

53

Unit and Component Testing Using Design Patterns

Keum-Young Sung
Handong Global University, Pohang, South Korea

kysung@handong.edu

Abstract

The suggested technique in this study shows a
new approach to software testing that can be used as a
basis for testing a variety of software structure,
especially using design pattern. With this study, such
design patterns as observer pattern, command pattern,
bridge pattern, and chain of responsibility pattern have
been used to show that a unit and component testing
may be performed with some guidelines. For this study
a way of using JUnit to perform an independent path
testing as an example has also been introduced. Using
the suggested technique, especially based on design
patterns, various forms of software structure can be
tested in some guided way.

1. Introduction

White box testing and black box testing are
fundamental testing methods along with a unit and a
component testing. White box testing or transparent
box testing is to test internal workings and
implementation detail while black box testing does not
consider internal program logic [1][3].

1.1. A Black Box Testing with JUnit

With black box testing internal implementation
is not considered, but an interface to the target
component is used [2]. JUnit is a Java object for a unit
testing framework used with Java programming
language [4]. The following code for a binary tree
searching [5] is a good example to show a test case for
a black box testing.

public class binTree {
 public static void search (int key, int [] elemArray,
Result r)
 {int bottom = 0 ;
 int top = elemArray.length - 1 ;
 int mid ; r.found = false ;
 r.index = -1 ;
 while (bottom <= top)
 {
 mid = (top + bottom) / 2 ;
 if (elemArray [mid] == key)
{

 r.index = mid ; r.found = true ;
 return ; } // if part
 else
 { if (elemArray [mid] < key)
 bottom = mid + 1 ;
 else top = mid - 1 ;
 }
 } //while loop
 } // search
}

The following is the Result class which is one of
the passed parameter to the binary tree class. The
Result class is used for recording the result of a
searching with the binary tree.

public class Result {
 int index; boolean found;
 Result(){ index = 0;found = false;}
 Result(int i, boolean b) {index = i; found = b;};
}

An example black box test case with the JUnit is
as follows, in which the input data using a target array
and a key to be searched is given, and the expected
output is given with an assertion:

import org.junit.Test;
public class testCaseOutOfRange {
 @Test
 public void test() {
 int[] eleArray = {1,2,3,4,5};
 int key = 6;
 Result r = new Result(0, false);
 binTree.search(key, eleArray, r);
 assertSame("Same key Value", r.found, false);
 }
}

Because a key value which is not in the given
array is given to the search tree in the above JUnit code,
the JUnit predicate, “assertSame,” asserts that the
Boolean variable, found, should be false. The resulting
screen shot of the Eclipse JUnit running is in Figure 1,
which shows a green line in the box of running status,

54

which indicates that the predicate, assertSame("Same
key Value",r.found, false), is true.

Figure 1. A Sample Session With JUnit With an
Invalid Key

The following JUnit code is for searching a key
which is the first element of the given array.

public class testCaseB {
 @Test
 public void testSearch() {
 int[] eleArray = {1,2,3,4,5};
 int key = 1;
 Result r = new Result(0, false);
 binTree.search(key, eleArray, r);
 assertSame("Same key Value",r.found,true);
 assertSame("Key Value",r.index,0);
 }
}

The two predicates in the above code say that
the key, 1, is matched at the index number of 0 of the
array, and the resulting running session is given in
Figure 2:

Figure 2. JUnit Session With the Key Index of 0

The green line tells that the two predicates are
proved to be true.

 For black box testing, boundary values are used
to minimize the number of test inputs, and maximize

the effect of testing. In the given example array, the
boundary values for a key include 0, 1, 3, 5, and 6. A
test input with a mid key value, 3, and its
corresponding running output are as the following:

public class testCaseD {
 @Test
public void testSearch() {
 int[] eleArray = {1,2,3,4,5};
 int key = 3;
 Result r = new Result(0, false);
 binTree.search(key, eleArray, r);
 assertSame("Same key Value",r.found,true);
 assertSame("Key Value",r.index,2);
 }
}

Figure 3. Eclipse JUnit Session With a Mid-Key

The predicates in JUnit source code indicate that
the key is to be found, and that the array index of key
value is 2.

All the given example JUnit codes show that
only the interface of the component tested is used.

1.2. White Box Testing with Junit

The flow graph of the given example binary tree
in Figure 4 is well illustrated in [5]:

1

2

3

4

65

7

while bottom <= top

if (elemArray [mid] == key

(if (elemArray [mid]< key8

9

bottom > top

Figure 4. Independt Basis Paths

55

Based on the cyclomatic complexity [6], the
number of paths is the number of decision plus 1, the
independent paths of the above flow graph are [5]:

1, 2, 3, 8, 9: path 1
1, 2, 3, 4, 6, 7, 2: path 2
1, 2, 3, 4, 5, 7, 2: path 3
1, 2, 3, 4, 6, 7, 2, 8, 9: path 4

For white box testing based on independent path
testing, each path can be tested by adjusting the values
of variables that are in the target path. For example, to
test path 2 the setting of the variables are as follows:

bottom <= top
elmArray[mid] != key
eleArray[mid] < key’
expected output: control back to node 2

The essence of independent path testing is to
minimize the number of paths for testing while all the
statements should be tested at least once.

2. Unit and Component Testing With Junit

2.1. Testing a Single Component with Junit

The suggested technique with JUnit for testing a
single component is to make the same condition as the
one shown in the original basis path condition. The
condition for the path 1is as given below:

bottom <= top
elmArray[mid] = key
expected output: true, index value

The suggested technique in this study makes use
of a loop count variable and a result object, in which a
loop variable is for tracking how the program control
flows, and a resulting object expresses the searching
result with a Boolean value. The running session of
Eclipse JUnit for path 1 is given in Figure 5, and the
JUnit code is as below:

@Test
public void IndependentPathTesting () {
int[] eleArray = {1,2,3,4,5};
int key = 3;
Result r = new Result(0, false);
binTree.search(key, eleArray, r);
assertSame("Same key Value",r.found, true);
}

Figure 5. A White Box Testing For Searching a
Mid-Index Key

The output window of the above figure shows

the mid-value of the array index, status of key
matching, and the number of loop repetition as follows:

 mid value: 2
 key value is matched
 loop count: 1

The output of JUnit reflects exactly the
condition of the independent path testing for path 1,
which was given as below.

bottom <= top
elmArray[mid] = key
expected output: true, index value

The testing for paths 2 and 3 is prepared with the
same procedure, which also makes use of a loop
variable to track program control flow, and uses the
object of Result class. The JUnit code for testing paths
2 and 3 is as below, and the running session is in
Figure 6.

public class IndependentPathTesting {
@Test
 public void testSearch() {
 int[] eleArray = {1,2,3,4,5,6,7,8,9};
 int key = 3;
 Result r = new Result(0, false);
 binTree.search(key, eleArray, r);
 assertSame("Same key Value", r.found, true);
}

56

Figure 6. A White Box Testing For Paths 2 and 3

The output shows the progressive change of
array mid value and the number of loop repetition
count as below:

mid value: 4
loop count: 1
lower half of the tree to be searched
mid value: 1
loop count: 2
upper half of the tree to be searched
mid value: 2
key value is matched
loop count: 3

The above running result reflects the testing

condition of paths 2 and 3 which is as follows:

bottom <= top
elmArray[mid] != key
eleArray[mid] < key or eleArray[mid] > key
expected output: control back to while condition
statement

2.2. Composite Component Testing and Chain
of Responsibility Pattern

When we test a composite component which has
the form of the chain of responsibility pattern,
generally the interface testing is used. It is not easy to
systematically prepare the test case for interface testing
especially for a composite component because there is
a complex data flow among related sub-components.

In this study, a Java package containing several
classes combined with super- and sub-class
relationship. The example package has the following
inheritance hierarchy as shown with StarUML design
tool [7].

Figure 7. Class Hierarchy Shown With StarUML

Figure 7 shows an inheritance relationship in
which there is an inheritance or a chain of
responsibility line from StaffMember to Employee
class, and from Employee to Hourly class. Suggested
in this study is the comparison between superclass
object and subclass object in terms of inherited
attribute values. The following picture shows the
attributes inherited from super to sub class, which is
indicated by curved arrows.

The following assertions are to test if an
inherited attribute from the superclass has been used
properly by a subclass.

assertSame("test SuperClass, StaffMember-

attribute",
staffObj.name, "John");
assertSame("test hourlyObj attribute inherited",
hourlyObj.name, "John");
assertEquals(employeeObj.payRate,
hourlyObj.payRate, 0.0);

The “name” attribute belongs to the

“StaffMember” class, and is being used by the subclass,
Hourly. the “payRate” method of Employee class is
inherited to “Hourly” class.

assertSame("test SuperClass, Employee-attribute",
 hourlyObj.socialSecurityNumber, "234-232-

3345");
In the above predicate, the

“socialSecurityNumber” attribute has been inherited
from Employee class to Hourly class. Figure 8 shows
the running session of for this example test case.

StaffMember
name

address
phone

Employee
socialSecNumber

payRate Hourly
hoursWorked

57

Figure 8. A JUnit Session for Testing a Composite
Component

The screen shot above shows all the predicates

testing the proper use of inherited attributes are proved
to be true.

The essence of the suggested composite
component testing is to make sure the proper use of
inherited attributes with the use of various JUnit assert-
predicates.

 3. Testing Based on Design Pattern

A design pattern is a general reusable solution to
a commonly occurring problem within a given context
in software design [8]. With the help of design pattern,
frequently used software structures may be categorized
for the purpose of increasing reusability and
maintainability.

3.1. A Testing Guide for the Code with the
Command Pattern

In the code having the command pattern, the
code consists of an invoker, a command, and a receiver
objects. The key to the component testing with this
type of code is to verify the control flow in the
sequence of the invoker, the command, and the
receiver component. The testing procedure, therefore,
is to show that the invoker activates the command, and
the command activates the receiver.

As an example, the following code snippet
shows the activation of an invoker, and the resulting
testing output:

import static org.junit.Assert.*;
import org.junit.Test;
public class TestCommandPattern {

@Test
public void test() {
Light lamp = new Light();

Command switchUp = new FlipUpCommand(lamp);
Command switchDown = new
FlipDownCommand(lamp);

Switch s = new Switch(switchUp,switchDown);
s.flipUp();
 s.flipDown();
}

}

Switch Up from Invoker
Command.
The light is on, received
Switch Down from Invoker
Command.
The light is off, received

The above testing output shows the activation

sequence of the invoker, the command, and finally the
receiver object. For this output, each three component
has an inclusion of probe statements as below:

public class Switch {
 private Command flipUpCommand;
 private Command flipDownCommand;
 public Switch(Command flipUpCmd,
 Command flipDownCmd) {
 this.flipUpCommand = flipUpCmd;
 this.flipDownCommand = flipDownCmd;
 }
 public void flipUp() {
 System.out.println("Switch Up from Invoker");
 flipUpCommand.execute();
 }
 public void flipDown() {
 System.out.println("Switch Down from Invoker");
 flipDownCommand.execute();
 }
}

public class FlipDownCommand implements

Command {
 private Light theLight;
 public FlipDownCommand(Light light) {
 this.theLight=light;
 }
 public void execute() {
 System.out.println("Command. ");
 theLight.turnOff();
 }
}

public class Light {
 public Light() { }

58

 public void turnOn() {
 System.out.println("The light is on, received");
 }
 public void turnOff() {
 System.out.println("The light is off, received");
 }
}

The output of JUNIT shows the example code

has an exact of activation sequence of invoker,
command, and receiver objects.

3.2. A Testing Guide for the Code with the
Observer Pattern

The testing goal is to check the state of each
observer object as the system state changes. To prove
the state change of observer objects in observer pattern,
generally the interface class is modified to include
some method for testing purpose. The following is an
example JUnit test code and its resulting output when
we test a code based on the observer pattern.

@Test
public void test() {
LogSubject subject = new LogSubject();
IObserver ob1 = new Observer1();
IObserver ob2 = new Observer2();
subject.attach(ob1);
subject.attach(ob2);
subject.setState("state1");
System.out.println("testing the state of subject oject");
assertEquals("Is the name correct?",
"state1", subject.getState());
System.out.println("the state of Observer oject1: "
+ ob1.getState());
subject.setState("state2");
System.out.println("testing the state of subject oject");
assertEquals("Is the name correct?",
"state2", subject.getState());
subject.detach(ob1);
subject.setState("state3");
}

Observer1 has received update signal with new state: state1
Observer2 has received update signal with new state: state1
testing the state of subject oject
the state of Observer oject1: state1
Observer1 has received update signal with new state: state2
Observer2 has received update signal with new state: state2
testing the state of subject oject
Observer2 has received update signal with new state: state3

The Junit output shows the state change of an
object, which reflect the state change of the system. For
this testing, a necessary method has been added to the
interface definition as shown below:

public interface IObserver {
void update(String state);
String getState();
public String getState(); // this line is added
}

All the observer objects implement the above

interface, and share the method “update, ” which is
invoked by the system to reflect the system state
change. The method, “getState(),” has been added to
the interface definition for testing purpose.

3.3. A Testing Guide for the Code with the
Bridge Pattern

The testing goal is to check whether abstraction
and implementation are really separated by including
additional abstraction and implementation. With this
example, the class, “Shape” is the abstraction, and the
class “DrawingAPI” is the implementation. The testing
implementation, “DrawingAPI3Test,” and the testing
abstraction, “RectangleShape,” are added to the source
code for testing the target code structure based on the
bridge pattern. The following are the Junit test code
and its corresponding output. The output shows that the
source code in test has been made based on the bridge
pattern .

import org.junit.Test;
public class BridgeTest {
 @Test
 public void test() {
 Shape[] shapes = new Shape[3];
 shapes[0] = new CircleShape(1, 2, 3, new
DrawingAPI1());
 shapes[1] = new CircleShape(5, 7, 11,
new DrawingAPI2());
 shapes[2] = new CircleShape(5, 7, 11,
new DrawingAPI3Test());
 for (Shape shape : shapes) {
 shape.resizeByPercentage(2.5);
 shape.draw();
 }
 }
}

The output is
API1.circle at 1.000000:2.000000 radius 7.500000

59

API2.circle at 5.000000:7.000000 radius 27.500000
Rectangle Test

In the above test, the separated abstraction and
implementation has been simply included into the
source code showing the maintainability with the
bridge pattern.

4. Conclusions

In this study, a way of performing an
independent path testing, component testing for a
composite component, and software structure based on
design patterns is suggested. Instead of the complex
value settings for variables that form specific
independent path, additional variables for tracking the
program control flow and a result object for showing
the result of computation have been suggested to
reflect independent basis path testing. For a composite
component based on the chain of responsibility, a use
of JUnit predicates that tests a legal use of inherited
attributes has been suggested. A new approach to
testing based on design patterns has also been
suggested. For testing a wider range of software
structure, the following further studies are in need:

� multiple inheritance relationships;
� concurrent computation;
� a composite component consisting of objects

with complex message passing; and
� more application of various forms of design

patterns.
Consequently, a unit and component software

testing, may be performed in an organized and guided
way as suggested with the use of design patterns.

Appendix: An Example Use of A Trace Variable

public class binTree {
public static void search (int key, int [] elemArray,
Result r)
{
 int bottom = 0 ;
 int top = elemArray.length - 1 ;
 int mid ;
 int loop = 0;
 r.found = false ; r.index = -1 ;
 while (bottom <= top)

 {
 loop++;
 mid = (top + bottom) / 2 ;
 System.out.println("mid value: " + mid);
 if (elemArray [mid] == key)
 {
 System.out.println("key value is matched");
 System.out.println("loop count: " + loop);
 r.index = mid ;
 r.found = true ;
 return ;
 } // if part
 else
 {
 System.out.println("loop count: " + loop);
 if (elemArray [mid] < key) {
 System.out.println("upper half of the tree
 to be searched");
 bottom = mid + 1 ;}
 else {
 System.out.println("lower half of the tree
 to be searched");
 top = mid - 1 ;}
 }
 } //while loop
} // search
}

References

[1] Roger Pressman, Software Engineering: A Practitioner’s
Approach, Seventh Edition. MaGraw-Hill 2009.

[2] Carlo Ghezzi, Fundamentals of Software Engineering,
2nd Edition, Pearson 2002.

[3] M. E. Khan, Different Approaches to White Box Testing
Technique for Finding Errors, International Journal of
Software Engineering and Its Applications, Vol. 5 No. 3,
July, 2011.

[4] Petar Tahchiev, JUnit in Action, Manning Publications
2010.

[5] I. Sommerville, Software Engineering, Eighth Edition,
Addison Wesley 2007.

[6] T. J. McCabe, A Complexity Measure, IEEE Trans on
Software Engineering, SE-2(4), pp. 308-20, 1976.

[7] StarUML available at http://en.wikipedia.org/
wiki/StarUML.

[8] http://en.wikipedia.org/wiki/Software_design_pattern.

