
WEB APPLICATION VULNERABILITY

TESTING SYSTEM USING

XSS_SQL_SCANNING ALGORITHM

THINZAR AUNG

M.C.Sc. JUNE 2022

WEB APPLICATION VULNERABILITY

TESTING SYSTEM USING

XSS_SQL_SCANNING ALGORITHM

BY

Thinzar Aung

B.C.Sc.

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Computer Science

(M.C.Sc.)

University of Computer Studies, Yangon

JUNE 2022

i

ACKNOWLEDGEMENTS

First and foremost, I would like to express all my teachers who

advised, taught and helped me to complete my thesis successfully during

the study at the University of Computer Studies, Yangon.

Secondly, I would like to special thanks to my principal Dr. Mie

Mie Khin, the Rector of the University of Computer Studies, Yangon who

gave me the opportunity to develop this thesis for her general guidance

during the period of study.

And I would also like to thanks to Dr. Mie Mie Thet Thwin, the

former Rector of the University of Computer Studies, Yangon who gave

me the opportunity to develop this thesis for her general guidance during

the period of study.

I would like to express my respectful gratitude to Dr. Si Si Mar Win

and Dr. Tin Zar Thaw, Deans of the Master 24th batch, University of

Computer Studies, Yangon, for her excellent guidance.

I would like to thank and my sincere gratitude to former Course

Coordinator, Dr. Mie Mie Su Thwin who gave me the opportunity to do

this thesis on the topic, “Web Application Vulnerability Testing System

Using XSS_SQL_Scanning Algorithm”, and also gave invaluable

recommendations regarding to this thesis.

My sincere thanks and respect go to my supervisor, Dr. Zin Thu

Thu Myint, Associate Professor of Faculty of Information Science,

University of Computer Studies, Yangon, for her invaluable advice, giving

me detailed guidance, support and comments throughout the thesis process.

ii

In addition, I would like to thank all of my thesis’s board examiners

who gave the precious comments and corrections to my work for getting

good end result. I would like to thank Daw Hnin Yee Aung, Lecturer,

Department of English, University of Computer Studies, Yangon, for her

valuable supports and editing my thesis from the language point of view.

Last but not at least, I am extremely thankful to my parents and my

family for supporting, inspiring and encouragement to me from the

childhood to the present time. Finally, I am extremely grateful to my all of

teachers, my colleagues and all of my friends for their invaluable and

precious help and general guidance.

iii

STATEMENT OF ORIGINALITY

I hereby certify that the work embodied in this thesis is the result of original

research and has not been submitted for a higher degree to any other University or

Institution.

Date Thinzar Aung

iv

ABSTRACT

Nowadays, many people use the internet for more than one purpose. Among

these purposes, they mostly apply the web application which is one of the internet usage

technologies. A web application is composed of a web server and web browser in other

terms client-side and server-side. Web applications are typically developed with a

limitation of time and usually, application developers make mistakes in the code which

can cause application vulnerabilities. If the vulnerability appears, some of the

irresponsible people who are attackers will exploit web applications through

vulnerability to obtain some privileges in the system. Due to the widespread use of web

applications, it is essential to discover vulnerabilities to avoid the exploitation of web

applications. Various well-known scanners are available for detecting vulnerabilities.

In this thesis, the proposed system can also find out vulnerability as almost as these

scanners. The proposed system presented in this thesis can find the two types of

vulnerability, Structured Query Language (SQL) injection and Cross-site scripting

(XSS) attacks that are a huge risk for victim businesses and they mostly occur in the

web application. Besides, the proposed system applies the Naïve pattern matching

algorithm even though other several methods completed in the string searching process,

because they are still having complexities in constructing the preprocessing phase.

Moreover, the response message returned by the proposed system is too short enough

to match by this pattern matching algorithm approach. Finally, the proposed system is

being used by the well-known scanner and is evaluated how accurate the results based

on having false negative and false positive rate.

Keywords: XSS_SQL_Scanning Algorithm, Naïve Pattern Matching Algorithm,

Cross-site Scripting (XSS), Structured Query Language (SQL) Injection, Web

application

v

CONTENTS

 Page

ACKNOWLEDGEMENTS i

STATEMENT OF ORIGINALLY iii

ABSTRACT iv

CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF EQUATIONS x

LIST OF ABBREVIATIONS xi

CHAPTER 1

INTRODUCTION

1

 1.1 Related Work 2

 1.2 Objectives of the Thesis 3

 1.3 Organization of the Thesis 3

CHAPTER 2

BACKGROUND THEORY

4

 2.1 Security Vulnerability 4

 2.2 Security Vulnerability Testing 5

 2.2.1 Types of Security Testing 5

 2.3 Web Application 6

 2.4 Web Application Vulnerability 7

 2.4.1 SQL Injection Attack 10

 2.4.1.1 In-band SQL Injection 10

 2.4.1.1.1 Union-Based SQL Injection 10

 2.4.1.1.2 Error-Based SQL Injection 11

 2.4.1.2 Inferential SQL Injection 11

 2.4.1.2.1 Content-Based Blind SQL Injection 11

 2.4.1.2.2 Time-Based Blind SQL Injection 11

 2.4.1.3 Out-of-band SQL injection 12

 2.4.1.4 Prevention of SQL Injection 12

 2.4.1.4.1 Input Validation and Sanitization 12

vi

 2.4.1.4.2 Escaping 12

 2.4.1.4.3 Parameterization 13

 2.4.1.4.4 Stored Procedure 13

 2.4.1.4.5 Active Updating Software 14

 2.4.2 Cross-site Scripting (XSS) Attack 14

 2.4.2.1 Reflected XSS 14

 2.4.2.2 Stored XSS 15

 2.4.2.3 DOM-based XSS 15

 2.5 Detection of Web Application Vulnerability 16

 2.5.1 Netsparker 16

 2.5.2 Acunetix 16

 2.5.3 Burp Suite 17

 2.5.4 W3af 17

 2.5.5 Sucure Sitecheck 17

 2.6 Pattern Matching Algorithm 18

 2.6.1 Rabin Karp Pattern Matching Algorithm 18

 2.6.2 Boyer-Moore String Matching Algorithm 19

 2.6.3 Knuth-Mooris-Pratt Pattern Matching Algorithm 21

 2.6.4 Naïve Pattern Matching Algorithm 22

CHAPTER 3

DESIGN OF THE PROPOSED SYSTEM

24

 3.1 Overview of the Proposed System 24

 3.1.1 Scanning Every Possible Page on Web Application 27

 3.1.2 Looking for HTTP Request Method and Paring the

URL

28

 3.1.3 Forwarding Payloads to Detect Web Application 29

 3.1.4 Analyzing the Response 30

 3.2 Performance Evaluation 33

 3.3 URLs used in the Experiment 34

CHAPTER 4

IMPLEMENTATION OF THE PROPOSED SYSTEM

35

 4.1 Experimental Setup 35

 4.2 Implementation of the System 35

vii

 4.3 Experiment Results 42

CHAPTER 5

CONCLUSION

44

 5.1 Limitation and Further Extensions 44

AUTHOR’S PUBLICATIONS

45

REFERENCES

46

viii

LIST OF FIGURES

 Page

Figure 2.1 Flow Chart of Rabin Karp Pattern Matching Algorithm 19

Figure 2.2 Flow Chart of Boyer-Moore String Matching Algorithm 20

Figure 2.3 Flow Chart of Knuth-Morris-Pratt Pattern Matching

Algorithm

21

Figure 2.4 Flow Chart of Naïve Pattern Matching Algorithm 22

Figure 3.1 Architecture of Web Application Vulnerability Testing

System Using Proposed XSS_SQL_Scanning Algorithm

24

Figure 3.2 Overview of the Proposed System 25

Figure 3.3 XSS_SQL_Scanning Algorithm 26

Figure 3.4 Crawling Algorithm 27

Figure 3.5 Forwarding_payload_and_Analyzing_response

Algorithm

32

Figure 4.1 Main form of the proposed system 35

Figure 4.2 Scanning possible URLs of Web Application 36

Figure 4.3 Filtering query of URL’s parse from the result of crawled

URL

37

Figure 4.4 Testing URLs with SQL quotes for SQL injection 37

Figure 4.5 Testing URLs with SQL blind-based payloads for SQL

injection

38

Figure 4.6 Testing URLs with SQL time-based payloads for SQL

injection

39

Figure 4.7 Testing URLs with XSS payloads for Cross-site Scripting 39

Figure 4.8 Showing information type of message box for completion 40

Figure 4.9 Saving as a text file for vulnerable URLs in case of blind

based SQL injection

41

Figure 4.10 Calculating the accuracy of the proposed system 41

Figure 4.11 Comparison result of proposed system and Acunetix tool 42

ix

LIST OF TABLES

 Page

Table 3.1 Sample payloads to detect web application vulnerability

for SQL and XSS attacks

30

Table 3.2 Database errors of Structured Query Language (SQL) 31

Table 3.3 Specification of true positive, false positive, true

negative and false negative rate

33

Table 3.4 Sample URLs Collection of Different Web Applications

for Analyzing

34

Table 4.1 Accuracy result for the Proposed System 42

Table 4.2 Memory usage of proposed algorithm and Acunetix 43

x

LIST OF EQUATIONS

 Page

Equation 3.1 Equation for accuracy 34

xi

LIST OF ABBREVIATIONS

 Page

SQL Structured Query Language iii

XSS Cross-site Scripting Language xi

CIA Confidentiality, Integrity, and Availability 5

HTML Hyper Text Markup Language 6

CSS Cascading Style Sheets 6

CSRF Cross-Site Request Forgery 7

URL Uniform Resource Locator 8

DOS Denial of Service 10

HTTP Hypertext Transfer Protocol 11

OWASP Open Web Application Security Project 16

GUI Graphical User Interface 17

1

CHAPTER 1

INTRODUCTION

As a trend of technology, many people are mostly using web applications for

developing their businesses, education, communications to access anywhere, anytime,

and thus it saves time and effort. This is why web applications become an important

role in lives. In the act of using web applications, people give personal information to

the organization, and then store sensitive information on them. On the other hand, some

attackers who are unethical and selfish exploit the web application to gain unauthorized

access and do other things such as identity theft, privacy violation, and other cyber-

attacks. These illegal points allow the attackers to make whatever they want through

the weaknesses of the web application.

Vulnerability is the weak point of the web application caused by unawareness

of the developers who cannot be handled validation the user inputs, appropriate

validation methods, and so on. Because of those facts, detection of vulnerability is

needed more. There are so many different kinds of vulnerabilities but, it is indicated to

OWASP in 2019 that SQL injection and XSS attacks reach number one and seven

vulnerabilities found in web application [15].SQL injection is a type of database-control

attack where the attackers inject SQL command into the database and then manipulate

the websites in order to manage the database and then they try to store, modify, retrieve,

and steal user’s data whereas, XSS attack is the opposite of SQL injection that uses

JavaScript code to obtain the information and its target is to control the client-side and

also called as a client-side attack.

At present, people use various types of vulnerability detection tools for web

application security that are either free or paid versions, in addition, some of them face

a high rate of a false negative and false positive. A false positive means when detecting

results show that the web application has vulnerability, however such vulnerability

actually does not exist whereas a false negative means in contrast to a false positive

where the outcome results show no vulnerability but in reality, it exists.

Thus, the XSS_SQL_Scanning algorithm is proposed to assist in vulnerability

detection with a low rate of false negative and positive. Moreover, a new idea in terms

of applying the proposed system about using the Naïve pattern matching algorithm

because it supports this proposed algorithm to be the simpler, no preprocessed state and

2

reliable in searching state. Normally, other pattern matching algorithms are good at

finding patterns comparing with predefined ones though they have a preprocessing

phase therefore they need more storage space and time. In summary, this proposed

method protects the web application from the strike of attacks by discovering the

vulnerability. The following section discusses some related works of this thesis.

1.1 Related Work

The system in this thesis intends to support the admins who require to obtain

secure web applications without vulnerabilities and to prevent any attacks from the

attacker. They usually use secure coding guidelines and also detect vulnerabilities. In

this section, we discuss the previous studies of detecting web application vulnerabilities

concerning with SQL injection and XSS attacks as well as one of the web application

vulnerability scanners.

The first study is a SQL injection scanner using the Boyer-Moore string

matching algorithm is implemented by Teh Faradilla Abdul Rahman et al [12]. Their

experiment was the technique of using pattern matching that could detect vulnerability

with high accuracy and also avoid exploiting the vulnerability. But despite that, they

required extra steps and storage in case of searching the pattern string due to the use of

the Boyer-Moore algorithm.

In the other study, Priti Singh et al. implemented a detection method for SQL

injection and Cross-site scripting attacks [7]. The approach method was good for

detecting SQL injection vulnerability but had some weaknesses in detecting XSS

attacks because of using only one payload. When detecting a web application with a

payload, if this payload was restricted or encoded, it could not try with another payload;

in this case it could not find any vulnerability although it should. This system will be

perfect if many payloads were used for detection.

Simon Wahstrom admitted a paper about the evaluation of string searching

algorithms [10]. In this paper, he described the weaknesses and strengths of the most

common algorithms. And he also presented a naïve algorithm that was probably used

when we expected to find a relatively short pattern.

3

1.2 Objectives of the Thesis

The main objectives of the thesis are as follows:

• to discover the possibility of web application vulnerabilities.

• to assist web developers in detecting their web applications that have

weaknesses or not.

• to provide the basic information on how to detect SQL injection and

XSS attacks for some people who begin to study the web application

security.

• to support the security of the web application.

1.3 Organization of the Thesis

This thesis consists of five chapters.

Chapter 1 is the introductory section where the introduction to web application

vulnerability. And the related works, the objectives, and the organization of the thesis

are presented.

Chapter 2 describes the background theory related to this thesis such as security

vulnerabilities, web application vulnerabilities, and pattern matching algorithm that are

described in details.

Chapter 3 presents the design of the proposed system describing system flow,

the detail explanation with algorithms and the evaluation of the output resulting from

the post detection.

Chapter 4 describes the implementation of the proposed system in detail and the

experimental result.

Finally, Chapter 5 concludes this thesis that includes the benefits, limitation and

further extension of the proposed system.

4

CHAPTER 2

BACKGROUND THEORY

The related background theory with the research work is presented in this

chapter. In the first section, the security vulnerability and the types of security

vulnerability are described. The next section describes about the web application, web

application vulnerability, types and detection of web application vulnerability. In the

last section, pattern matching algorithm and the most common pattern matching

algorithm are presented in details.

2.1 Security Vulnerability

The security vulnerability is the attackers can get an unauthorized access to the

system and compromises the confidentiality, integrity, and availability of the system.

These are the fundamental requirements for every software. It reduces the guarantee of

the system’s information.

• Confidentiality: It means to protect data or information from

unauthorized access and misuse by setting rules.

• Integrity: It means that the data or information is ensured reliable,

correct, and authentic.

• Availability: Availability is ensuring that only authorized people can

reliably access the information.

The computer system has numerous types of vulnerabilities. Some of the

common vulnerabilities to the damaging system are:

• Application Vulnerabilities: This vulnerability can occur from coding

errors or security flaws.

• Network Vulnerabilities: The unsecure network hardware or software

such as firewalls and wireless access points that can cause a risk in the

network.

• Operating System Vulnerabilities: If an operating system such as the

windows operating system or Linux operating system has program

errors, this operating system will cause vulnerability. The attackers can

5

hide or install backdoor programs within the operating system that can

exploit to gain unauthorized access or to make damage.

• Software Vulnerabilities: A software vulnerability is a flaw in software

that can enable attackers to take advantage of them. The web application

is also a type of software that uses the internet for browsing.

2.2 Security Vulnerability Testing

Security testing is a kind of software testing that uncovers the flaw of the

software system. It helps to identify the vulnerabilities and threats in the system. The

vulnerability and threat can cause damage and disruption to the organization’s system

[13]. For example, if the student management system has insufficient safety, the

attackers can update the exam information. It also detects all of the possible risks and

controls the CIA [16]. So, security testing can prevent malicious attacks from

unauthorized persons. It assists the solution of program coding to the application

developers.

2.2.1 Types of Security Testing

Security testing plays an essential role in producing successful and quality

software. By security testing, this application is more trustworthy and safer than other

no detected software. It detects the threats and quantifies all potential vulnerabilities in

the system. It identifies security risks in the system and solves the problems via coding

errors. Security testing methodology has seven kinds of tests. They are described as

follows:

• Vulnerability Scanning: This can be executed on the automated

vulnerability scanning software that has the acknowledgment of

vulnerability. It scans a system to figure out any potential system flaws.

• Penetration Testing: This testing simulates an attack from a malicious

hacker. This includes analyzing the system to predict and detect

potential vulnerabilities.

• Risk Assessment: The goal of the risk assessment process is to reduce

the risk and control the threat. After analyzing the risks, the precautions

are based on the risk. These risks are classified as three levels according

to their severity. They are low, medium, and high levels.

6

• Security Scanning: This type of scanning involves manual and

automatic scans in the application and networks. It includes identifying

the weakness and risks and provides solutions to reduce these flaws.

• Ethical hacking: Ethical hacking is hacking of an organization’s

software programs. The purpose is to penetrate the application with

authorization for searching security vulnerabilities. The benefit of this

hacking is to protect the system from malicious hacker attacks.

• Security Auditing: Security auditing can also call security reviewing.

It is a method of auditing any suspicious features by reviewing each line

of code. In this, the security audit does the internal analysis of the

application and manages the system for possible security flaws.

• Posture Assessment: Posture Assessment is the integration of security

scanning, risk assessment, and ethical hacking. This assessment

determines the entire security position and gives the security situation of

the organization.

In this thesis, application vulnerabilities in web application detects with the

security testing methods of vulnerability scanning.

2.3 Web Application

A web application is defined as a program of the computer that composes a web

browser (client-side) and web server (server-side) to perform tasks over a network. The

users can use web applications through many kinds of the web browsers such as Google

Chrome, Microsoft Edge, Mozilla Firefox, Internet Explorer, Safari, and Opera. The

client-side programming language typically utilizes JavaScript, HTML, and CSS which

help build a front-end application. This allows to present information to users and

interact with the web server. Python, Ruby, PHP, ASP, and Java are commonly used in

the server-side programming language.

The web server needs to operate a web application and handle the retrieval and

storage of information. When a client sends HTTP requests through a web browser

interface, HTTP is generally used to send GET or POST method to the web server. The

web server executes the request and sends the requested response to the web browser

and the browser accepts the response and then displays the requested web page and

7

content. Web applications are commonly used in shopping cart, e-commerce shops,

information sharing, content management systems, and webmail.

2.4 Web Application Vulnerability

Web application vulnerability occurs when the web-based application involves

a weakness or system flaw in this application. The website visitors submit and retrieve

data to and from a database over the internet with the web application by using the web

browser. Most importantly, many of these databases consist of valuable information

such as sensitive customer data, financial details, and personal details, which are

profitable targets for an attacker. The attackers have numerous methods to steal these

important data if they have serious weaknesses or vulnerabilities. As the application

developer does not sanitize the input form, misconfigures the web servers, and has a

design flaw in the web application, so the use of the web application will lead to

vulnerabilities. This vulnerability can harm related users to use the web application.

The attackers take advantages of these vulnerabilities to harm people. For example, if

the attackers gain privileges on a website, they may be able to upload sensitive files and

also control that website and then get public and direct access to the databases.

There are many types of vulnerabilities in web applications [14]. The most

common types of vulnerabilities are SQL injection, XSS, Broken Authentication and

Session Management, Security Misconfiguration, Insecure Direct Object References,

CSRF, Insecure Cryptographic Storage, Failure to restrict URL Access, Insufficient

Transport Layer Protection and Unvalidated Redirects and Forwards.

• SQL injection: SQL injection is directed access to the database and the

root system. It occurs when pre-compared SQL command with the user

input or query is sent into the database by the attacker. Many web servers

stored most of the critical data such as personal credentials (username

and password) and other personal information. The attacker controls and

manages data in these databases if the injection is successful to the

vulnerable websites.

• XSS: Unlike SQL injection, an attacker visits a vulnerable website to

target the user’s browsers. One of the similarities to SQL injection

attacks is that XSS uses malicious code to inject websites. This code will

be injected via the input field and automatically run in the injected

8

vulnerable web page. The credentials data can be hijacked when the

website visitors view the infected web page without these users realizing

it.

• Broken Authentication and Session Management: When the users

visit the website, the username and password are invalidated as a session

cookie and session ID that are created by the website. This cookie and

session ID should be done or should be invalided to logout or browser

closed otherwise the sensitive data will remain in the system that is

exposed to an attacker. When the attacker uses the same computer, the

credential data is compromised. Checking the website should include

proper configuration, the strength of the authentication process, and

session management.

• Security Misconfiguration: Security misconfiguration can be defined

as the misconfiguration of the application server, database server, and

web server. The attacker deploys the developer is not keeping the latest

software that will be occurred the vulnerability. For example, if the

database version is not up to date, sensitive information appears in the

error message. They can enumerate the information of the application

server, database, and platform.

• Insecure Direct Object References: Insecure direct object occurs the

developers use reference objects in URL. The attacker can change the

value in reference objects and can view other information and then can

do the directory traversal attack. For example, the URL of

https://www.example.com/example.php?id=1 is not secure in id

parameter. The attacker can change the id value from 1 to 2 and then can

view the information of the value as 2. In addition, the attacker can gain

the sensitive file like

https://www.example.com/example.php?../../../etc/passwd.

• CSRF: Cross-Site Request Forgery is a malicious HTTP request that

comes from the attacker to the victim’s browser. This request persuades

as a request arrives from a trusted site. If the user clicks the malicious

request who logged into the original website, then sensitive data will be

http://www.example.com/example.php?id=1
http://www.example.com/example.php?id=1
https://www.example.com/example.php?../../../etc/passwd

9

stolen and will be performed unauthenticated behavior on the user’s

behalf.

• Insecure Cryptographic Storage: Insecure cryptographic storage is

focused on application databases that are not stored securely. The

developer uses an encryption algorithm inappropriately in the database.

This often occurs when the database is compromised by the attacker

with SQL injection. The attacker retrieves data in the database such as

personal information. If this credentials data is not stored properly by

using hashing or encryption algorithms, they will be easily controlled

and accessed by the attackers.

• Failure to restrict URL Access: Web applications are not restricting

and protecting privileged URL access called failure to restrict URL

access. So, the attacker can use the brute force technique to access the

URL of an unprotected page. And the attacker can also guess this

unprotectable URL for direct access to the source file without using the

web application. As a result, attackers can access and view sensitive

pages, confidential information, and privileged page.

• Insufficient Transport Layer Protection: This vulnerability occurs

deals with data exchange over the network. The user sent data to the

server without passing strong algorithms, valid or unexpired certificates

or SSL can allow data compromising. And the attacker can sniff network

traffic that may cause a Man-in-the-Middle attack.

• Unvalidated Redirects and Forwards: Web developers frequently

develop web applications by using redirect and forward methods for the

intended purpose. But sometimes, that occurs with unvalidated

redirecting and forwarding in those web applications. They can harm the

reputation of websites because they redirect the users to malware sites

or phishing and forward unauthorized parts of these sites.

Among these common vulnerabilities, the most common vulnerabilities that

occur in the web application are SQL and XSS. In this thesis, the most exploited web

application is emphasized the vulnerabilities of SQL injection and XSS.

10

2.4.1 SQL Injection Attack

This attack is called a server-side code injection attack based on SQL that

exploits the system through the weakness of web application with the predefined SQL

command and its query is inserted into the URL or input fields of the web application.

The web application sends this query to the database and executes this query and then

sends data back to the web application. In this way, the attackers take the privileges of

the database through SQL injection [11].

The attackers can take sensitive data such as username and password from the

database, modify this sensitive information, lack database control, and cause a DOS

attack. It mostly occurs when the developers properly invalidated the user input as a

part of the SQL query. SQL injection can be executed in several methods to take many

advantages from the organization’s network. The three major types of SQL injection

are as follows.

• In-band SQL injection

• Inferential SQL injection

• Out-of-band SQL injection

2.4.1.1 In-band SQL Injection

In-band SQL injection is one of the most common injections of the web

applications. It occurs when the attacks launch in the same communication channel and

then collect results in this channel. In-band SQL injection is the easiest method to

exploit among injections. There are two types of In-band SQL injection.

• Union-Based SQL Injection

• Error-Based SQL Injection

2.4.1.1.1 Union-Based SQL Injection

In this case, when a web application’s response contains the error message with

SQL query, the attacker uses the UNION SQL operator for exploiting the database to

obtain the data of tables. This is called a Union-based attack. By using the UNION

keyword, the attacker joins the original query and another additional SQL query. For

Example:

SELECT column1, column2 FROM table1 UNION SELECT column3,

colunm4 FROM table2

11

When this UNION query executes, the query will return the result of the

original query and another result of the concatenating query.

2.4.1.1.2 Error-Based SQL Injection

Error-based SQL injection is a kind of in-band SQL injection technique when

an attacker inserts the malicious query into the database and gains error messages which

contain the information of the database. It was shown that the “supplied argument is

not a valid MySQL result resource” as an example of an error message. So, the attacker

knows the type of database and the error of syntax and then they triggered the web

application by an SQL injection attack.

2.4.1.2 Inferential SQL Injection

In inferential SQL injection, any HTTP response like database error or the result

of SQL query does not return from the database. Unlike UNION attacks, they are not

relied on the application’s responses due to the injected query. In this situation, there

are two ways for testing the application with SQL injection attack.

• Content-Based Blind SQL injection

• Time-Based Blind SQL Injection

2.4.1.2.1 Content-Based Blind SQL Injection

The Content-based blind SQL injection is also called Boolean-based blind SQL

injection. In this injection, the attacker sends a couple of queries to the databases which

make the application return the result based on whether TRUE or FALSE result. If the

condition of the injected AND 1=1-- query is true, the response of the application will

normally display. However, the other injected AND 1=2-- the condition is false, and

the web application does not return any results. Depending on these two results, the

attacker is able to exploit this application through content-based blind SQL injection.

2.4.1.2.2 Time-Based Blind SQL Injection

When the injected SQL query is executed, the application’s response is not any

different from the original page. The conditional errors of the previous method do not

work in this state. So, one of the next exploitable techniques in blind SQL injection is

Time Based on blind SQL injection. This type of injection relies on the time delay of

12

the response time that occurs the attacker sends the SQL query to the database.

Successful SQL injection indicates how long the database waits for a given time before

responding.

For instance,

; WAITFOR DELAY '00:00:10’- -

This example value will cause the query to wait 10 seconds before displaying

the HTTP response. Using this technique, the attacker can retrieve unauthorized data.

2.4.1.3 Out-of-band SQL Injection

Out-of-band SQL injection is the least common injection, and that occurs when

an attacker uses the different channel to either launch an attack or gather information.

This type of injection relies on the features of the database server which uses in web

applications.

2.4.1.4 Prevention of SQL Injection

Ensuring developers develop their web applications with SQL injection

mitigation strategies. The common ways to reduce SQL vulnerability are input

validation and sanitization, escaping, parameterization, and stored procedure.

2.4.1.4.1 Input Validation and Sanitization

Input validation is the most commonly used to prevent SQL injection attacks.

This process needs to determine the required SQL query whether the user input is

validated or not. It filters the unvalidated SQL statements and creates whitelisting to

validate the user-controlled data.

The other mitigating component against SQL injection attack is data sanitization.

The proper function and regular expression are used to configure the input from users

that ensure any damaging characters such as double quote and single quote is not passed

to the database.

2.4.1.4.2 Escaping

Escaping is a function that escapes special characters from the user input

through the URL or POST data. This escaped data is passed through the database that

doesn’t confuse the DBMS’s character functions. For example, JSON’s special

characters are quotation mark (“), reverse solidus (\), solidus (/), backspace, form feed,

13

new line, carriage return, and horizontal tab. These characters are escaped through the

STRING_ESCAPE () function. The escape function returns the string with the encoded

sequence.

2.4.1.4.3 Parameterization

The developers usually use parameterized queries for distinguishing the user

input and code in the database. This is also known as variable binding. Defining

parameterized queries in all database queries are executed on the providing parameters.

For example, the statement likes that

'SELECT * FROM UserTable WHERE User=? AND Pass=?'

parameters.add ("User", username)

parameters.add ("Pass", password)

where username and password are related to the entered username and password.

2.4.1.4.4 Stored Procedure

The prepared group of SQL statements are called stored procedure, which are

stored in the database management system, so it can be called from the website and

used repeatedly. The procedure performs the input value of the parameters and returns

the output values of multiple parameters. So, this stored procedure can call to execute

when the parameter values are passed. The example of the stored procedure syntax and

the executable syntax of this stored procedure is shown in the following. The sample

stored procedure is with one parameter.

• CREATE PROCEDURE studentName @name nvarchar(40)

(procedure name with one pareameter)

AS

SELECT * FROM Student WHERE Name = @name

(SQL statement)

GO;

• EXEC studentName @name = ‘Mg Hla’; (procedure call)

14

2.4.1.4.5 Active Updating Software

SQL injection regularly exploits outdated web applications. That is why the

application developers no longer support the application and ignore updated software.

Outdated software becomes system failure which can cause data loss, leaking of

sensitive information, poor software performance, bug disruption, and incompatibility.

Prevention is the best way before happening the system failure. Therefore, the

developers need to update all of the software components such as database server, plug-

ins, libraries, and frameworks.

2.4.2 Cross-site Scripting (XSS) Attack

XSS is different from SQL injection because it is a client-side code injection

attack rather than server-side and is generally written with JavaScript code and

sometimes with HTML code for injection. This attack occurs when the attacker inserts

the malicious code into the vulnerable website via the input field or the URL, the victim

visits that website, and then the malicious script automatically executes within the web

application and infects the victim’s web browser [8]. For example, the attacker embeds

malicious JavaScript in the image post.

Cross-site scripting is mostly used to modify the content of the website, steal

user’s cookies or session information, redirect the website that is created by the attacker,

and carry out the abnormal behavior in the vulnerable site. This attack can happen if

the web application does not validate the user input requesting from the untrusted

source and does not sanitize the script in the HTTP response. There are three different

types of XSS attacks.

• Reflected XSS

• Stored XSS

• DOM-based XSS

2.4.2.1 Reflected XSS

In reflected XSS, the attacker generally uses phishing techniques to perform this

attack. This attack is different from stored XSS because it can only act on the client-

side and, not the server. The attackers constructed the script code as a link in the web

application from this web application vulnerability. If the user accesses this link, then

15

the malicious script will execute in the user’s browser and the browser transmits the

victim’s information to the attacker.

The reflected XSS mainly occurs in the web application rather than stored XSS

even if the reflected XSS is less vulnerable attack. It only needs the user’s action to

click the malicious link. Furthermore, the attacker gains the user’s private information

by creating a fake login page.

2.4.2.2 Stored XSS

Stored XSS is also known as persistent XSS. This attack happens when the

attacker stores the injected code into the persistent storage known as a database. In this

attack, the attacker sends the malicious script code along with the comment form of the

blog page and then saved it into the database. After that, the attacker waits for the user

to visit this page. This attack occurs when the user logged into this page, the script code

automatically executes and then the attacker collects the user credential such as users’

cookie.

This is the most harmful attack because any user navigates the injected web

page at any time and then the effect of the injected code takes place as a part of the web

page. The attacker uses this script code for stealing the user cookie. For example,

<script>

window.location=http://www.example.com?id=+document.cook;

</script>

2.4.2.3 DOM-based XSS

DOM-based XSS means Document Object Model-based Cross-site Scripting

and is also called type 0 XSS. Unlike stored XSS and reflected XSS, DOM-based XSS

is possible for the attackers to write malicious code in the document object model of

the HTML page and that occurred in the HTTP response page.

DOM-based XSS is mostly manipulated from the vulnerable page of the user’s

browser address bar wherein the malicious payload is executed as a modification of the

document object model. This vulnerability can cause when the programmers are not

sanitization in dynamic code execution.

http://www.example.com/?id=%2B
http://www.example.com/?id=%2B

16

2.5 Detection of Web Application Vulnerability

The developers require to protect their web applications from attackers.

According to OWASP, the most effective method of detecting vulnerability in the web

application is reviewing code manually. This technique does not apply automation tools

and detects the software to discover any unusual behavior in the software. This manual

testing takes a lot of time and requires specialized skills.

On the other hand, security experts develop automated approaches for detecting

vulnerabilities. The automated testing performs automation testing using the prepared

scripts and automated tools. These tools quickly and repeatedly run these scripts for

testing. This testing is faster than manual testing and does not require human

intervention.

The numerous types of web application scanners provide the application

developer to test their web application vulnerabilities automated. These web application

scanners mostly detect the application by inserting the malicious input through the

crawling page of these applications and evaluating these responses.

The most popular web application security scanners are Netsparker, Acunetix,

Sucuri Sitecheck, W3af, Rapid7 InsightAppSec, Qualsys SSL Server Test, Mozilla

Obervatory, Burp Suite, HCL App Scan, Qualsys Web Application Scanner, and

Tenable. They are open sources and commercial scanners. Here are some of the most

popular security scanning tools that can be used to discover vulnerabilities in web

applications.

2.5.1 Netsparker

Netsparker is a web application security scanner that can accurately scan many

types of vulnerabilities. It accurately detects vulnerabilities because it uses proof-based

scanning technology. It helps in exploiting vulnerabilities that inject automatically,

quickly, and safely.

2.5.2 Acunetix

Acunetix is an effective web application security scanner that features advanced

macro recording to scan complicated web applications and make certain to report a

detected vulnerability. This function saves time on having false positives[2].

17

2.5.3 Burp Suite

Burp Suite is a fully automated web application security scanner that allows

scheduling and prioritizing scans. It means that Burp Suite schedules scanning time and

prioritizes threat levels when detecting vulnerabilities. It is correct and quick because

it integrates CI/CD tracking systems. CI means continuous integration and CD refers to

continuous delivery.

2.5.4 W3af

W3af stands for web application attack and audit framework. It uses the black

box testing technique to detect the web application. It can identify over 200

vulnerabilities of the web application. It has both GUI and a command-line interface.

So, the users can be easily used the interface.

2.5.5 Sucuri Sitecheck

Sucuri Sitecheck is an open source web application scanner. This scanner takes

only two steps for scanning. The user pastes the website URL to the text box and goes

to the “Scan Website” button. This scanner will discover vulnerabilities and out-of-date

plug-ins.

Apart from these scanners, Acunetix performs efficient scanning in a lot of

vulnerabilities including SQLi and XSS. It is an effective web security scanner that

can accurately detect over 7000 vulnerabilities in many websites. It is also an automated

tool for testing web application security. It can detect vulnerabilities more than other

web security scanners with a fewer false positive. Because it uses AcuSensor

technology. This technology supports more information concerning the vulnerabilities

that allow to find the vulnerability faster and more accurately.

In this thesis, the proposed XSS_SQL_Scanning algorithm uses the

methodology of web application scanner and is built for detecting XSS and SQL

injection vulnerabilities. It uses the Acunetix scanner to evaluate the accuracy of the

system. In addition, it applies pattern matching algorithm for searching malicious

strings.

18

2.6 Pattern Matching Algorithm

The main task of pattern matching in computer science is to seek the specific

sequences in the raw data files such as notepad, word file, web browser, and database.

The pattern matching algorithm includes the finding string (also called the pattern) and

a given text string. Pattern matching algorithms apply to multiple solutions to real-

world problems. They are most useful in plagiarism detection, natural language and

image processing, bioinformatics processing, intrusion detection, digital forensics, web

application vulnerability detection, and other domains.

There are many kinds of pattern matching algorithms, the most common are as

follows:

• Rabin Karp Pattern Matching Algorithm

• Boyer-Moore String Matching Algorithm

• Knuth-Mooris-Pratt Algorithm

• Naïve Pattern Matching Algorithm

All of these algorithms have their own advantages and disadvantages.

2.6.1 Rabin Karp Pattern Matching Algorithm

Rabin Karp algorithm is also a pattern matching algorithm that searches patterns

in the text using the hash function. It calculates the hash value in the pre-processed state

and compares the hash value rather than the character of the string. And then the current

position of the hash value is used to compute the next position of the hash value. There

is no need to travel each character of the string like a Naïve pattern searching algorithm.

The average complexity of the Rabin Karp algorithm is O(m+n) and the worst-

case complexity is O(mn) in the spurious hits. Although the hash value of the pattern

matches the hash value of the text, if this text is not existing then it is called a spurious

hit. This algorithm is quite effective because it uses hashing function. But it requires

extra space and is practically slow. It was widely used in multiple patterns matching

such as plagiarism checking. The flow diagram of the Rabin Karp algorithm is shown

in Figure 2.1.

19

Figure 2.1 Flow Chart of Rabin Karp Pattern Matching Algorithm

2.6.2 Boyer-Moore String Matching Algorithm

One of the most efficient string searching algorithms is the Boyer-Moore

algorithm. Boyer-Moore algorithm preprocesses the pattern. This algorithm gathers

information during the preprocess state to skip the length of shifts. It works by jumping

characters via the text instead of searching for every character in the string. The main

characteristic of this algorithm is to match the end of the pattern rather than the first

character of the pattern. Pattern is split into two halves, namely P1 and P2. Boyer-

Moore algorithm is also called the index search algorithm just like the Knuth-Morris-

Pratt algorithm. This algorithm is shown in the following Figure 2.2.

No

Yes

Start

Calculate Hashing Value of Pattern

Calculate Hashing Value of String

Compare Hashing Value of Pattern and

Sting

Match the Same

Hashing Value

End

String Pointer Move

Input Pattern

Display All

Valid Shifts

20

Figure 2.2 Flow Chart of Boyer-Moore Pattern Matching Algorithm

Unlike other pattern matching algorithms, the Boyer-Moore algorithm scans the

character of the text from left to right and the shifting process is decided based on two

rules. They are bad character rule and good suffix rule.

The time complexity of the Boyer-Moore-Algorithm is O(n/m) and the worst

case is O(mn) where m is the length of the pattern and n is the length of the string. If

the character does not match, the pattern pointer shifts with the calculated preprocessed

Start

Input Pattern

No

If rightmost character matched a

portion of text in T

Yes

No
If whole pattern P2 matches

Yes

No
If P1 matches too

Yes

End

Search Complete

Map the pattern P1 at the beginning of first character of P2

Search all n characters of P2 within that portion

Search the rightmost end character of P2 from given text in T till end

Split the pattern into two halves P1 and P2

21

Start

Input Pattern

Match Pattern

and String?

No Shift Pattern based on

Prefix Table

Yes

Display All

Valid Shifts

End

Compare Pattern and String

state. The good result of complexity is due to the preprocess state of the pattern. Both

two combination rules provide the best shift value, though the preprocessing of these

rules are complicated than another pattern matching algorithm.

2.6.3 Knuth-Mooris-Pratt Pattern Matching Algorithm

The Knuth-Mooris-Pratt algorithm is similar to the Naïve algorithm, except that

the KMP algorithm needs preprocessing phase. This algorithm requires two functions

to search. These functions are prefix function and string-matching function. This

preprocess phase computes how many characters are to be skipped. It improves the

length of shifts and indexes parts of the text that match the pattern.

Figure 2.3 Flow Chart of Knuth-Morris-Pratt Pattern Matching Algorithm

The time complexity of the first method takes O(m) where m is the length of

the pattern. Next, it compares the same way as the Naïve pattern matching algorithm.

If the pattern does not match the current index of the string, then it does the

preprocessing phase and shifts the index of the text, and then matches again between

the characters of the text and the character of the pattern. This pattern and string

compare through the length of string ‘n’. So, the time complexity of the string-matching

method is O(n). Thus, the time complexity of the Knuth-Morris-Pratt Algorithm is

22

Start

Input Pattern

Match Pattern

and String

Yes

Display All

Valid Shifts
No

String Pointer Move

from Left to Right

End

Compare Pattern and String

Character by Character

O(m+n) which is pretty fast. The flow diagram of the Knuth-Morris-Pratt pattern

matching algorithm is given in Figure 2.3.

On the other hand, it does not work when the size of the alphabet is increased.

It may happen in mismatching cases. It optimizes the Naïve pattern matching algorithm

by reducing the times of comparison.

2.6.4 Naïve Pattern Matching Algorithm

The Naïve algorithm is the simplest algorithm and easier to implement and

understand among other pattern matching algorithms. It is widely used in pattern

searching, matrix multiplication and string matching. For finding patterns, it compares

pattern and text from left to right and character by character until a match is found.

Figure 2.4 Flow Chart of Naive Pattern Matching Algorithm

The Naïve algorithm finds all valid shifts using a loop that checks the condition

P [1...m] = T [s+1 ...s+m] for each of the n – m + 1 possible values of s. T refers to text

and the symbol of P is pattern, m is the length of pattern, and n is the length of text. The

testing of the loop determines whether the current shift of pattern upon the text is valid

or not. This loop involves an implicit loop for checking the corresponding character

positions until all positions match successfully or mismatch is found. When a match is

found then it returns the starting index of the found pattern and then it slides once again

to check the subsequent matches [5]. The flow chart of the Naïve Pattern Matching

23

Algorithm is shown in Figure 2.4. The searching phase of the comparison of the

character can be ended in any order because the Naïve algorithm does not need

preprocessing state.

It takes a running time was O(mn) in the worst case, but searching the ordinary

text takes O(m+n) where m is the length of the pattern and n means the text length that

is pretty quick. In this thesis, the Naïve pattern matching algorithm is chosen to search

for the specious features in web applications.

24

CHAPTER 3

DESIGN OF THE PROPOSED SYSTEM

The main goal of this thesis is to detect the web application vulnerability with

the vulnerability scanning method. The XSS_SQL_Scanning algorithm is applied for

scanning vulnerabilities. Firstly, the overview of the proposed system of system

architecture is described. And each of the algorithm that takes part in the main program

is described in a detailed explanation. This chapter mainly focuses on the design of the

system.

3.1 Overview of the Proposed System

The proposed algorithm, XSS_SQL_Scanning algorithm is deal with

vulnerabilities of SQL injection and Cross-site Scripting. The expected architecture of

the system is shown in Figure 3.1.

Figure 3.1 Architecture of Web Application Vulnerability Testing System Using

Proposed XSS_SQL_Scanning Algorithm

25

Figure 3.2 Overview of the Proposed System

Figure 3.1 and Figure 3.2 show the system architecture and an overview of the

proposed system. Both of these two vulnerabilities detect to look for attack signatures

Start

Input URL

Check Vulnerability

Type

SQL XSS

SQL

Attack

XSS

Attack

Payload

for SQL

Check Naïve Pattern

Matching

Algorithm

Check Payload

for XSS

Display Result

for

Vulnerability

History

Records

Display Result

for statistical

Measure

End

Evaluate the

System

Stored as

History

Access Web Access Web

Modified Modified

Load XSS Attack

Patterns

Load SQL Attack

Patterns

Parse URLs

Crawl URLs

Choose Type of Vulnerability

26

that are caused by the system sending HTTP requests to the web server with attack

patterns. The proposed system can detect the types of SQL injection such as error based,

blind based, time based, and XSS vulnerability. Each attack pattern is collected from

the vulnerable websites. For detecting vulnerability, the proposed system uses a Naïve

pattern matching algorithm and analyzes the behavior of the web application response

and delay time. Naïve pattern matching algorithm helps to search attack signatures in

the response by using stored vulnerability payloads. The proposed XSS_SQL_Scanning

Algorithm, which discovers Cross-Site Scripting and SQL injection vulnerabilities that

are presented in Figure 3.3 and then the detailed explanation is described in this

subsection.

Algorithm: XSS_SQL_Scanning Algorithm

Input Data:

url = URL of the detected website

payload = the previous existed attack patterns associated with

SQL injection and XSS attack

type_of_vulnerability = the types of vulnerability such as SQL or XSS

Output:

status whether vulnerability found or not

Begin

 if type_of_vulnerability == SQL

 urls  Call Crawling(url)

 result  Forwarding_Payload_and_Analyzing_Response (payload, urls)

 Check SQL Blind-based

 Check SQL Time-based

 else if type_of_vulnerability == XSS

 urls  Call Crawling(url)

 result  Forwarding_Payload_and_Analyzing_Response (payload, urls)

 end

End

Figure 3.3 XSS_SQL_Scanning Algorithm

27

In order to complete this proposed algorithm, there are four phases included.

• Phase 1: Scanning every possible page on web application

• Phase 2: Looking for HTTP request methods and parsing the URL

• Phase 3: Forwarding payloads to detect the web application

• Phase 4: Analyzing the response to find the vulnerabilities

3.1.1 Scanning Every Possible Page on Web Application

Scanning or crawling the entire web application is necessary to achieve all

possible links. This process is based on the tree structure in order to scan this web

application. The following proposed algorithm, name as crawling performs the

process described in these steps.

Figure 3.4 Crawling Algorithm

Algorithm: Crawling Algorithm

Input Data:

url = URL of the detected website

Output:

all possible urls in the website

Begin

function Crawling (url)

Request url

while each new urls is not already in the list do

response(rep)  Get the response of url

page_html  Read page html in rep

links  Extract entire links in page_html

list  Insert links to a list

urls  Request URLs in the list

end while

return urls

end function

End

28

In this algorithm, the user enters the target URL of the web application when

starting this system. Firstly, it calls the target URL and then requests this URL. The

crawling process starts from the response of the requested URL. And then it examines

page HTML (page_html) in the target URL’s response for extracting the respective

links (links). Each link is requested and appended to a list (list). This procedure

executes recursive crawling until no more links are visited in a list. The links are

automatically visited by simulating the user’s clicking on URLs (urls). All of the

possible links in the target web application are collected in this scanning phase.

After the website links are collected in this phase, the next phase is searching

method for sending data to the web application before detecting the web application

vulnerabilities.

3.1.2 Looking for HTTP Request Method and Parsing the URLs

The browser sends HTTP requests to the server. In general, there are two

methods as the GET method and the POST method. GET method requests through

the URL with the parameters as in this example is

http://website.com/example.php?id=1 in which the position of id is a parameter and

then this parameter’s value is 1 whereas POST method requests through input

elements such as search boxes, login boxes, and input box, etc.

The purpose of searching for these methods is to send data such as the URL

with the attack patterns to the web application. Each type of request URL determines

the input points why the GET method sends the information by appending the URL

with a query string while the POST method requests the data enclosed in the HTTP

message body. These input points allow the attackers to inject the database by

sending malicious SQL commands or scripting language (XSS). And then, the system

parses the URL to know the position of the input points. Parsing the URL means that

the URL string splits into its components in which the attributes in the URL’s

components such as scheme, netloc, path, params, query, and fragment.

The word scheme means the name of the protocol and is usually expressed as

http or https. The word netloc is the combination of two words. They are networks

and locations which contain the domain, subdomain, and port number. The path

contains the predetermined resource for accessing. The params is an element that

combines fine-tuning with the path. The query is a query component of the URL. The

fragment is a fragment identifier that concatenates with the path or query. The SQL

http://website.com/example.php?id=1

29

injection code and script code are treated through the user’s input variables such as

the input points. This input points position is most of the params and query from the

URL parse. This is for example of URL parsing.

• https://www.example.com/product.php?cat_id=5

• scheme (protocol) = ‘http’

• netloc (hostname) = ‘www.example.com’

• path (pathname) = ‘product.php’

• params = ‘’

• query (search) = ‘cat_id = 5’

• fragment = ‘’

After the website links are collected in this phase, the next phase is the

searching method for sending data to the web application before detecting the web

application vulnerabilities.

3.1.3 Forwarding Payloads to Detect the Web Application

After identifying the input points in the previous step, the next step is to

generate attacks. For making the attack, the algorithm needs to establish the attack

payload. This payload is based on the previous existed attack patterns associated with

SQL injection and XSS attacks. They are used by attackers in generating SQL

injection and XSS attacks. The system can detect the web application by

concatenating the payload to each crawled URL.

For example, the URL of http://sis.xyz.edu.mm/MajorList.jsp?major=1

transforms “http://sis.xyz.edu.mm/MajorList.jsp?major=1 AND 1=2 -- - “for SQL

injection and “http://sis.xyz.edu.mm/MajorList.jsp?major=1<svg/onload=alert(1)>”

for XSS detecting. This modified URL requests to the web server and then the server

generates the response. If the detected web application has the vulnerability, the

possible vulnerable signature is attached with the response. The sample payloads of

SQL injection and XSS attack are shown in Table 3.1. These payloads are used to

verify the web applications which ae vulnerable to SQL and XSS [2].

http://www.example.com/product.php?cat_id=5
http://www.example.com/product.php?cat_id=5
http://www.example.com/
http://sis.xyz.edu.mm/MajorList.jsp?major=1
http://sis.xyz.edu.mm/MajorList.jsp?major=1
http://sis.xyz.edu.mm/MajorList.jsp?major=1
http://sis.xyz.edu.mm/MajorList.jsp?major=1
http://sis.xyz.edu.mm/MajorList.jsp?major=1

30

Table 3.1 Sample payloads to detect web application vulnerability for SQL and XSS

attacks

No. XSS SQLi

1. <>' SELECT SLEEP(2)

2. <>" sqlite3_sleep(2000)

3. " ' WAITFOR DELAY '00:00:01'

4. <svg "ons> \

5. onfocus="alert(1); 'AND 1=1--', ' AND 1=2--’

6. <svg/onload=alert(1)> ' AND 1=1#', ' AND 1=2#’

: : :

In the next phase, the system finds out the possible vulnerable signatures or

patterns in this response.

3.1.4 Analyzing the Response

In this phase, the system analyzes the modified url’s (modified_url) response

from the web server. For normal SQL injection and XSS vulnerability detection, the

system uses the Naïve Pattern matching algorithm that uses this modified HTTP

response and stored vulnerability payloads (stored_vulnerability_payload) such as

database errors and attack patterns that are already described in the previous phase.

The vulnerability payloads for database errors are collected from each type of

database error in different kinds of databases.

The system analyzes the response of the modified URL with the

corresponding payloads. For detecting blind-based SQL injection, the server does not

return any queries or errors. So, the system asks the database true or false questions

and examines the content of the page based on the response to these questions. In

time-based SQL injection, the system employs SQL queries with time delay and

conditional error statements. Then the URL concatenates this query and requests to

the database. The modified URL forces the database for waiting the delay time before

responding. If the database accepts this payload, the returned database response will

be delayed for a specified amount of time. If not, the HTTP response will be returned

immediately or any data from the database. And afterwards, the system analyzes the

response and discovers any suspicious features in this response.

When any vulnerability is found in the response page, it will show the

31

corresponding URL and the vulnerable input points as an example of URL like

“http://sis.xyz.edu.mm/MajorList.jsp?major=1 AND 1=2 -- - possible blind SQL”. In

addition, it also provides a report as a text file that consists of all vulnerable URLs,

the processing time, and the list of prevention factors associated with SQL and XSS.

Table 3.2 shows sample examples of SQL database errors [3].

Table 3.2 Database errors of SQL

No. SQL database error

1. "You have an error in your SQL syntax"

2. "supplied argument is not a valid MySQL result resource"

3. "check the manual that corresponds to your MySQL"

4. "mysql_fetch_array():supplied argument is not a valid MySQL"

5. "function fetch_row()"

6. "Microsoft OLE DB Provider for ODBC Drivers error"

7. "mysql_num_rows()"

8. “mysql_free_result()"

9. "Error Occurred While Processing Request"

10. "Invalid Querystring"

11. "sybase_"

12. "Input string was not in a correct format"

13. "Warning: require"

14. "Warning: main"

: :

The following algorithm, name as

Forwarding_payload_and_Analyzing_response can make the process of sending

http://sis.xyz.edu.mm/MajorList.jsp?major=1
http://sis.xyz.edu.mm/MajorList.jsp?major=1

32

payload and analyzing the response. This algorithm is also a combination of three

phases which are phases two, three and four.

Algorithm: Forwarding_payload_and_Analyzing_response Algorithm

Input Data:

 payload = the previous existed attack patterns associated with SQL injection

and XSS attack

 stored_vulnerability_payload = database errors and attack patterns

 url = the crawled URLs

Output:

 status whether vulnerability exist or not

Begin

 function Forwarding_payload_and_Analyzing_response (payload, url)

 Search request method whether GET or POST

 input_point  Parse url

 Load attack patterns associated with SQL or XSS

 modified_url  Concatenate attack patterns with possible URL’s

 input_point

 Make request for the modified_url

 response(rep)  Get the response of the modified_url

 result(res) = NAÏVE_ALGORITHM (rep, stored_vulnerability_payoad)

 if (res = = TRUE)

 Display vulnerability is Found

 else

 Display vulnerability is not Found

 endif

 end function

 End

Figure 3.5 Forwarding_payload_and_Analyzing_response Algorithm

33

3.2 Performance Evaluation

The proposed system was evaluated in terms of true positive and negative, false

positive, and negative rates. It was based on the correctness of vulnerability detection.

Or in other words, accuracy indicates that the detected results are nearly similar to the

accepted or correct value and it is also based on the condition of false positive and

negative rates.

For the evaluation in this system, the commercial tool, Acunetix was compared

to the result of the proposed system. The contingency table used to evaluate the result

of the proposed system is shown in Table 3.3.

Table 3.3 Specification of true positive, false positive, true negative and false negative

rates

 Has Vulnerability Does not have vulnerability

Positive

True Positive (TP)

TP rate = 𝑻𝑷
𝑭𝑵+𝑻𝑷

False Positive (FP)

FP rate = 𝑭𝑷
𝑻𝑵+𝑭𝑷

Negative

False Negative (FN)

FN rate = 𝑭𝑵
𝑭𝑵+𝑻𝑷

True Negative (TN)

TN rate = 𝑻𝑵
𝑻𝑵+𝑭𝑷

The description of each variables are as follows.

• True Positive (TP): The proposed system can accurately detect the

vulnerability when the website is actually vulnerable.

• True Negative (TN): The proposed system cannot actually detect the

vulnerability when the website is not vulnerable.

• False Positive (FP): The proposed system can detect vulnerability while the

website has no vulnerability.

• False Negative (FN): The proposed system cannot detect vulnerability but

there is actually the vulnerability in the website.

For example, the Acunetix result showed that www.example.com had SQL

injection vulnerability and the proposed system also showed that this website had SQL

injection vulnerability. They showed the same result. Thus, it could be said True

Positive (TP). True Negative (TN), False Positive (FP) and False Negative (FN) were

calculated in this way.

http://www.example.com/

34

The accuracy was calculated by the following equation.

Accuracy = ((TPR+TNR)/(TPR+FPR+TNR+FNR)) *100 (3.1)

• TPR (True Positive Rate) = TP/(TP+FN)

• FPR (False Positive Rate) = FP/(FP+TP)

• TNR (True Negative Rate) = TN/(TN+FP)

• FNR (False Negative Rate) = FN/(FN+TP)

3.3 URLs Used in the Experiment

To evaluate the performances of the system, the 201 different URLs are used as

case study. For stored URLs, the 201 websites’ URLs of web applications were firstly

collected and saved them into the database. All of these web applications are gathered

from both manual and exploit databases. Some of them are shown in Table 3.4.

Table 3.4 Sample URLs Collection of Different Web Applications

No. URL Vulnerable

1. "http://www.anfield.com.hk/whampoa/aboutus.php?id=14" XSS

2. "https://www.vuototecnica.co.uk/news.php?id=105" XSS

3. "http://gwg-gabrovo.com/products.php?id=970" XSS

4. "https://www.vuototecnica.co.uk/news.php?id=105" XSS

5. "http://www.agilebull.com.cn/aboutus.php?id=6" XSS

6. "http://aceronline.net/product.php?cid=24" SQLi

7. "https://www.maritimewelding.com/products.php?id=2" SQLi

8. "https://www.ninenik.com/content.php?arti_id=107" SQLi

9. "https://elevonwatches.com/product.php?id=5768" SQLi

10. "http://miurashoren.com/shop_search.php?id=172" SQLi

11. "https://saberes.senado.leg.br/course/index.php?categoryid=134" NOVul

12. "https://bim.easyaccessmaterials.com/index.php?location_user=cchs" NOVul

13. "http://www.mfsociety.org/page.php?pageID=185" NOVul

14. "https://www.nutrivene.com/product-category/minerals/" NOVul

15. "http://www.honeycombine.com/product.php?id=1" NOVul

http://www.anfield.com.hk/whampoa/aboutus.php?id=14
http://www.vuototecnica.co.uk/news.php?id=105
http://www.vuototecnica.co.uk/news.php?id=105
http://gwg-gabrovo.com/products.php?id=970
http://gwg-gabrovo.com/products.php?id=970
http://www.vuototecnica.co.uk/news.php?id=105
http://www.vuototecnica.co.uk/news.php?id=105
http://www.agilebull.com.cn/aboutus.php?id=6
http://aceronline.net/product.php?cid=24
http://www.maritimewelding.com/products.php?id=2
http://www.maritimewelding.com/products.php?id=2
http://www.ninenik.com/content.php?arti_id=107
http://www.ninenik.com/content.php?arti_id=107
http://www.ninenik.com/content.php?arti_id=107
http://miurashoren.com/shop_search.php?id=172
http://www.mfsociety.org/page.php?pageID=185
http://www.mfsociety.org/page.php?pageID=185
http://www.nutrivene.com/product-category/minerals/
http://www.nutrivene.com/product-category/minerals/
http://www.nutrivene.com/product-category/minerals/
http://www.honeycombine.com/product.php?id=1

35

CHAPTER 4

IMPLEMENTATION OF THE PROPOSED SYSTEM

4.1 Experimental Setup

The purpose of this chapter is to present the implementation, design, and

performance evaluation of the proposed system. The web application testing system

can use to detect the vulnerability of the web application. This system is implemented

by using Python programming language and MySQL server is used to store the

previously detected result for performance evaluation.

4.2 Implementation of the System

When the system starts, the user can see the main form of the system as shown

in Figure 4.1. The main form consists of the entry box for entering the URL, the two

main options namely SQL and XSS, and the three panels namely, Crawl Page, Links

with Parameters and Testing, and test accuracy button respectively.

Figure 4.1 Main form of the proposed system

36

In the main form, the entry box is used for the required URL information tested

in the system. The user fills the URL in this entry box. The two options are used to

detect the XSS vulnerability and SQL injection vulnerability. The user needs to choose

one of them to detect the desire vulnerability. The three panels are used to show the

detail description and analysis results of the proposed the system. They are appeared

page by page when testing the website. The first panel of Crawl Page is shown in Figure

4.2. And, the last button of the system, Tested Accuracy button, allows to view the

result comparison and the accuracy calculation of the proposed system.

Figure 4.2 Scanning possible URLs of Web Application

Firstly, the user who wants to detect the vulnerability, the user needs to enter

the website URL into the entry box. After filling the input URL, the user requires to

choose the desire options. By choosing the desire option from the radio button and

clicking start button, all of the possible URLs of the detected web application can be

seen in Figure 4.2. Start button is used to operate this process.

And then the scanning process moves on the next panel. This panel allows the

user to view the query of the URLs that filter the query of the URL’s parse. This query

comes from the result of crawled URL. The result of filtering is shown in Figure 4.3.

37

Figure 4.3 Filtering query of URL’s parse from the result of crawled URL

After filtering panel has finished, testing process is appeared in the testing panel.

Figure 4.4 shows concatenating SQL injection quotes with URLs for testing

vulnerability.

Figure 4.4 Testing URLs with SQL quotes for SQL injection

38

If the user detects the website with SQL injection vulnerability, the system is

tested using SQL payloads. These payloads include SQL quotes, SQL time-based

payload and SQL blind based payload. Testing process of SQL injection vulnerability

is seen in Figure 4.4, Figure 4.5 and Figure 4.6 respectively.

Figure 4.5 shows the process of testing URLs with blind-based SQL injection

payloads.

Figure 4.5 Testing URLs with SQL blind-based payloads for SQL injection

Figure 4.6 shows the process of testing URLs with time-based SQL injection

payloads.

If the user wants to detect the website to know whether it has XSS vulnerability

or not, the user chooses the option of XSS. And then the system will be detected with

XSS payloads. Detecting XSS vulnerability is processed by using XSS vulnerability

payloads shown in Figure 4.7.

39

Figure 4.6 Testing URLs with SQL time-based payloads for SQL injection

Figure 4.7 Testing URLs with XSS payloads for Cross-site Scripting

40

After detecting process of SQL injection or XSS vulnerability is finished, the

tested URLs are shown in the testing panel. If the tested URL is vulnerable, the

emphasize message can be seen with the vulnerable URL. And then the information

type of message box is appeared when the testing process is finished as shown in Figure

4.8.

Figure 4.8 Showing information type of message box for completion

When the web application has the vulnerable URL, this URL is then saved into

a text file. This file contains vulnerable URL, fixing methods for vulnerability and

taking time to finish this process. It was a text file that the user can be seen vulnerable

URLs without searching in the testing panel. The example text file is shown in Figure

4.9.

The comparison results of the proposed system and the commercial tools on

tested websites can be seen by clicking the button of Tested Accuracy. Calculating the

accuracy based on the tested result of the proposed system. Figure 4.10 presents a

screenshot showing the stored comparison result and accuracy calculation result.

41

Figure 4.9 Saving as a text file for vulnerable URLs in case of blind based SQL injection

Figure 4.10 Calculating the accuracy of the proposed system

42

4.3 Experiment Results

The analysis includes stored URLs, the well-known tool and the proposed

system that was examined with the corresponding type of vulnerabilities. Through

examining, the well-known tool, Acunetix was chosen to quantify the accuracy of the

proposed system. Acunetix tool and the proposed system evaluated the vulnerabilities

by using these stored URLs.

After the evaluation process is finished, both of these two methods had 154

URLs in true positive, 47 URLs in true negative and 0 URL false negative. In false

positive, the Acunetix has 0 URL and 1 URL in the proposed system. The proposed

system and Acunetix were nearly equal to the comparing results of true positive, false

positive, true negative and false negative rates. Table 4.1 shows the percentage of the

accuracy of the proposed system.

Table 4.1 Accuracy results for Proposed System

Measure Value (%)

True Positive Rate 100%

False Positive Rate 2.0833%

True Negative Rate 97.9167%

False Negative Rate 0%

Accuracy 99.5050%

Figure 4.11 Comparison results of proposed system and Acunetix tool

43

Figure 4.11 shows the accuracy comparison of Acunetix and the proposed

system. This study was based on 201 URLs for both methods. Out of 201 URLs, the

XSS and SQL vulnerabilities have 85 URLs in commercial domains (.com), 19 URLs

in non-profit top-level domain (.org), 7 URLs in Japanese domain, and 45 URLs in

other domains. The proposed system shows that most of the commercial domains are

normally affected to vulnerabilities.

The memory usage of the proposed system and Acunetix is described in the

following table.

Table 4.2 Memory usage of proposed system and Acunetix

 Proposed System Acunetix

Memory (RAM) 23.3 MB 89.9 MB

Table 4.2 displays that the proposed system took 23.3 MB in memory usage and

Acunetix used 89.9 MB. Acunetix needed minimum of 2 GB system memory (RAM).

The memory consumption of proposed system was less than Acunetix. The proposed

system saved 66.6 MB and helped to decrease the memory usage.

The processing time was caused by the crawled URL result and different input

points of injection in each crawled web page. Furthermore, after all tests completed, the

result showed that this proposed system did not take too much time on crawling web

pages and scanning vulnerabilities for both SQL injection and Cross-site scripting. For

example, the system generally took 15 seconds to crawl on URL that includes 335

linked URL and the time for detection process was less than 200 seconds.

44

CHAPTER 5

CONCLUSION

In this thesis, the detection of web applications vulnerability is focused on

particularly in two main types of attack, namely SQL injection and Cross-site Scripting

(XSS). This thesis presents the proposed algorithm, XSS_SQL_Scanning Algorithm to

detect all pages on the websites that have possible vulnerabilities for SQL and XSS

attacks. The experimental results are compared with the proposed system and

commercial tool. The system is implemented using python programming language on

the window platform. In this chapter, the summary of the main conclusion and

advantages, limitations, and further extensions are suggested.

The proposed system uses URLs as input for detecting web application. It has

the option to either detect SQL or XSS vulnerability. It supports the detailed report,

which includes the vulnerable URLs, the list of fixing vulnerability and the processing

time of the detection website. It also applies the Naïve algorithm to search payloads in

response, which makes to be more lightweight the proposed system.

The experimental results of the proposed algorithm produce comparable result

with the commercial tool, Acunetix. Additionally, the memory usage of the proposed

algorithm is lower than Acunetix. The users can customize the type of vulnerability,

which is either SQL or XSS. The proposed algorithm uplifts the accuracy by reducing

the rate of false positive and false negative when testing the web application

vulnerability which makes it effective and reliable.

In conclusion, the proposed XSS_SQL_Scanning Algorithm is customizable,

applicable, reliable and lightweight. And it helps web developers to secure their web

applications from being attacked and also though who start to learn security by showing

step by step of detection stages.

5.1 Limitation and Further Extension

In this study, XSS_SQL_Scanning algorithm does not consider other web

application vulnerabilities such as buffer overflow, cross-site request forgery,

command injection, and so on. The future work will be dedicated to testing with all

vulnerabilities in websites and retaining the low false positive and false negative rate.

45

AUTHOR’S PUBLICATION

[1] Thinzar Aung, Zin Thu Thu Myint, “Effective Web Application

Vulnerability Testing System Using Proposed

XSS_SQL_Scanning_Algorithm”, to be published in the Proceedings of the

19th International Conference on Computer Application (ICCA 2021),

Yangon, Myanmar, 2021.

46

REFERENCES

[1] Ain Zubaidah Mohd Saleha, a*, Nur Amizah Rozalia, b*, Alya Geogiana

Bujaa, b, c*, Kamarularifin Abd. Jalila, Fakariah Hani Mohd Alia, Teh

Faradilla Abdul Rahmana, c, A method for web application vulnerabilities

detection by using Boyer-Moore string matching algorithm, pp 112-121,

Information Systems International Conference (ISICO2015), Universiti

Teknologi MARA, Shah Alam 40000, Selangor, 2015.

[2] Invicti, Acunetix Web Security Blog, Date of access: April, 2022.

https://www.acunetix.com/blog/

[3] Justin Clarke, SQL injection and database errors, Date of access: January,

2021. https://www.sqlinjection.net/errors/

[4] José Fonseca, Marco Vieira, Henrique Madeira, Testing and comparing

web vulnerability scanning tools for SQL injection and XSS attacks, CISUC

- Polithecnic Institute of Guarda and DEI/CISUC - University of Coimbra,

Portugal, 2009.

[5] Kamran Mahmoudi, Pattern mattching algorithms, pp 1-56, Imam

Khomeini International University, April 2017.

[6] M.S. Jasmine, Kirthiga Devi, Geogen George, Detecting XSS based web

application vulnerabilities, International Journal of Computer Technology

& Applications, Vol8(2),291-297, pp 291-297 Mälardalen University, M.

Tech (ISCF). Student, Department of Information Technology SRM

University, TamilNadu, India, ISSN:2229-6093, March 2017.

[7] Priti Singh, Kirthika Thevar, Pooja Shetty, Bushra Shaikh, “Detection of

SQL Injection and XSS Vulnerability in Web Application”, International

Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661,

Volume-2, Issue-3, pp 16-21 March 2015.

[8] Prakhar Tripathi and Rahul Thingla, Cross site scripting (XSS) and SQL-

injection attack detection in web application, pp 1037-1041, International

Conference on Sustainable Computing in Science, Technology &

Management (SUSCOM-2019), RajAvinash Kumar Singh and Sangita

Roy, asthan, Jaipur, India, February 26 - 28, 2019.

[9] Ricardo Kano Aguilar, Vulnerable sites, Date of access: January 2021.

https://www.scribd.com/doc/153033099/7000-vulnerable-sites-1-2-txt

[10] Simon Wahstrom, Evaluation of string searching algorithms, Mälardalen

University, Västerås, Sweden, 2012.

[11] Samira Mehrnoosh, Behrooz Shahi Sheykhahmadloo, Abdolkhalegh

khandouzi ghenare, “SQL injection and vulnerability detection”, (IJCSIS)

http://www.acunetix.com/blog/
http://www.acunetix.com/blog/
http://www.sqlinjection.net/errors/
http://www.scribd.com/doc/153033099/7000-vulnerable-sites-1-2-txt
http://www.scribd.com/doc/153033099/7000-vulnerable-sites-1-2-txt
http://www.scribd.com/doc/153033099/7000-vulnerable-sites-1-2-txt

47

International Journal of Computer Science and Information Security, Vol.

11, No. 5, pp 55-58, May 2013.

[12] Teh Faradilla Abdul Rahman*, Alya Geogiana Buja, Kamarularifin Abd.

Jalil, Fakariah Mohd Ali, SQL Injection Attack Scanner Using Boyer-

Moore String Matching Algorithm, pp 183 -189, Journal of Computers,

Department of Computer, Technology and Network, Universiti Teknologi

MARA, Malaysia, December 26, 2015.

[13] Thomas Hamilton, Security Testing, Date of access: February 2019.

https://www.guru99.com/what-is-security-testing.html

[14] Teamques10, Different types of vulnerability, Date of access: March 2019.

https://www.ques10.com/p/3550/what-are-the-different-types-of-

vulnerability-thre/?

[15] Top Ten Vulnerabilities in OWASP, Date of access: January 2018.

https://owasp.org/www-project-top-ten/

[16] Wesley Chai, Confidentiality, Integrity and Availability, Date of access:

June 2021. https://www.techtarget.com/whatis/definition/Confidentiality-

integrity-and-availability-CIA#

http://www.guru99.com/what-is-security-testing.html
http://www.guru99.com/what-is-security-testing.html
http://www.guru99.com/what-is-security-testing.html
http://www.ques10.com/p/3550/what-are-the-different-types-of-
http://www.ques10.com/p/3550/what-are-the-different-types-of-
http://www.ques10.com/p/3550/what-are-the-different-types-of-
http://www.techtarget.com/whatis/definition/Confidentiality-
http://www.techtarget.com/whatis/definition/Confidentiality-
http://www.techtarget.com/whatis/definition/Confidentiality-

