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Abstract 
 

The Travelling Salesman Problem (TSP) is one of the 

hardest and the most fundamental problems in Computer 

Science. Although several techniques have been used in 

the past to reduce the running time of TSP, Genetic 

algorithms can reduce the running times of NP-complete 

problems substantially and have the capability of being 

parallelized.  MapReduce is a parallel programming 

paradigm currently use and Hadoop is one of the most 

popular MapReduce frameworks because its robust, well 

designed and scalable file system. In this paper we use a 

genetic algorithm and parallelizing it on MapReduce 

Hadoop framework to reduce the running time of 

Travelling Salesman Problem.  

 

1. Introduction 

 

Genetic algorithm is heuristic optimization method 

which mimics the process of natural evolution. 

Optimization problems like Traveling Salesman require 

a lot of computer resources to be solved even if we use 

genetic algorithm as optimization method. Because one 

computer machine is not capable to resolve problems of 

this magnitude, parallel implementation of genetic 

algorithm is one solution.  

Parallel Genetic Algorithms [8] normally split a 

problem space into a number of smaller sub-spaces, then 

explore sub-optimal solutions for each sub-space, and 

finally find out a set of optimal solutions based on the 

sub-optimal solutions. PGAs can not only reduce the 

execution time, but also can tackle more complex 

problems by taking advantage of distributed computing 

systems. Furthermore, PGAs are more versatile than 

their corresponding sequential version as they have a less 

possibility of getting stuck in local optima. 

The MapReduce model [2] provides a parallel design 

pattern for simplifying application developments in 

distributed environments. This model can split a large 

problem space into small pieces and automatically 

parallelize the execution of small tasks on the smaller 

space. It was proposed by Google for easily harnessing a 

large number of resources in data centers to process 

data-intensive applications and has been proposed to 

form the basis of a “data center computer” [5]. This 

model allows users to benefit from advanced features of 

distributed computing without worrying about the 

difficulty of coordinating the execution of parallel tasks 

in distributed environments. 

This paper presents the parallel implementation of 

genetic algorithm as a MapReduce task for the 

Travelling Salesman Problem. The framework for 

running MapReduce job uses Hadoop because it can 

reduce the run time of NP-Complete with the high 

number of inputs.  

 

2. Related Work 

 

Much research has been done in genetic algorithm 

using MapReduce model. Abhishek Derma, Xavier 

Llor_a, David E. Goldberg and Roy H. Campbell[13]

 described the algorithm design and implementation of 

GAs on Hadoop. The convergence and scalability of the 

implementation has been investigated. Adding more 

resources would enable them to solve even larger 

problems without any changes in the algorithm 

implementation.    

Dino Keč o a and Abdulhamit Subasi [1] develop a 

parallelization of genetic algorithms using Hadoop 

Map/Reduce  in 2011. In this work they model for 

parallelization of genetic algorithm shows better 

performances and fitness convergence than model 

presented in Scaling Genetic Algorithms using 

MapReduce developed by Abhishek Verma, 

XavierLlor'a, David E. Goldberg, Roy H. Campbell, but 

their model has lower quality of solution because of 

species problem. They also said that in future work both 

models should be used for solving different problems, 

like TSP (Traveling Salesman Problem). 

Siddhartha Jain and Matthew Mallozzi[14] analyze 

the possibility of parallelizing the Traveling Salesman 

Problem over the MapReduce architecture. They present 

the serial and parallel versions of two algorithms - Tabu 

Search and Large Neighborhood Search. They compare 

the best tour length achieved by the Serial version versus 

the best achieved by the MapReduce version. 

  

3. Background 

 

3.1. The Travelling Salesman Problem 

 

Travelling salesman problem is one of the well know 

and extensively studied problems in discrete or 

combination optimization and asks for the shortest 

roundtrip of minimal total cost visiting each given 

city(node) exactly once. Cost can be distance, time, 

money energy ,etc. TSP is an NP-hard problem ad 

researchers especially mathematicians and scientists 

have been studying to develop efficient scientists have 

been studying to develop efficient solving method since 

1950’s.Because it is so easy to describe and so difficult 

to solve. Graph theory defines the problem as finding the 

Hamiltonian cycle with the least weight for a given 

complete weighted graph. 



 The travelling salesman problem is finding a 

shortest possible cycle visiting every city in a map given 

the set of cities and pair wise distances between them. 

This modeling of this problem can also be done with an 

undirected weighted graph. The vertices of the graph are 

cities. The edges of the graph are distances. The 

Travelling Salesman Problem is a Hamiltonian Cycle if 

distances are either 0 or 1. [10]  

 The travelling salesman problem is one the toughest 

and fundamental problems in Computer Science. Genetic 

Algorithms have proven efficient in solving the 

Travelling Salesman Problem in last 30 years or so. 

Travelling Salesman is an NP-Hard problem. We 

propose to reduce the run time of this problem by 

designing a genetic algorithm. 

 

3.2. MapReduce Model 

 

Google introduced MapReduce, inspired by the map 

and reduce primitives in functional languages. It is used 

to enable users to develop large-scale distributed 

applications. MapReduce parallelizes large computations 

easily since each map function runs independently and 

provides fault tolerance through re-execution. In 

MapReduce, the input is a set of key/value pairs, and the 

output is a set key/value pairs. MapReduce operation 

breaks down to two functions; map and reduce. 

Operations on a set of pairs occur in three stages: the 

map stage, the shuffle stage and the reduce stage as 

shown on figure 1. 

 In the map stage, the mapper takes as input a single 

(key; value) pair and produces as output any number of 

new (key; value) pairs. It is crucial that the map 

operation is stateless - that is, it operates on one pair at a 

time. This allows for easy parallelization as different 

inputs for the map can be processed by different 

machines.[3] During the shuffle phase the underlying 

system that implements Map/Reduce sends all of the 

values that are associated with an individual key to the 

same machine. This occurs automatically, and is 

seamless to the programmer. [4]  

In the reduce stage, the reducer takes all of the values 

associated with a single key k, and outputs a multi set of 

(key; value) pairs with the same key, k. This highlights 

one of the sequential aspects of Map/Reduce 

computation: all of the maps need to finish before the 

reduce stage can begin. [9]  

Since the reducer has access to all the values with the 

same key, it can perform sequential computations on 

these values. In the reduce step, the parallelism is 

exploited by observing that reducers operating on 

different keys can be executed simultaneously. Overall, a 

program in the Map/Reduce paradigm can consist of 

many rounds of different map and reduce functions 

performed one after another [6]. 

 

Figure 1: Operation phases in Map/Reduce 

programming model 

 

3.3. Hadoop 
 

Hadoop [7] is a java open source implementation of 

MapReduce sponsored by Yahoo. The Hadoop project is 

a collection of various subprojects for reliable, scalable 

distributed computing. The two fundamental subprojects 

are the Hadoop MapReduce framework and the Hadoop 

Distributed File System (HDFS). HDFS is a distributed 

file system that provides high throughput access to 

application data [7]. HDFS has master/slave architecture. 

The master server, called NameNode, splits files into 

blocks and distributes them across the cluster with 

replications for fault tolerance. It holds all metadata 

information about stored files. The HDFS slaves, the 

actual store of the data blocks called DataNodes, serve 

read/write requests from clients and propagate 

replication tasks as directed by the NameNode. 

The Hadoop MapReduce is a software framework for 

distributed processing of large data sets on compute 

clusters [7]. It runs on the top of the HDFS. Thus data 

processing is collocated with data storage. It also has 

master/slave architecture. The master, called Job Tracker 

(JT), is responsible of : (a) Querying the NameNode for 

the block locations, (b) considering the information 

retrieved by the NameNode, JT schedule the tasks on the 

slaves, called Task Trackers (TT), and (c) monitoring the 

success and failures of the tasks. 

 

4. A Parallel Genetic Algorithm based on 

Hadoop MapReduce for TSP 

 

 The Genetic Algorithm consists of four major stages: 

Generation of Random population, Selection, Crossover 

and Mutation. The first step is only performed for the 

first iteration, but the other three steps are performed 

each iteration. The process of Selection is one of the 

critical phases in the process of evolution. The 

preliminary steps of Selection such as calculating the 

cost of each map and Ranking individuals are 

computationally expensive. These steps are a good 



candidate for parallelization or splitting tasks. The 

pseudo code for the each Phase is as follows. 

 

Step 1: Initialize the Population  

 

Step2: Map (LongWritable Key, Text Value, 

OutputCollector oc,)  
Begin: Calculate the Cost of every individual (Value)  

: Calculate the Rank of every individual (Cost, 

Selective_Pressure, Size_of_Population)  

: Assign id (key) to each individual in the Population.  

: Generate Value for the Reduction phase: String 

Route|Cost|Rank  

: Emit the Key Value pair for the Reducer Phase.  

: The key Value pairs are passed into the reducer 

phase.  

Note: The key and value emitted by the output collector are of 

the Text class.  

 

Step3: Reduce (Text key, Iterator<Text>     Values, 

OutputCollector<Text,Text>)  
Begin: While (Values.hasNext())  

: Same Ranked Individuals in the population are 

Randomly Deleted.  

: Two individuals in the population are randomly 

chosen and they participate in Crossover.  

: Parents with ranks over threshold are allowed to 

move into the next stage.  

: Two randomly chosen cities in every individual are 

randomly swapped.  

  : The output collector emits the key values in the 

form: (Individual id , Newly Generated Individual) 

 

 The input to the Reduce function is the output of the 

Map function. The Iterator<Text> values are the list of 

values on which Genetic Algorithm works on. The 

output collector of the genetic algorithm emits individual 

id and new individuals, both objects of the Text class 

designed for Hadoop. The Map and Reduce operations 

carry on till near optimal or optimal values are reached. 

The number of iterations will be decided by experiments. 

In every iteration, the output written by the Reduce 

function is the input for the map function. 

  

   
 

Figure 2: the Mapper/Reducer architecture 

 

The Mapper Reducer architecture is described in 

Figure 2.It has been designed keeping in mind the nature 

of problem being solved in this paper. Genetic 

Algorithms are iterative in nature; therefore the 

population set undergoes repeated mapping and 

reduction. The key and values in the input file are shuffle 

using the map function, and input file is split across 

various mappers. The calculation of cost and rank are 

computationally intensive, therefore a good candidate for 

performing map operations. The computed cost, ranks, 

routes and id are passed into one reducer function. The 

reducer function gathers all the values from all the 

mappers. Later the Reducer performs elimination of 

individuals of the same rank randomly. This process is 

followed by Crossover and further Mutation. 
 

5. Experiments 

 

Amazon elastic map reduce is one of the computing 

platforms offered by Amazon to perform Map Reduce 

operations. The genetic algorithm was also run on 

Amazon’s hardware using the wide variety of software 

offered by Amazon. The input files and output files were 

stored in Amazon’s s3 bucket. The jar file of the Map 

Reduce job is also stored in one of Amazon’s bucket. 

The parameters passed as arguments were path of the 

input file, the path of the output files, the name of the 

class containing the main function and the number of 

iterations. A job with all these parameters is created and 

runs across the hardware configured according to the 

inputs requested in the job. The results of the job are 

stored in one of the s3 buckets.  

The reading and writing into text files is time 

consuming. Hadoop also creates chunks of the files, 

therefore it does not read and write into file but many 

files. The performance of the algorithm also depends on 

the initial random population. The larger the initial 

population, the mapreduce version of the algorithm runs 

a lot slower. There are other internal factors that affect 

the run time of the algorithm such as the selective 

pressure and participation of fit parents into the next 

generation. If the selective pressure is low, each 

generation will consist of more individuals. If the 

selective pressure is too high then the algorithm faces the 

problem of local minima and maxima.

 Experiments were conducted on Amazon Web 

Services on different data sets. The size of the data set 

varied according to the number of cities. The range on 

which the experiments were carried out was from 10-30 

with an interval of 10. The distances between the cities 

and routes are randomly generated using a random 

number using Random class in Java.Util. The nodes 

varied from 2-10 with an interval of 2. 

Different instances were being used for experiments 

such as small memory, large memory, high computation, 

medium computation and low computation. The 

performance of the Map-Reduce version of the genetic 

algorithm on 10 Cities is in following figure. 



 
Figure 3. The performance of the Map-Reduce 

version of the genetic algorithm on 10 cities. 

 

With higher number of nodes and better 

computational ability, the run time of the algorithm was 

reduced. The highest time was observed with 2 nodes 

and lowest time was observed with 10 nodes.  

The performance of the algorithm on 20 Cities is as 

follows. The running time was less with better instances 

and lesser number of nodes but not good enough. 

 

 
 

Figure 4. The performance of the Map-Reduce 

version of the genetic algorithm on 20 cities. 

 

 The performance of the algorithm with 20 cities 

was no different from 10 cities. There was no particular 

trend of speed up but running time of the algorithm was 

reduced with better instances and higher number of 

instances. In most cases optimal values were not reached 

in the specified number of iterations. More iteration 

required for the genetic algorithm to reach the optimal 

value. 

According to experiment, the results were similar for 

different number of cities. Five dataset for different 

cities showed the same pattern. The increase in the 

number of nodes and better quality of computing 

instances showed reduced run time. The drop in the run 

time was not significant but worth mentioning. The 

small computing instances took the highest time 

demonstrating the fact that genetic algorithms are a good 

candidate for parallelization. The GPU instances shows 

the best performance which could hint at GPUs’ being 

the best hardware available for parallelization for 

Genetic algorithm.  
 

6. Conclusions 

 

 Genetic Algorithms are easy to apply to a wide range 

of problems, from optimization problems like the 

travelling salesperson problem, to inductive concept 

learning, scheduling, and layout problems. The results 

can be very good on some problems, and rather poor on 

others. Implementing these GAs with modification have 

proven to be very useful, especially hierarchical GAs, 

resulting in faster and more robust algorithms. In this 

paper we proposed the use of a Parallel Genetic Algorithm 

(PGA) for TSP using exploiting Hadoop MapReduce. The 

run time of the genetic algorithm is not as high as 

compared to other parallel versions. This could be I/O 

latencies caused by HDFS (Hadoop Distributed File 

System). The HDFS divided texts into smaller chunks on 

stores it on several data nodes. The reading and writing 

into these text files causes severe I/O delays. Also the 

Mapper-Reducer architecture could be improved further 

by adding more reducers and utilize the power of parallel 

processing. 
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