
Genetic algorithm for Travelling Salesman Problem using MapReduce

Hnin Thant Lwin

University of Computer Studies,Yangon

hninthantlwin@gmail.com

Abstract

The Travelling Salesman Problem (TSP) is one of the

hardest and the most fundamental problems in Computer

Science. Although several techniques have been used in

the past to reduce the running time of TSP, Genetic

algorithms can reduce the running times of NP-complete

problems substantially and have the capability of being

parallelized. MapReduce is a parallel programming

paradigm currently use and Hadoop is one of the most

popular MapReduce frameworks because its robust, well

designed and scalable file system. In this paper we use a

genetic algorithm and parallelizing it on MapReduce

Hadoop framework to reduce the running time of

Travelling Salesman Problem.

1. Introduction

Genetic algorithm is heuristic optimization method

which mimics the process of natural evolution.

Optimization problems like Traveling Salesman require

a lot of computer resources to be solved even if we use

genetic algorithm as optimization method. Because one

computer machine is not capable to resolve problems of

this magnitude, parallel implementation of genetic

algorithm is one solution.

Parallel Genetic Algorithms [8] normally split a

problem space into a number of smaller sub-spaces, then

explore sub-optimal solutions for each sub-space, and

finally find out a set of optimal solutions based on the

sub-optimal solutions. PGAs can not only reduce the

execution time, but also can tackle more complex

problems by taking advantage of distributed computing

systems. Furthermore, PGAs are more versatile than

their corresponding sequential version as they have a less

possibility of getting stuck in local optima.

The MapReduce model [2] provides a parallel design

pattern for simplifying application developments in

distributed environments. This model can split a large

problem space into small pieces and automatically

parallelize the execution of small tasks on the smaller

space. It was proposed by Google for easily harnessing a

large number of resources in data centers to process

data-intensive applications and has been proposed to

form the basis of a “data center computer” [5]. This

model allows users to benefit from advanced features of

distributed computing without worrying about the

difficulty of coordinating the execution of parallel tasks

in distributed environments.

This paper presents the parallel implementation of

genetic algorithm as a MapReduce task for the

Travelling Salesman Problem. The framework for

running MapReduce job uses Hadoop because it can

reduce the run time of NP-Complete with the high

number of inputs.

2. Related Work

Much research has been done in genetic algorithm

using MapReduce model. Abhishek Derma, Xavier

Llor_a, David E. Goldberg and Roy H. Campbell[13]

 described the algorithm design and implementation of

GAs on Hadoop. The convergence and scalability of the

implementation has been investigated. Adding more

resources would enable them to solve even larger

problems without any changes in the algorithm

implementation.

Dino Keč o a and Abdulhamit Subasi [1] develop a

parallelization of genetic algorithms using Hadoop

Map/Reduce in 2011. In this work they model for

parallelization of genetic algorithm shows better

performances and fitness convergence than model

presented in Scaling Genetic Algorithms using

MapReduce developed by Abhishek Verma,

XavierLlor'a, David E. Goldberg, Roy H. Campbell, but

their model has lower quality of solution because of

species problem. They also said that in future work both

models should be used for solving different problems,

like TSP (Traveling Salesman Problem).

Siddhartha Jain and Matthew Mallozzi[14] analyze

the possibility of parallelizing the Traveling Salesman

Problem over the MapReduce architecture. They present

the serial and parallel versions of two algorithms - Tabu

Search and Large Neighborhood Search. They compare

the best tour length achieved by the Serial version versus

the best achieved by the MapReduce version.

3. Background

3.1. The Travelling Salesman Problem

Travelling salesman problem is one of the well know

and extensively studied problems in discrete or

combination optimization and asks for the shortest

roundtrip of minimal total cost visiting each given

city(node) exactly once. Cost can be distance, time,

money energy ,etc. TSP is an NP-hard problem ad

researchers especially mathematicians and scientists

have been studying to develop efficient scientists have

been studying to develop efficient solving method since

1950’s.Because it is so easy to describe and so difficult

to solve. Graph theory defines the problem as finding the

Hamiltonian cycle with the least weight for a given

complete weighted graph.

 The travelling salesman problem is finding a

shortest possible cycle visiting every city in a map given

the set of cities and pair wise distances between them.

This modeling of this problem can also be done with an

undirected weighted graph. The vertices of the graph are

cities. The edges of the graph are distances. The

Travelling Salesman Problem is a Hamiltonian Cycle if

distances are either 0 or 1. [10]

 The travelling salesman problem is one the toughest

and fundamental problems in Computer Science. Genetic

Algorithms have proven efficient in solving the

Travelling Salesman Problem in last 30 years or so.

Travelling Salesman is an NP-Hard problem. We

propose to reduce the run time of this problem by

designing a genetic algorithm.

3.2. MapReduce Model

Google introduced MapReduce, inspired by the map

and reduce primitives in functional languages. It is used

to enable users to develop large-scale distributed

applications. MapReduce parallelizes large computations

easily since each map function runs independently and

provides fault tolerance through re-execution. In

MapReduce, the input is a set of key/value pairs, and the

output is a set key/value pairs. MapReduce operation

breaks down to two functions; map and reduce.

Operations on a set of pairs occur in three stages: the

map stage, the shuffle stage and the reduce stage as

shown on figure 1.

 In the map stage, the mapper takes as input a single

(key; value) pair and produces as output any number of

new (key; value) pairs. It is crucial that the map

operation is stateless - that is, it operates on one pair at a

time. This allows for easy parallelization as different

inputs for the map can be processed by different

machines.[3] During the shuffle phase the underlying

system that implements Map/Reduce sends all of the

values that are associated with an individual key to the

same machine. This occurs automatically, and is

seamless to the programmer. [4]

In the reduce stage, the reducer takes all of the values

associated with a single key k, and outputs a multi set of

(key; value) pairs with the same key, k. This highlights

one of the sequential aspects of Map/Reduce

computation: all of the maps need to finish before the

reduce stage can begin. [9]

Since the reducer has access to all the values with the

same key, it can perform sequential computations on

these values. In the reduce step, the parallelism is

exploited by observing that reducers operating on

different keys can be executed simultaneously. Overall, a

program in the Map/Reduce paradigm can consist of

many rounds of different map and reduce functions

performed one after another [6].

Figure 1: Operation phases in Map/Reduce

programming model

3.3. Hadoop

Hadoop [7] is a java open source implementation of

MapReduce sponsored by Yahoo. The Hadoop project is

a collection of various subprojects for reliable, scalable

distributed computing. The two fundamental subprojects

are the Hadoop MapReduce framework and the Hadoop

Distributed File System (HDFS). HDFS is a distributed

file system that provides high throughput access to

application data [7]. HDFS has master/slave architecture.

The master server, called NameNode, splits files into

blocks and distributes them across the cluster with

replications for fault tolerance. It holds all metadata

information about stored files. The HDFS slaves, the

actual store of the data blocks called DataNodes, serve

read/write requests from clients and propagate

replication tasks as directed by the NameNode.

The Hadoop MapReduce is a software framework for

distributed processing of large data sets on compute

clusters [7]. It runs on the top of the HDFS. Thus data

processing is collocated with data storage. It also has

master/slave architecture. The master, called Job Tracker

(JT), is responsible of : (a) Querying the NameNode for

the block locations, (b) considering the information

retrieved by the NameNode, JT schedule the tasks on the

slaves, called Task Trackers (TT), and (c) monitoring the

success and failures of the tasks.

4. A Parallel Genetic Algorithm based on

Hadoop MapReduce for TSP

 The Genetic Algorithm consists of four major stages:

Generation of Random population, Selection, Crossover

and Mutation. The first step is only performed for the

first iteration, but the other three steps are performed

each iteration. The process of Selection is one of the

critical phases in the process of evolution. The

preliminary steps of Selection such as calculating the

cost of each map and Ranking individuals are

computationally expensive. These steps are a good

candidate for parallelization or splitting tasks. The

pseudo code for the each Phase is as follows.

Step 1: Initialize the Population

Step2: Map (LongWritable Key, Text Value,

OutputCollector oc,)
Begin: Calculate the Cost of every individual (Value)

: Calculate the Rank of every individual (Cost,

Selective_Pressure, Size_of_Population)

: Assign id (key) to each individual in the Population.

: Generate Value for the Reduction phase: String

Route|Cost|Rank

: Emit the Key Value pair for the Reducer Phase.

: The key Value pairs are passed into the reducer

phase.

Note: The key and value emitted by the output collector are of

the Text class.

Step3: Reduce (Text key, Iterator<Text> Values,

OutputCollector<Text,Text>)
Begin: While (Values.hasNext())

: Same Ranked Individuals in the population are

Randomly Deleted.

: Two individuals in the population are randomly

chosen and they participate in Crossover.

: Parents with ranks over threshold are allowed to

move into the next stage.

: Two randomly chosen cities in every individual are

randomly swapped.

 : The output collector emits the key values in the

form: (Individual id , Newly Generated Individual)

 The input to the Reduce function is the output of the

Map function. The Iterator<Text> values are the list of

values on which Genetic Algorithm works on. The

output collector of the genetic algorithm emits individual

id and new individuals, both objects of the Text class

designed for Hadoop. The Map and Reduce operations

carry on till near optimal or optimal values are reached.

The number of iterations will be decided by experiments.

In every iteration, the output written by the Reduce

function is the input for the map function.

Figure 2: the Mapper/Reducer architecture

The Mapper Reducer architecture is described in

Figure 2.It has been designed keeping in mind the nature

of problem being solved in this paper. Genetic

Algorithms are iterative in nature; therefore the

population set undergoes repeated mapping and

reduction. The key and values in the input file are shuffle

using the map function, and input file is split across

various mappers. The calculation of cost and rank are

computationally intensive, therefore a good candidate for

performing map operations. The computed cost, ranks,

routes and id are passed into one reducer function. The

reducer function gathers all the values from all the

mappers. Later the Reducer performs elimination of

individuals of the same rank randomly. This process is

followed by Crossover and further Mutation.

5. Experiments

Amazon elastic map reduce is one of the computing

platforms offered by Amazon to perform Map Reduce

operations. The genetic algorithm was also run on

Amazon’s hardware using the wide variety of software

offered by Amazon. The input files and output files were

stored in Amazon’s s3 bucket. The jar file of the Map

Reduce job is also stored in one of Amazon’s bucket.

The parameters passed as arguments were path of the

input file, the path of the output files, the name of the

class containing the main function and the number of

iterations. A job with all these parameters is created and

runs across the hardware configured according to the

inputs requested in the job. The results of the job are

stored in one of the s3 buckets.

The reading and writing into text files is time

consuming. Hadoop also creates chunks of the files,

therefore it does not read and write into file but many

files. The performance of the algorithm also depends on

the initial random population. The larger the initial

population, the mapreduce version of the algorithm runs

a lot slower. There are other internal factors that affect

the run time of the algorithm such as the selective

pressure and participation of fit parents into the next

generation. If the selective pressure is low, each

generation will consist of more individuals. If the

selective pressure is too high then the algorithm faces the

problem of local minima and maxima.

 Experiments were conducted on Amazon Web

Services on different data sets. The size of the data set

varied according to the number of cities. The range on

which the experiments were carried out was from 10-30

with an interval of 10. The distances between the cities

and routes are randomly generated using a random

number using Random class in Java.Util. The nodes

varied from 2-10 with an interval of 2.

Different instances were being used for experiments

such as small memory, large memory, high computation,

medium computation and low computation. The

performance of the Map-Reduce version of the genetic

algorithm on 10 Cities is in following figure.

Figure 3. The performance of the Map-Reduce

version of the genetic algorithm on 10 cities.

With higher number of nodes and better

computational ability, the run time of the algorithm was

reduced. The highest time was observed with 2 nodes

and lowest time was observed with 10 nodes.

The performance of the algorithm on 20 Cities is as

follows. The running time was less with better instances

and lesser number of nodes but not good enough.

Figure 4. The performance of the Map-Reduce

version of the genetic algorithm on 20 cities.

 The performance of the algorithm with 20 cities

was no different from 10 cities. There was no particular

trend of speed up but running time of the algorithm was

reduced with better instances and higher number of

instances. In most cases optimal values were not reached

in the specified number of iterations. More iteration

required for the genetic algorithm to reach the optimal

value.

According to experiment, the results were similar for

different number of cities. Five dataset for different

cities showed the same pattern. The increase in the

number of nodes and better quality of computing

instances showed reduced run time. The drop in the run

time was not significant but worth mentioning. The

small computing instances took the highest time

demonstrating the fact that genetic algorithms are a good

candidate for parallelization. The GPU instances shows

the best performance which could hint at GPUs’ being

the best hardware available for parallelization for

Genetic algorithm.

6. Conclusions

 Genetic Algorithms are easy to apply to a wide range

of problems, from optimization problems like the

travelling salesperson problem, to inductive concept

learning, scheduling, and layout problems. The results

can be very good on some problems, and rather poor on

others. Implementing these GAs with modification have

proven to be very useful, especially hierarchical GAs,

resulting in faster and more robust algorithms. In this

paper we proposed the use of a Parallel Genetic Algorithm

(PGA) for TSP using exploiting Hadoop MapReduce. The

run time of the genetic algorithm is not as high as

compared to other parallel versions. This could be I/O

latencies caused by HDFS (Hadoop Distributed File

System). The HDFS divided texts into smaller chunks on

stores it on several data nodes. The reading and writing

into these text files causes severe I/O delays. Also the

Mapper-Reducer architecture could be improved further

by adding more reducers and utilize the power of parallel

processing.

References

[1]Dino Keco, Abdulhamit Subasi,Parallelization of

genetic algorithms using Hadoop Map/Reduce(2011)

[2] E.Cant´u-Paz, “Efficient and Accurate Parallel

Genetic Algorithms”, Kluwer Academic Publishers,

Norwell, MA, USA, 2000, ISBN: 978-0-7923-7221-9
[3] Howard Karlo, Siddharth Suri, Sergei Vassilvitskii

,A Model of Computation for MapReduce

[4]Jeffrey Dean and Sanjay Ghemawat,MapReduce:

Simplified Data Processing on Large Clusters –

 [5]. B. He, W. Fang, Q. Luo, N. K. Govindaraju, T.

Wang, Mars: a mapreduce framework on graphics

processors, in: Proceedings of the 17th international

conference on Parallel architectures and compilation

techniques,

Toronto, Ontario, Canada, 2008, pp. 260–269.

[6] Satish Narayana Srirama, Pelle Jakovits, Eero

Vainikko ,Adapting scientific computing problems to

clouds using MapReduce

[7]Hadoop project, http://lucene.apache.org/hadoop

(2011).

 [8] J. Schutte, J. Reinbolt, B. Fregly, R. Haftka, and A.

George, “Parallel global optimization with the particle

swarm algorithm,” International

Journal for Numerical Methods in Engineering, vol. 61,

no. 13, 2004

 [9] Shadi Ibrahim _ Hai Jin _ Lu Lu _

Bingsheng He _ Gabriel Antoniu _ Song

Wu, Handling Partitioning Skew in MapReduce using

LEEN(2012)

[10]http://en.wikipedia.org/wiki/Travelling_salesman_pr

oblem
[11]http://hadoop.apache.org/common/docs/r0.19.2/hdfs

_design.html

0

50

100

150

200

250

300

350

400

6 hrs12 mins 2 small CPU5 hrs 46 mins 4 High CPU
medium

4 hrs 46 mins 6 High CPU
large

4 hrs1 4 mins 8 Cluster
Compute

3 hrs 51 mins 10 GPU

Series1

0

100

200

300

400

500

600

8 hrs 13 mins 2 small
CPU

7 hr 56 min 4 High CPU
medium

7 hrs 21 mins 6 High CPU6 hrs 42 mins 8 Cluster5 hrs 56 mins 10 GPU

Series1

[12]hadoop.apache.org/common/docs/r0.19.2/images/hdf

sarchitecture.gif

[13]Abhishek Verma, X. L. (oct2009). Scaling Simple

and Compact Genetic Algorithmsand MapReduce.

Chicago, IL.

[14] Siddhartha Jain Matthew Mallozzi “Parallel

Heuristics for TSP on MapReduce(2010)

