
 1

Comparing Shortest Path Algorithms for Real Road Network

Moh Moh Wut Hmon, Thin Thin Htway

Computer University, (Hinthada)

mohmohwuthmon@gmail.com

Abstract

This system deals with the problem of finding

shortest paths in traversing some location within

Myanmar. In particular, it explores the use of three

approaches, Dijkstra’s shortest path algorithm,

Bellman-Ford shortest path algorithm and A*

algorithm in constructing the minimum spanning tree

considering the carriage ways in the road network of

Myanmar. The result shows a remarkable reduction

in the actual distances as compared with the

ordinary routing. Comparing Dijkstra’s shortest path

algorithm, Bellman-Ford shortest path algorithm

and A* algorithm which can produce the minimum

calculating time to reach the goal. This result

indicates, clearly the importance of these types of

algorithm in optimization of network flows. This

thesis is implemented by using Microsoft Visual

Studio 2008 and Microsoft SQL Server 2005.

Keywords: Dijkstra’s algorithm, Bellman-Ford, A*

1. Introduction

Current development in geographic information

system (GIS) technology ensures the network and

transportation analyses within a GIS environment are

become a common practice in many application

areas. But, central problem in network and

transportation analyses is the computation of shortest

paths between different locations on a network.

Sometimes these computations are to be done in real

time. For example, traveler can go everywhere with

shortest route by using GIS technology. Moreover,

when large real road networks are involved, the

determination of shortest paths on a large network

can be computationally very intensive [11].

The main purpose of this study is to investigate

the use of Graph algorithms in optimization given the

changing phase of the town brought about physical

developments and increase in the number of carriage

ways coupled with the surge in the course of fuel and

corresponding increase in the cost of transportation

[2].

2. Related Work

Qiujin Wu and Joanna Hertley presented public

transport travel using K-shortest path algorithms for

finding one or several suitable route(s) according to

user preferences from one place to another [1].

QU Rong et al. discussed the combination use of

knowledge and algorithm for way-finding. In the

combined method, the knowledge is used for

retrieving the case and isolating the searching area

while algorithm is used for finding out the best

solution in the isolated areas [6].

Urs-Jakob Ruetschi et al. described network

routing by landmarks. It is solved the key problems

such as (i) how to attribute landmark information to

the network and (ii) how to find an optimal route in

this paper. And then Dijkstra’s shortest path

algorithm is used to find optimal routes [9].

Application of multi-objective Shortest Path and

Allocation Analysis of Flood Prevention was

discussed in [10]. This paper presented the use of the

ArcGIS and mathematical programming, in

accordance with the properties of a flood disaster,

aiming pragmatically at the balance between the

relief of a disaster and the shortest time for conveying

the equipments, to construct the optimal model of the

equipment’s transportation and mobilization of the

emergency [14].

3. Shortest Path Algorithm

3.1 Dijkstra’s Algorithm

Procedure Dijkstra (G: weighted connected simple

graph, with all weights positive){G has vertices a =

v0, v1, v2, …., vn = z and weights w(vi,vj) where w(

vi,vj) = infinity If {vi,vj }is not an edge in G}

for i:= 1 to n

 L (vi): = infinity

 L (a): = 0

 S: = empty set

{the labels are now initialized so that the label of a is

0 and all other labels are infinity, and S is the empty

set }

while z not in S

begin u: = a vertex not in S with L(u) minimal

 S: = S union {u}

 for all vertices v not in S

if L(u)+w(u,v) < L(v) then L(v) := L(u) + w(u,v)

mailto:wlsoe33@gmail.com

 2

{this adds a vertex to S with minimal label and

updates the labels of vertices not in S}end {L(z) =

length of a shortest path from a to z }[3]

3.2 Bellman-Ford Algorithm

Procedure Bellman-Ford

vector < pair<int,int> > EdgeList;

int graph [128][128];

int n , dist [128];

 void bellman-ford (int s)

{//Initialize our solution to the BASE CASE S0

 for (int i=0 ; i <n ; i++)

 dist [i] = IN_MAX;

 dist[s] = 0;

 for (int k = 0; k < n-1; k++)

{ // n-1 iterations

//Builds a better solution Sk+1 from Sk

 for (int j = 0; j < EdgeList.size() ; j++)

{ // Try for every edge

 int u = EdgeList[j] .first,

v = EdgeList[j].second;

if (dist[u] < INT_MAX && dist[v] > dist[u]

+ graph [u][v]) //relax

dist[v] = dist [u] + graph [u][v];

}

}//Now we have the best solution after n-1 iterations

} [5]

3.3 A* Algorithm

Procedure A*

Euclidean distance as estimated distance to the

destination. In the searching, the cost of a node V

could be calculated as:

f (V)= distance from S to V + estimate of the

 distance to D.

 = d (V) + h (V, D)

 = d(V) +sqrt ((x(V) –x(D))
2
 + (y(V) – y(D))

2
)

Where x (V), x (D) and y (V), y (D) are the

coordinates for node V and the destination node D.

The A* Search algorithm:

For each u Є G:

 d[u] = infinity;

 parent[u] = NIL;

End for

 d [s] = 0;

 f (V) = 0;

 H = {s};

 While NotEmpty (H) and targetNotFound:

 u = Extract_Min(H);

 label u as examined;

 for each v adjacent to u:

 p[v] = u;

f(v) =d[v]+h(v,D);

DecreaseKey [v,H]; [13]

3.4 Comparing three Algorithms

Dijkstra’s algorithm is used as an underlying

technique in this thesis because it finds the optimal

shortest path between the single source and single

destination [12].The Dijkstra’s algorithm requires

two or more nodes and searches possible routes for

the shortest result based on specific weights of the

edges that connect them. All nodes are connected to

each other by these edges. The edges contain weigh

which could be cost, distance, and or time [4].

The Bellman-Ford algorithm, a label correcting

algorithm, computes single-source shortest paths in a

weighted digraph (where some of the edge weights

may be negative). Dijkstra’s algorithm solves the

same problem with a lower running time, but requires

edge weights to be non-negative. If the graph does

contain a cycle of negative weights, Bellman-Ford

can only detect this; Bellman-Ford cannot find the

shortest path that does not repeat any vertex in such a

graph [7].

Like all informed search algorithms, it first

searches the routes that appear to be most likely to

lead towards the goal. What sets A * apart form a

greedy best-first search is that it also takes the

distance already traveled into account (the g (x) part

of the heuristic is the cost from the start, not simply

the local cost from the previously expanded node).

The algorithm traverses various paths from start to

goal. This algorithm is the best algorithm to find

shortest path because it search the goal by using

bidirectional searches [8].

4. The Proposed System Architecture

This system is comparing three (Dijkstra,

Bellman-Ford and A*) shortest path algorithms of

real road network within Myanmar Country. This

system is dedicated for travelers who can use this

system around Myanmar Country in shortest time. In

this system, first of all, the user can choose desired

town to start and the destination town. The system

works with the database to find source and

destination point and the adjacency matrix. By using

these data, the program generates shortest path in

road network map according to the algorithm. In the

map, the paths between the towns describe black line

and the shortest path will be described in blue color

.This system provides the comparison of these

algorithms with run time and the distance.

Begin

Choose start and

end towns

Generate source

and target nodes

Generate adjacency

matrix

Database

Bellman-Ford
Dijkstra

 3

Figure 1: System design diagram

5. Case Study

YGN TL

25

3229

8
4

15

15

36

38

38

34
25

15

46

34

21

21

50

42

1934

21

63

17

29

2925

74

55

61

38

11

50

21

KYHLK

IS

Mb

Tg

LPT

Pt
Ot

KG

HTP

T
G

TT

PS

BLK

DMS

LKWMBPM

TTG

LW

Tk Ss MME

MST

MTE TCL

LKE

MNE

H
P

T
G

A
P

K
LW

Y
M

P

PB
NM

Mg

MZL

P

PKG

Al

MBN

PT

BG KK
NT

ZL

HTD

Bg

DO

KTK

Mp

Kt

MP

KH

SM

Mn

KTM

LCR

MK

My
NP

LSNS

KM

POL
MDY

KS

Mt

SG

NHG

MHLKPT

PKK

YSK

Pl

CO

MM O
T

M

YNH

HL

Gg

K
HK

PL NC

KAL

ML

YO
KO

KL

IT

MN

MKN

Hp

PP

BM

HML

TM

WT

SB

MY

AK

PK

MTR

W
P
T

M
G
K

LPH

NMT
TN

MT

T
P

N
s

LK

HPNCK

NK

MS

Bm

KT

21

29
23

13

59

25

50

38

34

50

50

25

27

11
27

21 421

59

34

44

42

44

76 46

34
13

25

63

38

46

2938

29
2521

34

1942

55

3417

21

21
29

46

59

29

40

21

29

46
8

13

34

17

211313

23

50

59 29

34

32

29

40

17

34

34

17

21

17

50

97

84

15
12

84

8

38

21

63

76

84

42

17

67

25

42

34

27

2925

32

29
17

34 42

33

NMT

38

38

44
55

36

42

42

47

27

NPT

7

30

2

200

Hk
4

13

57

25

30

11

Figure 2: Case study of real road network

within Myanmar country

Figure 2 illustrates the case study of real road

network within Myanmar country. In this system

there are 126 towns and cities in Myanmar country

that can travel by car and described the distances with

miles.

6. Experimental Result

In this form, the user can choose desired town to

start and desired town to go in list boxes. Then the

user can click Find button to calculate the shortest

route between desired start and end town. The user

can click Exit Button to exit the system. If the user

wants to choose another state or division, Back

Button can be used.

Figure 3: Input form

Figure 4: Shortest route using Dijkstra’s,

Bellman-Ford and A* algorithm

This form is shortest route using Dijkstra’s

algorithm, Bellmen-Ford algorithm and A*

algorithm. In this form, there are three buttons; Back

Button can choose another towns, Run Time Button

shows the run time for corresponding algorithm and

Show Graph Button load Shortest Path Road

Network Graph form as shown in Figure 5.
In this form, the normal road is displayed in green

color and the shortest path displays in blue color lines

on the road network graph.

 4

Figure 5: Shortest path road network graph

7. Runtime Result

 The runtime performance of the different

situations such as the source town, the destination

town, the total miles, and the runtime for three

algorithms are shown in Table 7.1. The optimal result

is the same by using (Dijkstra’s algorithm, Bellmen-

For algorithm and A* algorithm). The performance of

the runtime is different. In this table, A* algorithm is

the best time to calculate the optimal shortest path

because this algorithm search optimal route by using

bi-directional search. Bellmen-Ford algorithm

develop dijkstra’s algorithm by using Sk times. This

algorithm enhances the dijkstra’s algorithm by using

negative value for the cost. Dijkstra’s algorithm is

also best shortest path algorithm for positive value

for the cost.

Table 7.1 Runtime for Various Situations

8. Conclusion

The driving guide system “Comparing Shortest

Path Algorithms for Real Road Network” for cities

and towns in Myanmar country can be established

from that a fore mentioned that Dijkstra’s algorithm,

Bellman-Ford algorithm and A* algorithm are useful

graph theoretical mechanism for optimization

processes of network connectivity. Results have

exposed the versatility of this theoretical tool in

carrying out minimization process involving

traveling, construction and for itinerancy in

conveyance of goods and services in different

locations of a town based on the existing road

network.

 8. References

 [1] T. Alan “Applied Combinations "State

University of New York at Stony Brook, ISBN

0-471-04766-X, 1980 by John Wiley & Sons,

Inc.

 [2] L.Dai “Fast Shortest Path Algorithm for Road

Network and Implementation”, Carleton

University School of Computer Science CPMP

4905 Honours Project Fall Term, 2005.

 [3] R.Diestal, “Graph Theory” 1997 by Springer-

Verlag New York.

 [4] E.W.Dijkstra, "A note on two problems in

connexion with graphs", Numerische

Mathematic.

 [5] R.Diestal, “Graph Theory” 1997 by Springer-

Verlag New York.

 [6] A. Ibrahim “Graph Algorithm and Shortest Path

Problems: A Case of Dijkstra’s Algorithm and

the Dual Carriage Ways in Sokoto Metropolis".

 [7] G.A.Klunder, H.N Post, "The Shortest Path

Problem on Large Scale Real Road Networks".

 [8] W.Pijls, "Heuristic estimates in shortest paths",

Statistical Neerlandica.

 [9] I.Pohl,"Bi-Directional Search, Machine

Intelligence".

 [10] M . Scheu “Singel-Source Shortest Paths” (One-

to-all shortest path).

 [11] O. Sharma, D. Mioc, F. Anton and G.Dharmaraj

“Traveling Salesperson Approximation

Algorithm for Real Road Networks”.

 [12] D.Srini and L.Eric, “Graph Theory”,

Mathematics for Computer Science March 1,

2005.

 [13] K.N.Swe, “Efficient Tour Information Based On

Shortest Path Algorithm”, October, 2002.

 [14] P.Wim, P.Henk “A new bidirectional

algorithm for shortest paths”, Econometric

Institute Report.

Source

Town

Destination

Town

Runtime

(s)

Dijkstra

Runtime

(s)

Bellmen-

Ford

Runtime

(s)

A*

Total

(miles)

Tamu Mandalay 17.325 12.566 6.357 355

Nay Pyi

Taw

Kaw Linn 16.991 11.986 5.772 274

In Taw Lae Waii 17.834 13.045 6.768 357

Kan Kyauk Me 16.217 12.704 5.232 263

Ohn

Taw

Pyi 17.476 12.666 6.957 321

Hinthada Yei Oo 19.411 14.333 9.205 531

Zalun Yangon 15.009 10.873 5.055 69

Pathein Meikhtilar 18.881 13.448 8.452 401

Hti Lin Pauk

Kaung

16.004 11.662 5.877 303

