
Network Intrusion Detection and Analyzing User-agent Field XSS Attack Log

Files from Web Application

Aye Aye Thu

University of Computer Studies (Yangon)

Suchiq13@gmail.com,ayeayethu13@gmail.com

Abstract

 Today web site hacks are on the rise and pose a

greater threat than the broad-based network attacks as

they threaten to steal critical customer, employee, and

business partner information stored in applications and

databases linked to the Web. Organizations collect vast

amounts of data every day, including firewall logs,
system logs, and intrusion detection alerts. Analyzing

web traffic out of log files has advantages over

analyzing traffic from the network. Web server log files

contain only a fraction of the full HTTP request and

response. A network Intrusion Detection System (NIDS)

is placed in the network infrastructure where it can see

the traffic to and from the web application. Cross-Site

Scripting (XSS) attacks are a type of injection problem,

in which malicious scripts are injected into the

otherwise benign and trusted web sites. In this paper

describes the detection of attacks on web application by

analyzing user-agent field XSS log files from web

servers (like Apache and IIS).

Keywords
Network Intrusion detection system, HTTP, Cross-Site

Scripting, XSS log, Web Server

1. Introduction

Internet usage and online application are

experiencing spectacular growth. This growth in

popularity has not gone unnoticed by the criminal

element and the simplicity of the HTTP protocol makes

it easy to steal and spoof identity. Attacks on web

application are on a constant change. Attackers are

being finding flawed web applications using Google and

other search tools. Attacks like XSS target the

applications ‘users, while all the other attacks target the

web application itself. Standard web servers like Apache

and IIS generate logging messages by default in the

Common Log Format (CIF) specification. To detect

attacks against web applications, the intrusion detection

mechanism have to be application layer aware and see

the relevant traffic.

Cross-site scripting (XSS) attacks occur when an

attacker uses a web application to send malicious code,

generally in the form of a browser side script, to a

different end user [4]. Malicious user agents can also be

responsible for denial of service and security bypass

attacks [1].

The biggest benefit of log files is the relative simple

availability and analysis of their content.

 The rest of the paper is organized as follows:

Section 2 presents Network Intrusion Detection System.

Section 3 is the proposed framework and analyzing XSS

attack log files in section 4. In section 5 presents the

conclusion.

2. Network Intrusion Detection System (NIDS)

Network Intrusion detection systems (NIDS) are an

essential component of defensive measures protecting

computer systems and network against harm abuse [3].

It usually resides on its own machine and analyzes the

web traffic without touching the firewalls and the

application itself. Snort, the most powerful open source

IDS, has over 800 rules for detecting malicious web

traffic. This type of IDS captures network traffic packets

such as TCP, UDP and IPX/SPX) and analyzes the

content against a set of RULES or SIGNATURES to

determine if a POSSIBLE event took place. False

positives are common when an IDS system is not

configured or “tuned” to the environment traffic it is

trying to analyze [7]. Figure (1) shows the network

based Intrusion Detection System architecture.

Figure 1.Network-Based IDS

3. Proposed Framework

 Web applications are running on the OSI Layer

 7­the application layer. Attacks can be detected at

different zones and devices in the network

infrastructure (see in Figure 2). Each place has a

different view of the traffic. This paper is now going to

explore each of these places in the network.

Figure 1. Network-Based IDS for Web application

3.1. Layer 3/4 Firewall

A traditional (stateful and non-stateful) firewall is

working on OSI layers 3 (Network Layer) and 4

(Transport Layer). The firewall analyzes traffic based on

the common protocols like TCP, UDP and ICMP and

their corresponding ports or types/codes. Firewalls can

detect anomalies in the protocols they are aware of like

fragmented IP traffic, but they are generally not the best

place to detect attacks on the application layer. Firewall

log files usually do not contain application layer data

like HTTP data, only layer 3 and 4 information, so they

are not very helpful in detecting what is going on higher

layers.

3.2. Web Application Honeypots

A web application honeypot (WAH) is a basic web

server with an attack surface. This attack surface is the

public HTML content which is indexed by search

engines. It contains links to files with known

vulnerabilities. The real vulnerability is not present but

the web server advertises its existence and thereby

attracts the adversaries. In order to handle an attack

properly it is need to classify the request. This is almost

identical to what the web application firewalls are trying

to achieve except that they are prone to extensive false

negative as they have to deal with classifying a lot of

legitimate traffic. The honeypot, by contrast, should see

little legitimate traffic, which dramatically simplifies

this classification process [2]. On the web application

Honeypot, request handlers are responsible for

classifying and handling each incoming request.

3.3. Application layer firewall

Web application firewalls are designed to work on

the OSI layer 7 (the application layer). They are fully

aware of application layer protocols such as HTTP(S)

and SOAP and can analyze those requests in great

detail. Compared to a layer ¾ firewall, rules can be

defined to allow/disallow certain HTTP requests like

POST< PUSH, OPTIONS, etc., set limits in file transfer

size or URL parameter argument length. WAF log files

contain as much information as those from a web server

plus the policy decisions of the filter rules. A WAF

provides a wealth of information for filtering detection

purposes and is thus a good place for the detection of

attacks.

3.4. Web Server

The web server is the end device of an HTTP

request. Standard web servers like Apache and IIS are

logging by default in the common Log Format (CLF)

specification. Web server logs do not contain any data

sent in the HTTP header, like POST parameters. The

HTTP header can contain valuable data, as most forms

and their parameters are submitted by POST requests.

This comes as a big deficiency for web server log files.

A web server can also act as a web application firewall

(WAF). WAF detects attacks by filtering all incoming

HTTP and HTTPS traffic through configurable network

and application layer controls. WAF’s core security

parameters are based on ModSecurity, an industry

standard and trusted rule set that detects and prevent

common exploitation techniques such as SQL Injection

and Cross Site Scripting (XSS).

3.5. Web Application

A web application consists of a framework (PHP,

ASP, J2EE, etc.) which implements the business logic.

It is considered to be best practice to perform

input/output validation in this tier. A strong input

validation policy will detect malformed and malicious

input and can log security related information to a log

file. The application has access to the full user trail-

each step a user takes (logging in, making a transfer,

logging out, etc.). A comprehensive logging at the

application tier enables the detection of misuse and

fraud and allows a full reconstruction of a user’s steps.

4. Cross-Site Scripting (XSS)

Cross-Site Scripting typically involves executing

commands in a user's browser to display unintended

content, or with the intent of stealing the user's login

credentials or other personal information. This

information can then be used by the attacker to access

web sites and services for which the compromised

credentials are valid (e.g., identity theft). In some cases,

the attacker might be able to use this information to

hijack or further compromise the user's HTTP sessions.
Cross-site scripting (XSS) is a type of computer security

vulnerability typically found in web applications which

allow code injection by malicious web users into the

web pages viewed by other users. Examples of such

code include HTML code and client-side scripts. There

are Three Types of XSS.

(1) Persistent (Stored) XSS

 Attack is stored on the website server.

(2) Non Persistent (reflect) XSS

 User has to go through a special link to be exposed.

(3) DOM-based XSS

 Problem exists within the client-side script.

 In this paper, it is focus on the non persistent

XSS attack.

4.1 User-agent field XSS

In this paper, aids intrusion analysts in

understanding the user agent field and how it can be

used to detect attack log files. Malicious attacks using

the user agent field in HTTP request headers [1].

Modern examples of user agent are Mozilla Firefox,

Internet Explorer and Safari. The user agent is defined

by RFC2616.The user agent header field contains

information about the user agent originating the request.

This is for statistical purposes, the tracing of protocol

violations and automated recognition of user agents for

the sake of tailoring responses to avoid particular user

agent limitations.

User agents should include this field of requests. The

field can contain multiple product tokens and comments

identifying the agent and any sub products, which form

s significant part of the user agent. By convention, the

products tokens are listed in order of their significance

for identifying the application.

User-Agent =” User-Agent” “:” 1*(product |

comment)”

The above quotation from RFC 2616 shows that in

1991 the user agent field had three functions. Firstly it

was to be used for statistical purposes. Websites can

track what user agents are connecting to them and can

use this information to help guide developers as to how

to best display information to users. An example would

be if developers may tailor the site better for iPhones.

The second function was for the tracing of protocols

violations. This is an error control feature for user

agents. The third function, to tailor responses based

upon the user agent, is what the user agent is mainly

used for today.

Mozilla/5.0 (iPad; U; CPU OS 3_2 like Mac OS X;

en-us) AppleWebKit/ 531.21.10(KHTML,

likeGecko)Version/4/0/4Mobile/7B334bSafari/531.21.1

02011-10-1620:23:50

 User agent is Mozilla/5.0.Mozilla is common to

nearly all modern browsers. The device is possibly an

iPad 1 as its running an early 3_2 OS, but it is

impossible to tell. The Apple developer site gives more

information. (iPad; U; CPU OS 3_2 like Mac OS X; en-

us) shows the platform string. In this case an iPad.

AppleWebKit/531.21.10(KHTML, like Gecko) shows

the Webkit engine build number. Version/4.0.4 shows

the safari family version number.4.0.4.Mobile/7B334b

shows the mobile version build number.

Safari/531.21.102011-10-1620:23:50 shows the safari

builder number.

To keep thinking like a hacker, this information is

really useful especially if new vulnerabilities are

released for particular product versions. The attacks

would be adjusted based on the information found in the

user agent field.

4.2 Analyzing of User Agent Field XSS Attack

Log Files

 In this paper, web application honeypots picked up

some more XSS attack.

The highlighted data in the Apache access_log holds

the User-Agent field token data from the request. In this

case, the attacker has inserted some JavaScript code that

would use the window. location function to cause the

web browser to request the txt2pic.com website. After

checking out that location the system finds the

following:

$ curl -D - http://txt2pic.com

HTTP/1.1 302 Object moved

Server: Microsoft-IIS/5.0

Date: Fri, 30 Nov 2012 14:36:28 GMT

Fun: www.WHAK.com

Connection: close

Location: http://www.imagegenerator.org

Content-Length: 150

Content-Type: text/html

Set-Cookie:

ASPSESSIONIDCQSCSBBC=HCPFGNFAEIIHNDEP

AEFEFFHL; path=/

Cache-control: private

Object moved

<h1>Object Moved</h1>This object may be found <a

href="http://www.imagegenerator

This server responds with a 302 redirect and sends

the user onto the www.imagenerator.org website. So,

this attack scenario presumably is simply a method of

SPAM linking to increase web traffic hits [5].

Another example is the log files from Scan 31 can be

downloaded from the Honeynet Project website

analyzing the apache access_log file with the above

regular expressions yields interesting findings [6] . Here

are two examples requests:

http://npercoco.typepad.com/.a/6a0133f264aa62970b017c34228b1c970b-pi

 (1) 217.160.165.173 -- [12/Mar/2004 :22: 31 :12 –

0500] “GET /foo.jsp? <SCRIPT> foo </SCRIPT> .jsp

HTTP/1.1” 200 578”_” “ Mozilla/4.75 [en] (X11, U;

Nesus)”

(2) 217.160.165.173 --[12/Mar/2004 :22: 31: 12 - 0500]

“GET /cgi-bin/cvslog.cgi? file=

<SCRIPT>window.alert</SCRIPT>HTTP/1.1” 403

302”-“ Mozilla/4.75 [en] (X11, U; Nessus)”

There are two requests of a Nessus scan, trying to

find scripts which are vulnerable to XSS. According to

the HTTP status code, in the first request the web server

responded with a 200 OK, which means that foo.jsp was

there and served a paged, It is don’t know if this page is

vulnerable, though. The system would have to try this

request manually to find out. The second request

(cvslog.cgi) was not successful, the server responded

with a 403 Forbidden response, which means that the

web server denied the access.

5. Conclusion

 Cross Site Scripting attacks work by embedding

script tags in URLs/HTTP requests and enticing

unsuspecting users to click on them, ensuring that the

malicious JavaScript gets executed on the victim’s

machine. These attacks leverage the trust between the

user and the server and the fact that there is no

input/output validation on the server to reject JavaScript

or other active code characters. The propose framework

showed that can detect about 96% XSS attacks. In this

case of user agents, hackers have not only found ways to

avoid the system which search through user agent logs

from NIDS. The system is looking for the smallest

mistake or slip up from a hacker.

References

[1] Darren Manners “The user agent field: Analyzing and

detecting the abnormal or malicious in your organization”

[2] Honeynet Project Web Application Honeypot

“http://en.wikipedia.org/wiki/Cross_site_scripting”

[3] J. Mchugh, A. Christie, and J. Allen, “Defending Yourself:

The Role of Intrusion Detection Systems”, IEEE Software,

Volume 17, Issue 5, Sep.-Oct., pp. 42-51, 2000.

[4] OWASP (The open Web Applicaion Security

project)”https://www.owasp.org/index.php/Cross-

site_Scripting_%28XSS%29”

[5] Ryan Barnett [Honeypot Alert] “User-Agent Field XSS

Attacks”|06 December 2012 at 15:43

http://www.imperva.com/resources/adc/adc_advisories_respon

se_secureworks.html).

[6] The Honeynet Project & Research Alliacnce (2007).

Know your Enemy: Web Application Threats.

http://www.honey.org/papers/webapp/

[7] W. T Work, “Intrusion Detection Systems (IDS)”, National

Institute of Standers and Technology, 2003, available at:

csrc.nist.gov/publications /nistpubs /800-94/SP800-94.pdf.

http://profile.typepad.com/1205844982s16821
http://blog.spiderlabs.com/2012/11/honeypot-alert-referer-field-xss-attacks.html?cid=6a0133f264aa62970b017c34594635970b#comment-6a0133f264aa62970b017c34594635970b

