represented by a vector in this high-dimensional space. If a term belongs to a text, it

gets a non-zero value in the text-vector along with the dimension corresponding to the

term. A vector-based information retrieval method represents both documents and

queries with high-dimensional vectors while computing their similarities by the vector

inner product [8].

19

2.6 Summary

This chapter presents the detail of theory background about Digital Library,

Ontology and Information Retrieval. Common features of DL and about metadata

creation are explained. Metadata is machine-understandable information about the

resources of DL. The role of Ontology in DL fields is described. In the Digital

Libraries fields, ontologies can be used to: organize bibliographic descriptions,

represent and expose the contents of the document. And then Web Ontology

Language (OWL) is presented in detail for describing the Ontology of DL. SPARQL

query language for manipulating of Ontology dataset is described with examples. The

general architecture of the IR and its different models are also presented in this

chapter.

20

CHAPTER 3

ONTOLOGY BASED INFORMATION RETRIEVAL

In this section, designing the Domain Ontology for Digital Library is

described. Creating classes and properties of Digital Library is explained using

Protégé Tool, which is a free, open-source platform to construct domain models and

knowledge-based applications with ontologies. Ontology-based Information Retrieval

Model is presented in detail in this chapter. Using Vector Space Model for ranking the

IR results is described.

3.1 Building Ontology for Digital Library

In the Digital Library fields, ontologies can be used to organize bibliographic

descriptions, represent and expose the contents of the document, and share knowledge

between users. To design ontology for DL pertinent examples exist such as:

• RDF (Resource Description Framework), in the family of W3C which is

used for describing resources;

• XML(Extensible Markup Language), for describing data, information, and

knowledge;

• OWL(Web Ontology Language), is becoming the standard for describing

ontologies and accessing resources through the web;

• SKOS (Simple Knowledge Organization System), recommended by the W3C,

enables easy publication and use of such vocabularies as linked data; etc.

In the proposed system, Web Ontology Language (OWL) is used to design

ontology for Digital Library. Many ontology editors have been developed to help

domain experts to develop and manage ontology, for example, Protégé, OntoEdit, or

TopBraid. Protégé [21] is a free, open-source platform to construct domain models

and knowledge-based applications with ontologies. Protégé OWL editor: enables

users to build an ontology for the Semantic Web, in particular to OWL:

• Classes (5 subclasses)

• Properties (16 properties)

• Instances

21

3.1.1 Defining Classes

The most basic concepts in a domain should correspond to classes that are the

roots of various taxonomic trees. Every individual in the OWL world is a member of

the class owl: Thing. Thus each user-defined class is implicitly a subclass of owl:

Thing. Domain-specific root classes are defined by simply declaring a named class [9].

To create the ontology of the Digital Library, we need to start the Protégé tool.

When Protégé starts the OWL Classes tab shown in Figure 3.1 will be visible. The

initial class hierarchy tree view should resemble the picture shown in Figure 3.2. The

empty ontology contains one class called owl: Thing. As mentioned previously, OWL

classes are interpreted as sets of individuals (or sets of objects). The class owl: Thing

is the class that represents the set containing all individuals. Because of this, all

classes are subclasses of owl: Thing.

Figure 3.1 the Classes Tab

For our sample Digital Library domain, we define five root classes:

<owl:Class rdf:ID="Author"/>

<owl:Class rdf:ID="Category"/>

<owl:Class rdf:ID="Document"/>

<owl:Class rdf:ID="DocumentType"/>

<owl:Class rdf:ID="FileType"/>

22

Figure 3.2 the Class Hierarchy Pane

To create these classes in Protégé, firstly we need to press the “Create

subclass” button shown in Figure 3.2. This button creates a new class as a subclass of

the selected class (in this case we want to create a subclass of owl: Thing). And then,

the class is renamed to “Document” by using the “Class Editor Pane” which is located

to the right of the class hierarchy shown in Figure 3.3. The remaining subclasses

Author, Category, DocumentType, FileType are created by the above steps. All

classes for Digital Library ontology created in Protégé are shown in Figure 3.4.

Figure 3.3 the Class Editor Pane

Figure 3.4 the Classes of Digital Library Ontology

23

3.1.2 Defining Properties

A property is a binary relation. Properties let us assert general facts about the

members of classes and specific facts about individuals. Two types of properties are

distinguished [9]:

• datatype properties, relations between instances of classes and RDF literals

and XML Schema datatypes

• object properties, relations between instances of two classes.

In the Protégé tool, properties may be created using the “Properties” tab

shown in Figure 3.5. Figure 3.6 shows the buttons located in the top left-hand corner

of the “Properties” tab that is used for creating OWL properties.

Figure 3.5 the Properties Tab

Figure 3.6 the Properties Creation Buttons

24

As can be seen from Figure 3.6, there are buttons for creating Datatype

properties, Object properties, and Annotation properties. Most properties created in

our Digital Library will be Datatype properties. It is also possible to create properties

using the “Properties Editor” shown in Figure 3.7 which is located on the “OWL

Classes” tab.

Figure 3.7 the Properties Editor

We define a property there are a number of ways to restrict the relation. The

domain and range can be specified. For example, the property “hasAuthor” has a

domain of “Document” and a range of “Author”. That is, it relates instances of the

class “Document” to instances of the class “Author”.

To create an Object property called “hasAuthor” we need to use the “Create

Object Property” button shown in Figure 3.6 (second button on the left). An Object

property with a generic name will be created. And then, the property is renamed to

“hasAuthor”, its domain and range is specified as shown in Figure 3.7 (the Properties

Editor).

Four object type properties and twelve data type properties are defined in

Digital Library Ontology. Object and Datatype properties are denoted by blue color

and green color respectively. These properties are shown in Figure 3.8.

25

Figure 3.8 the Properties of Digital Library Ontology

3.1.3 Defining Individuals

In addition to classes, we want to be able to describe their members. We

normally think of these as individuals in our universe of things. An individual is

minimally introduced by declaring it to be a member of a class [9] as follows.

<DocumentType rdf:ID="journal">

<rdfs:label rdf:datatype="xsd:string">

Journal

</rdfs:label>

</DocumentType>

Note that the following is identical in meaning to the example above. The

rdf:type is an RDF property that ties an individual to a class of which it is a member.

<owl:Thing rdf:ID="journal" />

<owl:Thing rdf:about="#journal">

<rdf:type rdf:resource="#DocumentType"/>

</owl:Thing>

26

In the Protégé tool, OWL allows us to define individuals and to assert

properties about them. Individuals can also be used in class descriptions, namely in

“hasValue” restrictions and enumerated classes [16]. To create individuals in Protégé

the “Individuals Tab” is used as shown in Figure 3.9.

Figure 3.9 the Individuals Tab

Suppose we wanted to describe the document types of various documents. We

would first need to add various "DocumentType" to our ontology. Document types,

for example, "eBook", "journal", "paper", "thesis", are typically thought of as being

individuals.

Figure 3.10 Instances Manipulation Buttons

27

To create the individuals for class DocumentType, we need to select the

specific class from the “Class Browser” pane and then press the “Create Instance”

button shown in Figure 3.10 from the “Instance Browser” pane. Finally, we have

to rename the new individual to “ebook” using “Individual Editor” as shown in

Figure 3.11.

Figure 3.11 the Individual Editor

In this system, forty-one individuals are created. Among them, thirty-four

individuals are created for class “Category”, four individuals for class

“DocumentType” and three individuals for class “FileType” are defined in our Digital

Library Ontology. Individuals for class “Category” are such as “accounting”,

“advanced database programming”, “artificial intelligence”, “business application

area”, etc. Individuals for class “FileType” are “doc”, “pdf” and “txt”. All individuals

defined in the ontology are described in Figure 3.12, Figure 3.13, and Figure 3.14.

Figure 3.12 Individuals of “DocumentType” Class

28

Figure 3.13 Individuals of “FileType” Class

Figure 3.14 Individuals of “Category” Class

29

3.2 Ontology based IR Model

The main concept of Ontology-based Information Retrieval (IR) is that

metadata of resources are stored in Resource Description Framework (RDF) format

and retrieved not only by the keywords contained in the user query, but also by the

contexts defined in Domain Ontology. Therefore, Ontology plays a significant role in

this IR model to define the common vocabulary and structure for resources. In our

proposed IR model, preprocessing, context matching, and calculating weight values

steps are included.

3.2.1 Preprocessing Query

First of all, user-input query is preprocessed to get the keywords. In this

process, tokenization and stopword removal processes are included. The tokenization

process is performed by removing symbol characters such as “:”, “!”, “%”, etc., and

splitting the user query with delimiters such as white space, comma, semicolon,

hyphen, and full stop characters which exist in the user query. After the tokenization

process, the stopwords such as “a”, “an”, “the”, “am”, “is”, “are”, “about”, “above”,

“in”, “at”, etc., are removed from the user query. Therefore, the preprocessing step

provides for the next context matching process only the keywords contained in the

user query. Example of tokenization and stopword removal process from input query

is presented in below.

Input Query:

“Classification of query”

Tokenization:

1. classification

2. of

3. query

Stopword Removal:

1. classification

2. query

3.2.2 Context Matching

Context matching is the main process in Ontology-based IR model. The

SPARQL query language is used to retrieve the resources in RDF format according to

30

the keywords received by the previous step. Therefore, formatting of SPARQL query

language by the keywords and property selected by the user is needed in this process.

The simplified pseudo algorithm for the formatting of SPARQL query is described

below. Algorithm for formatting of SPARQL is shown in Figure 3.15.

ALGORITHM : Formatting of SPARQL query

INPUT : query, property

OUTPUT : sparql_query

BEGIN

local variables : keywords, join_keywords, propertyName, propertyRange, propertyType,

prefix, sparql_query

keywords ← tokenize(query)

join_keywords← join(keywords, “|”)

prefix ← getPrefix()

set propertyName = property.Name

set propertyRange = property.Range

set propertyType = property.Type

set sparql_query = prefix +

"SELECT ?document ?i" +

"WHERE {?document " + propertyName + " ?i. "

IF propertyType is owl:ObjectProperty THEN

sparql_query += "?i a " + propertyRange + ". "

IF propertyRange is "dl:Author" THEN

sparql_query += "?i dl:name ?label "

END IF

sparql_query += "?i rdfs:label ?label

 FILTER REGEX

(?label, '" +join_keywords + "', 'i')}";

ELSE IF propertyType is owl:DatatypeProperty THEN

IF propertyRange is xsd:integer THEN

sparql_query += "FILTER (?i='" +join_keywor s + "'^^xsd:integer)}"

ELSE IF propertyRange is xsd:date THEN

sparql_query += "FILTER (?i='" + join_keywords + "'^^xsd:date)}"

ELSE IF propertyRange is xsd:string THEN

sparql_query += "FILTER REGEX(?i, '" + join_keywords + "', 'i')}"

END IF

END IF

RETURN sparql_query

END

Figure 3.15 Algorithm for formatting of SPARQL

The above algorithm takes two variables “query” and “property” given by the

user, and returns the formatted SPARQL query for context matching with the RDF

data source. The functions “tokenize” and “join” are called by the algorithm to

preprocess the user input query. The function “getPrefix” gives the entire prefixes of

our Ontology to use in execution of SPARQL query. The variable “property” selected

by the user is divided into “propertyName”, “propertyRange” and “propertyType”.

The main concept of the algorithm is that if the type of property is ObjectProperty

then the querying process will perform by the appropriate range of this property.

Otherwise, the querying process will perform by the appropriate data type of property.

31

Different filtering pattern for the keywords is used in this algorithm according to the range

of property. The sample formatted SPARQL queries by the algorithm are described in

follows:

Example 1:

Input Query: “classification of query”

Input Property: name-“title”, type-“owl:DatatypeProperty”, range-“xsd:string”

Output SPARQL:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX dl: <http://www.owl-ontologies.com/library.owl#>

SELECT ?document ?i

WHERE {

?document dl:title ?i.

FILTER REGEX(?i, '\\bclassification\\b|\\bquery\\b', 'i')

}

Example 2:

Input Query: “Aung Myint”

Input Property: name-“hasAuthor”, type-“owl:ObjectProperty”, range-“dl:Author”

Output SPARQL:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX dl: <http://www.owl-ontologies.com/library.owl#>

SELECT ?document ?i

WHERE {

?document dl:hasAuthor ?i.

?i a dl:Author.

?i dl:name ?label

FILTER REGEX(?label, '\\baung\\b|\\bmyint\\b', 'i')

}

Example 3:

Input Query: “2020”

Input Property: name-“date”, type-“owl:DatatypeProperty”, range-“xsd:date”

Output SPARQL:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX dl: <http://www.owl-ontologies.com/library.owl#>

SELECT ?document ?i

WHERE {

?document dl:date ?i.

FILTER (?i='2020'^^xsd:date)

}

32

3.2.3 Calculating TF-IDF and Similarity

In this step, the vector space model is used to retrieve more accurate data and

rank it which semantically enhances the searching and retrieval process. In the vector

space IR model, a document is represented as a weight vector, in which each

component weight is computed based on some variation of TF or TF-IDF scheme.

The vector space model is a statistical model for representing text information

for Information Retrieval. It is a simple, mathematically based approach that provides

partial matching and ranked results. TF-IDF weighting is the most common term

weighting approach for vector space model retrieval. The weight of the term in

document vector can be determined using the method. The weight of the term is

measured how often the term j occurs in document i (the Term Frequency) and IDF

(the Inverse Document Frequency) as shown in Equation 3.1 and 3.2.

The weight equation for the term within document is as follows:

i
idf

ij
tf

ij
w = (3.1)

where,

wij = weight of the term ti in document dj

tfij = the normalize term frequency (TF) of term ti in document dj

idfi = the inverse document frequency (IDF) of term ti

},....,,max{
jv

f
j2

f
j1

f

ij
f

ij
tf = (3.2)

where, fij = the raw frequency count of term ti in document dj

i
df

N

i
idf log= (3.3)

where,

dfi = number of document in which term ti appears at least once

N = the total number of document in the system

A query q is represented in exactly the same way as a document. The weight

equation for the term within query is as follows:

i
df

N

qv
f

q2
f

q1
f

iq
f50

5.0
iq

w log
},......,,max{

.


















+= (3.4)

33

where,

wiq = weight of the term ti in query vector q

fiq = the raw frequency count of term ti in query vector q

The similarity between query q and jth document retrieved by context

matching process is calculated by Dice similarity method as shown in Equation 3.5.

This is quantified as the

 (3.5)

where,

Dice (dj, q) = the dice similarity between document dj and query q

wij = weight of the term i within document dj

wiq = weight of the term i within query

Example of TF-IDF and Dice Similarity calculation is explained with step by

step in below.

Input Query:

Keyword: “classification of query”

In Property: “title”

Retrieved Documents by Context Matching Process:

Resource Value

dl:Document1 "Web Query Classification System using NoSQL Graph

Database"

dl:Document2 "Query Classification based Information Retrieval

System"

dl:Document3 "Performance Comparison between Keyword based and

Classification based Information Retrieval System"

STEP-1: Term Extraction (Tokenization and Stopword Removal) from resources.

The extracted terms from resources are shown in Table 3.1. In total 19 terms from

three documents are extracted. Among these, 7 terms with underline are duplicated, so

12 are received.


=

+
=


=



=
v

1i

2
iq

w

v

1i

2
ij

w

v

1i
iq

w
ij

w2

,q)Dice(d j

34

Table 3.1 Extracted Terms from Documents

Document1: Document2: Document3:

1. web

2. query

3. classification

4. system

5. nosql

6. graph

7. database

1. query

2. classification

3. information

4. retrieval

5. system

1. performance

2. comparison

3. keyword

4. classification

5. information

6. retrieval

7. system

STEP-2: Term Frequency (TF) Calculating for each Term in each Document. In this

step, the Term Frequency for extracted terms from resources is calculated by Equation 3.2.

These TF values are described in Table 3.2.

Table 3.2 Term Frequency Result for Extracted Terms

ID Term Document1 Document2 Document3

1 Web 1/1 = 1

2 Query 1/1 = 1 1/1 = 1

3 Classification 1/1 = 1 1/1 = 1 1/1 = 1

4 System 1/1 = 1 1/1 = 1 1/1 = 1

5 Nosql 1/1 = 1

6 Graph 1/1 = 1

7 Database 1/1 = 1

8 Information 1/1 = 1 1/1 = 1

9 Retrieval 1/1 = 1 1/1 = 1

10 Performance 1/1 = 1

11 Comparison 1/1 = 1

12 Keyword 1/1 = 1

STEP-3: Inverse Document Frequency (IDF) Calculating for each Term in each

Document. The IDF values for terms are calculated by Equation 3.3 and shown in

Table 3.3.

Table 3.3 Inverse Document Frequency Result for Extracted Terms

ID Term Inverse Document Frequency (IDF)

1 Web Log(3/1) = 0.47712

2 Query Log(3/2) = 0.17609

3 Classification Log(3/3) = 0

4 System Log(3/3) = 0

5 Nosql Log(3/1) = 0.47712

6 Graph Log(3/1) = 0.47712

7 Database Log(3/1) = 0.47712

8 Information Log(3/2) = 0.17609

9 Retrieval Log(3/2) = 0.17609

10 Performance Log(3/1) = 0.47712

11 Comparison Log(3/1) = 0.47712

12 Keyword Log(3/1) = 0.47712

35

STEP-4: TF-IDF (weight) Calculating for each Term in each Document. The TF-IDF

values for terms are calculated by Equation 3.1 and shown in Table 3.4.

Table 3.4 TF-IDF Result for Extracted Terms

ID Term Document1 Document2 Document3

1 Web 1 x 0.477 = 0.477

2 Query 1 x 0.176 = 0.176 1 x 0.176 = 0.176

3 Classification 1 x 0 = 0 1 x 0 = 0 1 x 0 = 0

4 System 1 x 0 = 0 1 x 0 = 0 1 x 0 = 0

5 Nosql 1 x 0.477 = 0.477

6 Graph 1 x 0.477 = 0.477

7 Database 1 x 0.477 = 0.477

8 Information 1 x 0.176 = 0.176 1 x 0.176 = 0.176

9 Retrieval 1 x 0.176 = 0.176 1 x 0.176 = 0.176

10 Performance 1 x 0.477 = 0.477

11 Comparison 1 x 0.477 = 0.477

12 Keyword 1 x 0.477 = 0.477

STEP-5: TF-IDF (weight) Calculating for each Term in the keyword. The weight

values for extracted terms from keyword are calculated by Equation 3.4 as follows.

weight (classification, keyword) = (0.5 + (0.5 × (1/1))) × log 3/3 = 0

weight (query, keyword) = (0.5 + (0.5 × (1/1))) × log 3/2 = 0.17609

STEP-6: Dice Similarity Calculating. The similarity between keywords and retrieved

documents by context matching process is calculated by Dice Equation 3.5 as shown

in below and the similarity results are shown in Table 3.5:

Similarity between keyword and Document1


=

+
=


=



=
v

1i

2
keywordi

w
v

1i

2
1documenti

w

v

1i
keywordi

w
1documenti

w2

keyword1documentDice

,,

|
,,

|

),(


=

+
=


=



=
2

1i

2
keywordi

w
7

1i

2
1documenti

w

2

1i
keywordi

w
1documenti

w2

,,

|
,,

|

() ()

() () () () () () ()  () () 222222222
176004770477047700017604770

176090176090002

......

..

++++++++

+
=

() () () () () () ()  () () 031010022764022764022764000031010227640

03101002

......

).()(

++++++++

+
=

36

   031010941570

0310102

..

.

+
=

972580

062020

.

.
=

=0.06377

Similarity between keyword and Document2


=

+
=


=



=
v

1i

2
keywordi

w
v

1i

2
2documenti

w

v

1i
keywordi

w
2documenti

w2

keyword2documentDice

,,

|
,,

|

),(


=

+
=


=



=
2

1i

2
keywordi

w
5

1i

2
2documenti

w

2

1i
keywordi

w
2documenti

w2

,,

|
,,

|

() ()

() () () () ()  () () 2222222
176090017609017609000176090

176090176090002

....

..

++++++

+
=

() () () () ()  () () 031010003101003101000031010

03101002

....

).()(

++++++

+
=

   031010093030

0310102

..

.

+
=

124040

062020

.

.
=

=0.5

Similarity between keyword and Document2


=

+
=


=



=
v

1i

2
keywordi

w
v

1i

2
3documenti

w

v

1i
keywordi

w
3documenti

w2

keyword3documentDice

,,

|
,,

|

),(


=

+
=


=



=
2

1i

2
keywordi

w
7

1i

2
3documenti

w

1

1i
keywordi

w
3documenti

w2

,,

|
,,

|

37

()

() () () () () () ()  () () 222222222
176004770477047701760176000

002

...... ++++++++


=

   031010744940

0

.. +
=

775950

0

.
=

= 0

STEP-7: Ranking Documents by Similarity Score. After calculating the similarity

values between documents and keywords, the retrieved documents are ranked by

score. The ranked result is shown in Table 3.6.

Table 3.5 Similarity Results for Documents

Id similarity score

Document1 0.06377

Document2 0.5

Document3 0

Table 3.6 Ranked Results for Documents

Id similarity score Remark

Document2 0.5 Most Relevant Document

Document1 0.06377

Document3 0

3.3 Summary

In this chapter, designing the Domain Ontology for Digital Library is

described. Web Ontology Language and Protégé editor are used to design Ontology

for Digital Library. Five subclasses: Document, Author, Category, DocumentType

and FileType are defined in our Ontology. Four object type properties and twelve data

type properties are also defined for the specific class. The designed Ontology plays a

significant role in our IR model to define the common vocabulary and structure for

resources. In our proposed IR model, preprocessing, context matching and calculating

weight values steps are included. All the steps of proposed IR model are explained in

detail in this chapter.

38

CHAPTER 4

 SYSTEM DESIGN AND IMPLEMENTATION

The detailed implementation of Ontology-based information retrieval system is

presented in this chapter. Design and use case diagrams of the system, class structure

of Ontology Web Language (OWL) is also included in this chapter. The logical

architecture of the system and implementation of programming components are also

explained in this chapter. Finally, it presents a graphical user interface of the system

with step-by-step detailed explanation figures and experimental results of the system.

4.1 Overview Design of the System

Figure 4.1 Overview Design of the System

Start

Query and Property

Preprocess Input Query

Format Input to SPARQL

query

Match Context by SPARQL

Calculate TF-IDF and

Similarity

Rank Documents by Similarity

Score

Relevant

Documents

Evaluated of IR result

End

Domain Ontology

with

Document Context

Digital

Documents

39

The overview design diagram of the system is shown in Figure 4.1. The

proposed system is implemented as the information retrieval system by using Domain

Ontology. The main point of the proposed system is the formatting of the SPARQL

query and context matching process by using the SPARQL query. In this system,

there are six main steps.

In the first step, query preprocessing, which consists of the tokenization and

stopwords removal process for the user query, is performed. This system accepts the

query and property selected by the user to retrieve relevant documents from Digital

Library.

In the second step, the tokenized keywords and selected property by the user

are transformed to SPARQL query format by the algorithm for the formatting of

SPARQL query which is described in the previous chapter Figure 3.15.

In the third step, the context matching process by formatted SPARQL query is

performed. This process is used to match the context of documents from Domain

Ontology with the formatted SPARQL query. The results of this process are relevant

documents by the keywords and property of the document.

In the fourth step, relevant documents retrieved by context matching processes

are calculated for TF-IDF values and similarity scores by using the Vector Space

Model (VSM) and the Dice similarity method respectively.

In the next step, retrieved documents are ranked according to their similarity

scores, and the whole process for retrieving documents is done here. Evaluation of the

results of IR is performed in the final step by calculating its precision, recall, and f-

measure values.

The relevant documents retrieved by SPARQL query are ranked and displayed

as the result of our Ontology-based IR system.

4.2 Ontology Structure of the System

In this system, ontology is constructed for defining the metadata of documents

and retrieving this using Protégé v 3.5. The structure of Digital Library Ontology is

shown in Figure 4.2. There are six classes denoted by yellow color. The “Thing” class

is the root class, and the “Document”, “Author”, “DocumentType”, “FileType”, and

“Category” classes are the subclasses of “Thing”. All the relationships between root

and subclasses are types of rdfs:subClassOf and shown in the diagram with purple

40

color. The instances of these classes are designed in green color. The datatype

properties of the classes: title and publisher, are shown in the box of the respective

class. The Object properties of the classes: hasAuthor and hasCategory are described

by the relationship between the boxes in black lines.

Figure 4.2 Ontology Structure of the System

4.3 Implementation of the system

The Ontology-based IR system for Digital Library is implemented based on

Service-Oriented Architecture (SOA) by using the XML based web service technology and

ASP.NET. The logical architecture of the system is shown in Figure 4.3.

The architecture of the proposed system consists of file storage for documents,

one ontology dataset, and two programming components. All functions for the Digital

Library web service can be grouped into two modules: Publication Module and

Retrieval Module. The functions of the publication module are extracting contexts

from documents and saving them to a dataset. The whole IR process of our proposed

system is provided by the functions of the retrieval module. In our system

architecture, the Digital Library web application just plays in the role of the user

interface. Ontology dataset is used to store the extracted context of documents and file

storage is used to save documents themselves.

41

Figure 4.3 Architecture of the System

4.3.1 Implementation of Digital Library Web Service

The Digital Library web service is implemented by using C# programming

language. This web service consists of functions for publication and retrieving of

documents. Getting the class structure of Ontology and its instances, saving and

manipulating the instances of the specific classes, and extracting the contents of

documents are the main functions of the publication module. The functions of the

publication module are performed by connecting with the ontology dataset on the

Fuseki server. These functions are as follows:

• getOwlClass: getting the whole structure of a specific class including its

datatype and object properties from Ontology dataset

• getIndividuals: getting all the instances of a specific class from Ontology

dataset.

• getIndividualByName: getting an instance of a specific class by its name

from the Ontology dataset.

• setIndividual: saving an instance of a specific class to the Ontology

dataset. The name of the instance is programmatically defined by the last

inserted ID for this class.

• setIndividualByName: saving an instance of a specific class to the

Ontology dataset by a given name.

Digital Library ASP.NET

Query

Documents

Documents

File Storage

Fuseki Server

Ontology with

document

context

Digital Library Web Service

Retrieval Module

• Context Matching

• TF-IDF Calculating

• Ranking

Digital

Library

User

Interface

Digital

Documents

Publication Module

• Extract Context

• Insert Context

• Save Document

42

• updateIndividual: manipulating the properties of an instance of the specific

class by name of this instance.

• deleteIndividual: deleting an instance of the specific class by its name

from the Ontology dataset.

• isExist: checking the instance of a specific class is exist in our Ontology

dataset or not.

• isDocumentExist: checking the specific instance of Document class is

exist in our Ontology dataset or not.

• isAuthorExit: checking the specific instance of Author class is exist in our

Ontology or not.

• getFileContent: extracting the content from various types of files such as

“pdf”, “txt” and “docx”.

Testing the getOwlClass function of publication module of web service with a

sample input parameter “Document” is shown in Figure 4.4. As a result, the structure of

the Document class with fifteen properties is returned by getOwlClass function. The

result in XML format returned by this function is shown in Figure 4.6. Testing the

getIndividuals function and its result are shown in Figure 4.5 and Figure 4.7 respectively.

Figure 4.4 Testing the getOwlClass Function of Web Service

Figure 4.5 Testing the getIndividuals Function of Web Service

43

<OwlClass>

<ClassName>dl:Document</ClassName>

<Properties>

<Property>

<Id>1</Id>

<Label>Title</Label>

<Name>dl:title</Name>

<Type>owl:DatatypeProperty</Type>

<Range>xsd:string</Range>

</Property>

<Property>

<Id>2</Id>

<Label>Author(s)</Label>

<Name>dl:hasAuthor</Name>

<Type>owl:ObjectProperty</Type>

<Range>dl:Author</Range>

</Property>

<Property>

… <Label>Category</Label> …

</Property>

<Property>

… <Label>Publisher or Journal</Label> …

</Property>

<Property>

… <Label>Published Date</Label> …

</Property>

<Property>

… <Label>Type</Label> …

</Property>

<Property>

… <Label>Format</Label> …

</Property>

<Property>

… <Label>Volume</Label> …

</Property>

<Property>

… <Label>Issue</Label> …

</Property>

<Property>

… <Label>Number of Pages</Label> …

</Property>

<Property>

… <Label>Language</Label> …

</Property>

<Property>

… <Label>Identifier (DOI, ISBN,

ISSN)</Label> …

</Property>

<Property>

… <Label>URL</Label> …

</Property>

<Property>

… <Label>Abstract</Label> …

</Property>

<Property>

… <Label>Content</Label> …

</Property>

</Properties>

</OwlClass>

Figure 4.6 Owl Class Structure schema

44

<ArrayOfOwlClass>

<OwlClass>

<Label>.doc</Label>

<ClassName>dl:doc</ClassName>

<SValue>0</SValue>

<ID>0</ID>

<Properties/>

</OwlClass>

<OwlClass>

<Label>.pdf</Label>

<ClassName>dl:pdf</ClassName>

<SValue>0</SValue>

<ID>0</ID>

<Properties/>

</OwlClass>

<OwlClass>

<Label>.txt</Label>

<ClassName>dl:txt</ClassName>

<SValue>0</SValue>

<ID>0</ID>

<Properties/>

</OwlClass>

</ArrayOfOwlClass>

Figure 4.7 Schema of File Type Instances returned by getIndividuals Function

In Figure 4.8, all information of dataset published by the admin is stored in

digital library domain ontology. If the admin update or delete the context of the

document, information will be changed in ontology dataset.

Figure 4.8 Dataset uploaded to Digital Library Ontology on Apache Jena Fuskei Server

45

 As this system ontology is implemented basing on, library ontology is created

on Protégé editor v3.5 and ontology file is stored and executed on the Fuseki Server.

And then its dataset or information are stored in library ontology when data is

uploaded. The number of datasets and their information uploaded by admin can be

seen in the graph in Figures 4.9, 4.10, 4.11, 4.12, 4.13, and 4.14.

Figure 4.9 The Digital Library created in Fuseki Server

Figure 4.10 The dataset on the Digital Library

46

Figure 4.11 List of Dataset on Digital Library Ontology

Figure 4.12 List of Dataset on Digital Library Ontology

47

Figure 4.13 List of Dataset on Digital Library Ontology

Figure 4.14 List of Dataset on Digital Library Ontology

Formatting SPARQL query, context matching, calculating similarity and

evaluating IR results are the main functions for the retrieval module of Digital Library

web service. The description of these functions and sample testing of implementation

is shown in below.

• tokenizeQuery: tokenizing the words and preprocessing the text from user

query, such as removing punctuation, special characters, numbers and so on

48

• toSPARQL: converting tokenized keywords to SPARQL query according

to the selected property by user.

• contextMatch: matching the context of documents and retrieving them

form Ontology dataset by formatted SPARQL query.

• calculateSimilarity: calculating the similarity between retrieved documents

and user query.

• rank: ranking the retrieved documents by their similarity values.

• evaluateIR: evaluating the precision, recall, and f-measure scores of IR by

the number of retrieved and relevant documents.

• saveIRResult: saving the precision, recall, and f-measure scores of IR in

the database.

• getIRResult: getting the precision, recall, and f-measure scores of IR from

the database.

Testing the toSPARQL function of retrieval module of web service with

sample input parameters is shown in Figure 4.15. Query, name, type, and range of

property are given in this example. The formatted SPARQL query in XML format

returned by this function is shown in Figure 4.16.

Figure 4.15 Testing the toSPARQL Function of Web Service

49

<string>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX dl: <http://www.owl-ontologies.com/library.owl#>

SELECT ?document ?i

WHERE {

?document dl:date ?i.

FILTER (?i='2020'^^xsd:date)

}

</string>

Figure 4.16 The Formatted SPARQL query returned by toSPARQL Function

4.3.2 Implementation of Digital Library Web Application

The user interface is designed and implemented as a web application in

ASP.NET platform for testing the operations of web services. Tow types of roles for

the user: Admin Role and User Role are defined in web applications. Admin can edit

all the resources of IR system for Digital Library, such as management of user

information, the publication of documents to Ontology dataset and manipulation of

their information. The users can search for digital documents by keywords and

property of documents. This application consists of five menus: Home, Search,

Result, Publish, and Administration. All of these menus are available only for

authenticated users. The admin and users must be login to our Digital Library web

application by the “Login” page as shown in Figure 4.17.

Figure 4.17 Login Page of Digital Library Web Application

50

There is no registration process in our system. The registration for user

accounts is done only by the admin of our system. After the login process is

performed, the webpage of the “Home” menu can be seen as shown in Figure 4.18.

The “Administration” and “Publish” menus, and “Edit” option for documents are

available only for the admin account.

Figure 4.18 Home Page of Digital Library Web Application

On this “Home” page, the library user and admin can see all the list of

documents from our Digital Library by clicking the pagination buttons. The titles of

the documents are the links for downloading them. When the “Edit” link of a specific

document is clicked by the admin, the “Edit” page will be displayed as shown in

Figure 4.19. On this page, all the metadata of a specific document can be updated or the

whole document can be deleted by the admin.

51

Figure 4.19 Edit Page of Digital Library Web Application

Admin not only can edit the metadata of documents but also can publish them

to Ontology dataset. The “Publish” page which is shown in Figure 4.20 is used to

browse a file from the computer and import it to our dataset and file storage. Once a

file is browsed, its’ content, URL, and format are automatically extracted by our

application. The values for all the rest of the properties of the document should be

filled by the admin manually in the publication process. The extracted and filled

metadata of a document entitled “Introduction to SPARQL” is shown in Figure 4.21.

52

Figure 4.20 Publish Page for Browsing the Document

Figure 4.21 Publish Page with Metadata Values

The “Administration” menu of the web application is used to manage the

accounts of library users. An account consists of information about username,

password, email, role, and date created. Admin can define the new user by clicking

the link “Add User” in the “Administration” page which is shown in Figure 4.22.

53

Figure 4.22 Administration Page with User Information

The main functional page in our Digital Library web application is the

“Search” page. On this page, both users and admin can search for different types of

documents by given query with the different property of document: Title, Author(s),

Category, Publisher or Journal. In Figure 4.23, the retrieved document is shown as a

result of searching for document in Author(s) property by given keyword. In the

retrieving process, the evaluation of precision and recall is performed for the current

search.

Figure 4.23 Search Page of Digital Library Web Application

The “Result” menu is designed and implemented for displaying the results of

IR in detail. These results consist of precision, recall, f-measure. The results for all

tested queries are shown on this page. As the result, tested queries are grouped by

54

type of properties: DatatypeProperty and ObjectProperty. The “Result” pages with

DataTypeProperty and with ObjectProperty of the web application is shown in Figure

4.24 and Figure 2.25. The table of experimental results and its values will be

explained in the performance analysis section.

Fig 4.24 Result Page with DataTypeProperty of Digital Library Web Application

Figure 4.25 Result Page with ObjectProperty of Digital Library Web Application

4.4 Performance Analysis

To show the performance of the system, 33 queries for different properties of

documents were tested by using 415 training documents that include various file types

(.doc, .pdf, .txt). These testing queries are related to Object and Datatype Properties.

The training documents are collected from the Google search engine.

55

To evaluate the performance of Ontology-based IR system for Digital Library,

precision, recall, and F-measure methods are used as shown in Equations 4.1, 4.2, and

4.3.

Precision (P)

P = TP / (TP+FP) (4.1)

Recall (R)

R = TP / (TP+FN) (4.2)

F-Measure (F)

F = 2 * [(P*R) / (P+R)] (4.3)

Where TP denotes the number of relevant documents in retrieved documents.

FP is the number of non-relevant documents in retrieved documents. FN denotes the

number of relevant documents in non-retrieved documents.

Precision is the ability to retrieve top-ranked documents that are most relevant.

The recall is the ability of the search to find all of the relevant items in the corpus.

This means that the precision is the exactness and the recall is the completeness of the

IR system. The f-measure is just a combination of the exactness and completeness of

the system.

The precision, recall, and f-measure values of experimental results for the

ObjectProperty are shown in Table 4.1.

56

Table 4.1 Precision, Recall and F-measure Results for ObjectProperty

PropertyName Kyewords NofRetrieved P R F

dl:hasAuthor Information Security 1 1 1 1

dl:hasAuthor Khin 8 1 1 1

dl:hasAuthor Kirti Rajadnya 1 1 1 1

dl:hasAuthor John 11 1 1 1

dl:hasAuthor aye 6 1 1 1

dl:hasAuthor Aung 9 0.78 1 0.88

dl:hasAuthor Giftlin Sherin 1 1 1 1

dl:hasAuthor hlaing 2 1 1 1

dl:hasAuthor myo 5 0.8 1 0.89

dl:hasCategory
system analysis and

design
121 1 1

1

dl:hasCategory data mining 88 1 1 1

dl:hasCategory
Unified

ModelingLanguage
23 1 1

1

dl:hasCategory artificial intelligence 68 1 1 1

dl:hasCategory
Human computer

Interaction
110 1 1

1

dl:hasCategory
Natural language

processing
63 1 1

1

dl:hasCategory digital signal 5 1 1 1

dl:hasCategory Embedded system 121 1 1 1

dl:hasCategory Data structure 88 1 1 1

dl:hasCategory Cloud Computing 24 1 1 1

dl:hasCategory Data warehouse 88 1 1 1

AVERAGE 0.98 1 0.99

In the above table, the precision (P), recall (R), and f-measure (F) values for

four ObjectProperty of documents are shown. The recall for all properties is 1 and the

average precision for all properties is 0.98. The average F-measure value is 0.99.

According to these results, the exactness and completeness of Ontology-based IR

systems in ObjectProperty is over 98%. The precision, recall, and f-measure values of

experimental results for the DatatypeProperty are shown in Table 4.2.

57

Table 4.2 Precision, Recall and F-measure Results for DatatypeProperty

PropertyName Kyewords NofRetrieved P R F

dl:publisher Publisher 146 1 1 1

dl:publisher Journal 336 1 1 1

dl:title Accounting 3 1 1 1

dl:title Java Script 5 0.8 1 0.9

dl:title Networking 4 1 1 1

dl:title Software Engineering 15 1 1 1

dl:title signal processing 18 0.89 1 0.9

dl:title Image Processing 25 0.92 1 1

dl:title Electronic circuit 8 1 1 1

dl:title Cryptography 54 0.98 1 1

dl:title operating system 75 0.99 1 1

dl:title Java 5 0.8 1 0.9

dl:title speech recognization 1 1 1 1

dl:title speech recognition 8 1 1 1

AVERAGE 0.96 1 0.98

In the above table, the precision (P), recall (R), and f-measure (F) values for

four DatatypeProperty of documents are shown. The average precision for all

properties is 0.96 and the recall for all properties is 1. The average F-measure value is

0.98. According to these results, the exactness and completeness of Ontology-based

IR systems in DatatypeProperty is 96%.

The average results of Ontology-based IR system for ObjectProperty and

DatatypeProperty are compared and described with the bar chart in Figure 4.26.

According to the comparison results of precision, recall, and f-measure, the Ontology-

based IR system is more accurate in ObjectProperty type because the values for this

property are all instances of an OWL class.

58

Figure 4.26 Comparison Results of Precision, Recall and F-Measure

To evaluate the performance of proposed system, the processing time of IR is

compared with traditional IR system. The processing time of both proposed IR and

traditional IR system is recorded in database for each tested query. And then the

average value of processing time for both IR systems is calculated and grouped by

type of query property. The unit of processing time in our experiment is in

milliseconds. The average processing time results for the ObjectProperty are shown in

Table 4.3.

59

Table 4.3 Average Processing Time Results for ObjectProperty

PropertyName Keywords Processing Time(ms)

 Proposed-IR Traditional-IR

dl:has Author Information Security 526 1378

dl:has Author Khin 528 1196

dl:has Author Kirti Rajadnya 515 1829

dl:has Author John 568 1492

dl:has Author aye 501 1340

dl:has Author Aung 532 1395

dl:has Author Giftlin Sherin 239 959

dl:has Author hlaing 465 856

dl:has Author myo 623 1630

dl:hasCategory system analysis and design 528 1262

dl:hasCategory data mining 500 1300

dl:hasCategory Unified ModelingLanguage 457 1383

dl:hasCategory artificial intelligence 499 1335

dl:hasCategory
Human computer

Interaction
646 6639

dl:hasCategory Natural language processing 744 6449

dl:hasCategory digital signal 2500 2795

dl:hasCategory Embedded system 2660 2925

dl:hasCategory Data structure 399 1484

dl:hasCategory Cloud Computing 634 1377

dl:hasCategory Data warehouse 326 1730

AVERAGE 720 2038

As a result, the minimum processing time of proposed IR system for

ObjectProperty queries is 239 milliseconds and the maximum is 2500 milliseconds.

The maximum processing time of traditional IR system for ObjectProperty queries is

720 milliseconds. According to the comparison result of average processing time

which shown in Table 4.3, the proposed IR system is more than two times faster than

the traditional IR system in searching for ObjectProperty type queries.

The average processing time results for the DatatypeProperty are shown in

Table 4.4. As a result, the minimum processing time of proposed IR system for

DatatypeProperty queries is 233 milliseconds and the maximum is 2660 milliseconds.

The maximum processing time of traditional IR system for DatatypeProperty queries

is 6639 milliseconds. The average value of processing time for our proposed system is

720 milliseconds and traditional IR system is 2038 milliseconds. According to the

comparison result of average processing time which shown in Table 4.4, the proposed

IR system is more than three times faster than the traditional IR system in searching

for DatatypeProperty type queries.

60

The processing time comparison result of both IR systems for ObjectProperty

and DatatypeProperty queries are described with the bar chart in Figure 4.19. The

average processing time of proposed IR system for ObjectProperty queries is 499

milliseconds and DatatypeProperty queries is 610 milliseconds. According to this

comparison results, the proposed Ontology-based IR system is faster in

ObjectProperty query than the DatatypeProperty query because the values for this

property are all instances of an OWL class.

Table 4.4 Average Processing Time Results for DatatypeProperty

PropertyName Keywords Processing Time(ms)

 Proposed-IR Traditional-IR

dl:publisher Publisher 233 1664

dl:publisher Journal 239 1648

dl:title Accounting 257 1619

dl:title Java Script 510 1668

dl:title Networking 280 1104

dl:title
Software

Engineering
241 891

dl:title signal processing 440 973

dl:title Image Processing 337 943

dl:title Electronic circuit 351 1109

dl:title Cryptography 365 965

dl:title operating system 276 1150

dl:title Java 250 1491

dl:title speech recognization 856 1090

dl:title speech recognition 266 1058

AVERAGE 350 1241

The average processing time of Ontology-based IR system for ObjectProperty

and DatatypeProperty are compared and described with the bar chart in Figure 4.27.

According to the comparison results of Proposed-IR and Traditional-IR, the

Ontology-based IR system with objectProperty is faster than in Datatype Property

type.

61

Figure 4.27 Processing Time Comparison for Proposed and Traditional IR

4.5 Summary

The overview design diagram of the Ontology-based information retrieval

system is presented in this chapter. The proposed system is implemented as the IR

system by using Domain Ontology. The main point of proposed IR system is the

formatting of SPARQL query and context matching process by using SPARQL query.

The Ontology-based IR system for Digital Library is implemented based on Service-

Oriented Architecture (SOA) by using the XML based web service technology and

ASP.NET. The architecture of the proposed system consists of file storage for

documents, one ontology dataset, and two programming components: web service and

web application. To show the performance of the system, 33 queries for different

properties of documents were tested by using 415 training documents. To evaluate the

performance of Ontology-based IR system for Digital Library, precision, recall, and

F-measure methods are used. According to the comparison results of precision, recall,

and f-measure, the Ontology-based IR system is more accurate in ObjectProperty type

and also ObjectProperty is faster than DatatypeProperty in processing time with

miliseconds.

62

CHAPTER 5

CONCLUSION AND FURTHER EXTENSIONS

This thesis intends to develop to retrieve documents from the Ontology dataset

not only by the keywords but also by the metadata of documents. The various

components of this system are investigated and their contributions to the overall

performance of the system are analyzed. In this chapter, the main contents of the

thesis are concluded, advantages and limitations of the system, and future work are

suggested.

5.1 Conclusion

The proposed system presents the implementation of Ontology-based

information retrieval for Digital Library. This system introduces a system that users

can use to retrieve digital documents from the Ontology dataset. The ontology method

is used to represent the context model based on digital library resources. Ontology

plays a key role in the evolution of digital libraries. In interoperability at the semantic

level, context-sensitive query processing over heterogeneous information resources

requires the matching of concepts. The system presents the available heterogeneous

information sources and improves the accuracy of information retrieval using

semantic web technology. In addition, the system can help users to reduce the

consuming time for surfing the information they wanted.

5.2 Advantages and Limitations of the System

The proposed system serves user-friendly, high-performance, and scalable

semantic search for information from the digital library. As a result, the Ontology-

based IR system is more accurate in searching for ObjectProperty type.

Information retrieval by SPARQL query produces exact results; in the case of

keyword search, it produces all results containing keywords including non-relevant

documents. The exactness and completeness of the IR system are proved by the

average value of F-measure which obtains over 95%.

63

Moreover, the use of Ontology for Digital Library is more flexible and

interchangeable than the use of Relational Databases. It provides a chance to extend

and define metadata for other resources easily without modifying the implementation.

However, our proposed IR model doesn’t support to transform the user query

in natural language into SPARQL format. And also, it provides to search for only

digital documents.

5.3 Further Extensions

The proposed system is tested by using only the dataset with document

resources. The dataset can be extended with multimedia resources, such as video,

audio, and others, by modifying the Digital Library Ontology. Obtaining a better

result in the formatting of SPARQL query is a motivation for further research work

such as the development of an algorithm to transform the natural language query to

SPARQL.

64

AUTHOR’S PUBLICATIONS

[1] Thet Thet Aung, Khin Lay Myint, Hlaing Htake Khaung Tin,”Ontology based

Information Retrieval System for Digital Library”, to be published in the

National Journal of Parallel and Soft Computing(NJPSC 2021), Yangon,

Myanmar, 2021.

[2] Thet Thet Aung, Myat Mon Khaing, Khin Shin Thant, Hlaing Htake Khaung

Tin, “Senitment Analysis On Who Southeast Asia Region Organization (Who

Sero) User Comment Review And Opinion Mining”, International E-

Conference In Association with International Engineering Journal For

Research& Development, ICIPPS June 2020, E-ISSN NO:- 2349-0721,

IMPACT FACTOR : SJIF - 6.549, pp. 314-321.

[3] Thet Thet Aung, Khin Shin Thant, Myat Mon Khaing, “Finding Out the

Possible Benefits Using Social Media for Higher Education During the

Epidemic Covid-19”, University Journal of ICT in Multidisciplinary Issues on

Arts & Science, Engineering, Economics and Education, June, UJIM 2020,

Hinthada, Myanmar, ISBN 978-99971-0-872-2, Volume 1, Issue 1, pp. 59-63.

[4] Khin Shin Thant, Thet Thet Aung, Hlaing Htake Khaung Tin, “Exploring

Better Teaching Methods By Surveying from Computer Science Students

(Case Study for Software Engineering)”, International Journal of Research &

Innobation in Applied Science, IJRIAS May 2020, EISSN 2454-6194, Volume

V, Issue V, pp. 93-96.

[5] Khaing Thazin New, Lwin Sandar Soe, Thet Thet Aung, “Effective Concept

and Components of 4ps Marketing Information System”, International Journal

of Research and Scientific Innovation (IJRSI), June 2020, ISSN No. 2321-

2705, Volume VII, Issue VI, pp. 30-33.

[6] Khin Shin Thant, Thet Thet Aung, Myat Mon Khaing, Hlaing Htake Khaung

Tin, “Comparison Of Loan Finance System Of Fullerton Myanmar And Woori

Finance Myanmar”, International E-Conference In Association with

International Engineering Journal For Research& Development, ICIPPS June

2020, E-ISSN NO:- 2349-0721, IMPACT FACTOR : SJIF - 6.549, pp. 339-344.

65

REFERENCES

[7] Apache Software Foundation (2020). SPARQL Tutorial. Access in

https://jena.apache.org/tutorials/sparql.html

[8] B. Liu, “Web Data Mining”, 2nd Edition, Springer-Verlag Berlin Heidelberg,

New York, (2011).

[9] Berners-Lee, T. (1997). Axioms of Web Architecture: Metadata. Access in

http://www.w3.org/DesignIssues/Metadata.html 05/032014

[10] Bethesda, MD, Metadata Types and Functions, NISO. (2004) Understanding

Metadata. From https://marciazeng.slis.kent.edu/metadatabasics/types.htm

Access in 04/08/2020

[11] C. Xia, X. Wang, “Graph-Based Web Query Classification”, Proceedings of

the 12th Web Information System and Application Conference IEEE, (2016)

241-244.

[12] Casarosa, V. (2010). A Conceptual Model for Digital Libraries. Elag 2007

Conference, Barcelona, From http://elag2007.upf.edu/papers/casarosa.pdf

Access in 23/05/2014

[13] D. Hiemstra, “Information Retrieval Models”, Information Retrieval:

Searching in the 21st Century, (2009) 1-18.

[14] Dan, Munteanu. (2007). Vector space model for document representation in

information retrieval. The Annals of “Dunarea de Jos”, University of Galati

Fascicle III Electrotechnics Electronics Automatic Control and Informatics,

43-46, December 2007.

[15] Deborah L. McGuinness, Frank. (2004). OWL Web Ontology Language-

Overview, W3C Recommendation, 10 February 2004. From

https://www.w3.org/TR/owl-features/ access in 23/01/2020

[16] DLF (1998). A working definition of digital library. From

http://old.diglib.org/about/dldefinition.htm

[17] Dr. Glöckner, “Fuzzy Information Retrieval”, Seminar Presentation,

University Hagen, Department of Computer Science, (2005).

[18] Dr. Varshil Bhagaji Dashrath, Role of Metadata in Digital Resource

Management, International Journal of Digital Library Services (IJODLS),

4(3): 209-217, 2014.

http://www.w3.org/DesignIssues/Metadata.html%2005/032014

66

[19] Ferran, N. and Minguillón, E. (2005). Towards personalization in digital

libraries through ontologies. Library Management Vol. 26 No. 4/5, 2005 pp.

206-217. From http://eprints.rclis.org/9179/1/nferranf_LMJ.pdf Access in

26/05/2014

[20] Isah, A.; Mutshewa, A.; Serema, B. & Kenosi, L. (2013). Digital Libraries:

Analysis of Delos Reference Model and 5S Theory. Journal of Information

Science Theory and Practice 1(4): 38-47, 2013. From

https://www.researchgate.net/publication/263624200_Digital_Libraries_Analy

sis_of_Delos_Reference_Model_and_5S_Theory Access in 04/08/2020

[21] K. M. Risvik, “Scaling Internet Search Engines: Methods and Analysis”,

Ph.D. Thesis, Department of Computer and Information Science, Norwegian

University of Science and Technology, (2004) 1-172.

[22] Matthew Horridge (2011). A Practical Guide To Building OWL Ontologies

Using Protégé 4 and CO-ODE Tools, Edition 1.3, The University of

Manchester, 24 March.

[23] Matthew Horridge1, Holger Knublauch (2004). A Practical Guide to Building

OWL Ontologies Using The Protégé-OWL Plugin and CO-ODE Tools,

Edition 1.0, The University of Manchester, 27 August.

[24] Metadata. (2014).Wikipedia, the free encyclopedia. Access in

http://en.wikipedia.org/wiki/Metadata

[25] Nilesh Shewale , Dr. J. Shivarama (2018). Ontology based digital library

search system for enhanced information retrieval in engineering domain,

International Journal of Advanced Research, Ideas And Innovations In

Technology (IJARIIT), Vol. 4, No. 5, ISSN: 2454-132X

[26] Ontology for Digital Library, Master Thesis, International Master in Digital

Library Learning, (2015). From https://oda.hioa.no/nb/ontologies-for-digital-

libraries/asset/dspace:10524/Tavares.pdf , Access in 04/08/2020

[27] Protégé, A free, open-source ontology editor and framework for building

intelligent systems. From https://protege.stanford.edu/ Access in 04/08/2020.

[28] RDF Basics – Capsicum, What is RDF, 02 July 2018, From

https://rebeccabilbro.github.io/rdf-basics/ Access in 04/08/2020

[29] Ruban S, Kedar Tendolkar, Austin Peter Rodrigues, Niriksha Shetty (2014).

An Ontology-Based Information Retrieval Model for Domesticated Plants.

International Journal of Innovative Research in Computer and Communication

http://en.wikipedia.org/wiki/Metadata

67

Engineering (IJIRCCE), Vol. 2, No. 5, ISSN(Online): 2320-9801,

ISSN(Print): 2320-9798

[30] S. J. Cunningham et al., “Applying connectionist models to information

retrieval”, Brain-Like Computing and Intelligent Information Systems, (1999)

435-457.

[31] S. Prakash, HR Shashidhara, G.T.Raju, “The Role of an Information Retrieval

in the Current Era of Vast Computer Science Stream”, International Journal of

Soft Computing and Engineering (IJSCE), 3(3) (2013) 139-143.

[32] Salton, Gerard. Introduction to Modern Information Retrieval. McGraw-Hill

[33] Sawsaa, A. and Lu, J. (2014). Building an Advance Domain Ontology Model

of Information Science (OIS), International Journal of Digital Information and

Wireless Communications (IJDIWC) 4(2): 90-98.The Society of Digital

Information and Wireless Communications, 2014.

[34] Shaimaa Salama, Mahmoud Adb Ellatif, Marwa Hosny Hassan (2017).

Ontology Based Information Retrieval Model for Semantic Research Digital

Library (SEMRDL), International Journal Of Computer Science and

Information Security(IJCSIS), Vol. 15, No. 5, ISSN: 1947-5500

[35] SPARQL Query Language for RDF, W3C Semantic Web, SPARQL Working

Group, 21 March 2013. From https://www.w3.org/2001/sw/wiki/SPARQL

Access in 04/08/2020

[36] SPARQL Tutorial – Filters, Apache Software Foundation. From

https://jena.apache.org/tutorials/sparql_filters.html Access in 04/08/2020.

[37] Steve Harris, Garlik, Andy Seaborne (2013). SPARQL 1.1 Query Language,

W3C Recommendation 21 March 2013. From https://www.w3.org/TR/

sparql11-query/ Access in 07/07/2020

[38] Vangie Beal, OWL - Ontology Web Language, Webopedia. From

https://www.webopedia.com/TERM/O/Ontology_Web_Language.html Access

in 04/08/2020.

[39] What is Digital Library, IGI Global. From https://www.igi-

global.com/dictionary , Access in 04/08/2020

https://www.igi-/

