
65

Frequent Pattern Mining for Stream Data by Using Hadoop GM-Tree and

GTree

Than Htike Aung, Nang Saing Moon Kham
Information Science Department, University of Computer Studies, Yangon

thanhtikeaung@ucsy.edu.mm, moonkhamucsy@ucsy.edu.mm

Abstract

 Since origination of mining, frequent pattern

mining has become a mandatory issue in data

mining. Transaction process for mining pattern needs

efficient data structures and algorithms. This system

proposed tree structure, called GMTree(Generate

and Merge Tree)-GTree(Group Tree), which is a

hybrid of prefix based incremental mining using

canonical order tree and batch incrementing

techniques. Proposed system make the tree structure

more compact, canonically ordered of nodes and

avoids sequential incrementing of transactions. It

gives a scalable algorithm with minimum overheads

of modifying the tree structure during update

operations. It operates on extremely large

transaction database in dynamic environment which

is especially expected to give better results in this

case.The proposed system used Apache Hadoop and

hybrid GMTree-GTree. The results shows Hadoop

implementation of algorithm performs more times

better than in Java.

1. Introduction

Over the past few decades, many researchers

have proposed many algorithms for discovering

frequent item sets from a given data

set[19,12,18,14,15]. Generally, the data set can be of

two types static or dynamic. Most algorithms focus

on a static data set. However, static data mining

algorithms which can’t be applied to a dynamic data

set. Specially, a real time method is preferred to a

batch processing method. Mining on streaming data

can be categorized into the following types on the

basis of the window concept: Landmark, damped and

sliding-window. Landmark model, mainly focus on

data set that is observed from a fix time in the past to

present time. In the damped approach, frequent item

set are extracted in data stream where every

transaction of the data is allotted a weight that reduce

with age. The sliding-window model, the item sets

are collected in a certain interval of time from the

present time.

The proposed system’s algorithm are sliding-

window technique [2],[12] which moves per unit

batch. The proposed system efficiently representing

the transaction makes use of base-tree that is

constructed from GMTree, which is almost the same

as CanTree. The change between the two is that when

a new arrives, similar items generally form a single

node in the new tree for comparison (not need each

new item compared as a CanTree.) and which is not

need restructure the entire tree same as FPTree.

 GMTree node represents a set of nodes that

have the same data item in the base tree(GMTree or

parent GTree). That is the proposed algorithm called

Hadoop GMTree-GTree. It is very sample and

efficient. The algorithm has the following properties.

 Single database scan.

 Usage of sliding-window

 Similar items generally form a single node in

the new tree for comparison (not need each

new item compared.)

 Finding exact and complete frequent item sets.

2. Related Work

A data structure called FPTree which was used

in FP-growth algorithm [11] to compactly represent a

transaction DB into main memory. FP-growth

algorithm produces frequent itemsets by a divide-

and-conquer method, and needs only two DB scans.

This algorithm shows very efficient memory usage

and processing cost.

This successful data mining method has led to

many FP-growth-based algorithms for a static data

set. But, because of the two DB scans, FPTree based

FP-growth algorithm cannot be applied to stream data

mining.

However, FP-growth algorithm has used on

many stream data mining methods, such as FP-stream

[1], DSTree [16], CanTree [4,6], FUFP-Tree [21,22],

CPSTree [20], and others [9,8]. Furthermore, there

66

are many studies based on apriori-based algorithms,

such as SWF [6], SWFI stream [2], and MFI-

TransSW [10]. These incremental mining methods

have shown good performance and mining results for

several applications, but basically which have a

limitation in dealing with data streams.

As explore in several studies [7,17,20],

considerably more processing cost and memory is

commonly needed to generate and test the candidate

itemsets. The results in huge processing cost for

candidate itemsets generation, especially if there are

a huge number of items (or the length of candidate

itemsets is long).

3. Proposed Methodology

The proposed system used GMTree-GTree

data structures with sliding-window method. This

data structures are more efficient than GMTree-

GTree data structures. This data structures of new

tree for data nodes need compared on similar item

generally form single node. In CanTree, it may

generate a skewed tree with too many branches and

hence with too many nodes. It considers one

transaction from database at a time, which drops its

time efficiency. It produces concise tree only if

majority of transactions have a common pattern.

3.1. GM-Tree

This section describe tree structure called GM-

Tree for maintaining frequent patterns found in a

dynamic database with an improved functionality and

performance by combining the prefix based

incremental mining using canonical ordering and

batch incrementing techniques. Incremental mining

technique is proposed for the maintenance of frequent

item sets that are discovered in transaction databases.

It updates the frequent patterns very efficiently when

databases are frequently changed by additions,

deletions and modifications of transactions. Batch

Incremental technique refers to the merging of two

dataset (here in the form of a tree) to obtain a new

dataset that is equivalent to the entire database

formed by the two sets. Combination of these two

approaches helps to make our tree structure as

follows:
(1) More compact.

(2) Canonically ordered of nodes.

(3) Avoids sequential incrementing of

transactions.

(4) Gives a scalable algorithm with minimum

overheads of modifying the tree structure

during update operations.
The proposed algorithm makes a single scan

through the initial database to construct a tree

structure. The tree so formed has items arranged from

root to the leaves in a lexicographic manner, hence

ordering of the items are unaffected by their

frequencies. The support frequency is taken into

account while mining the tree. Now to deal with the

dynamic environment, a new similar tree is

constructed from new transactions in the database.

Once created, the new tree is merged with the last

updated tree forming the corresponding tree structure

for the whole updated database, avoiding a re-scan of

the entire updated database and thus providing a

better efficiency. The above statements can be

summarized into two important properties of the GM-

Tree described below:

Property 1: Nodes in GM-Tree are ordered

lexicographically and thus the ordering is

unaffected by changing item frequency.

Property 2: New transactions are used to

generate another tree which is then merged with

the last updated tree, preventing re-scan of the

entire updated database.

 Figure1 shows the GM-Tree generated from

Table 1.

 In summary, our proposed GM-Tree solves the

limitations of the above mentioned trees as follows:

 In case of the GM-Tree, nodes are arranged in

a canonical (i.e. lexicographic) ordered and hence

while merging two trees, we do not require to check

and swap nodes with the changing frequency.

 GM-Tree is not affected by frequency count

and thus swapping or bubbling and re-scanning of the

nodes can be completely avoided which makes it

more time efficient.

 During GM-Tree construction, when a new

tree is formed, only the nodes of this new tree needs

to be compared with the last updated tree nodes.

Thus, when the data size is increased and the size of

the tree increases, a large number of unnecessary

comparisons can be avoided. This indicates that GM-

Tree is well suited for extremely large database.

GM-Tree needs more memory while merging

two trees but reduces the computational time

drastically as there is no swapping or re-scanning of

nodes required. Moreover, in this modern world,

space requirement (i.e. main memory) is no more a

big concern [25][16]. Algorithm steps for GMTrees

areas follow:

67

(1) Create a Tree (T) from the content of the

original database (dboriginal) and order the

nodes of T lexicographically.

(2) Create another new Tree (t) from the database

(dbnew) having new transactions(considering

those transactions which are entered into the

database within a predefined time) and order

the nodes of t lexicographically.

(3) Merge the tree t to the last updated tree T. The

tree thus formed after merging t to T will have

the content of the entire updated database

(dboriginal) ∪ (dbnew) with tree nodes ordered

lexicographically (i.e. T ← T ∪ t).

(4) Continue with Step 2 when new transactions

entered into (dbnew).

Table 1. Transaction Database

Original Database New Entries(1st Group)
Trans Id Transactions Trans Id Transactions
t1 {p, a, s, t} t5 { a, t, c}
t2 { b, s, c, a, t} t6 { s, t, a, c }
t3 { a, b, q, s, t} New Entries(2nd Group)

t4 {t, a, s} t7 { b, c, q, t}

Figure 1. GMTree after adding each transaction

3.2. GMTree-GTree Algorithm

The GMTree-GTree algorithm [2] makes use

of the sliding window technique[11]. A batch

contains a group of transactions that is treated as a

single entity. A sliding-window consists of ‘k’ groups

of transactions, where ‘k’ is the window size. When a

window becomes full, the earliest batch is removed

and fresh batch is inserted.

The following data structures are used in this

method:

(1) GMTree[5], [20] is a base tree that

efficiently stores the transactions in the

current window. A GMTree will have an

item-table (iTable) and last-node-of-

transaction-table (lTable) associated with it.

Each row of iTable consists of the item id,

the item’s support count, and a list of nodes

with this item in GMTree. Each row of

lTable consists of the index of the batch, and

a list of the last nodes of transactions in

GMTree.

(2) GTree is a projection-tree, built from the

GMTree and it is used to mine frequent

patterns. A GTree also has an iTable

associated with it.

(3) Comparison of new items with the original

tree nodes Similar items generally form a

single node in the new tree for comparison

To construct a GMTree[5], [20] the data items

belonging to each transaction in the new batch are

sorted canonically and then these are added to the

GMTree. If each data item belonging to a transaction

on a path from the root is the same as each node on

the path, then the support count of the node on the

path is incremented by one. Else, a new node is

created, and is added to the GMTree as the child of

the current node. GTree for each frequent item is

constructed using the iTable of the GMTree and

using the lTable, transactions of the oldest batch are

discarded from the GMTree. Frequently occurring

item sets of each data item is found using the GTree.

From each GTree of data items, the frequent item sets

starting with its root node are discovered. Sub GTrees

are constructed that recursively represents its sub-

problems from these. GTree is a tree that represents a

group of sub trees as a single tree, where the data

item in their root nodes are same as that in GMTree.

A window with 'k' batches is provided as input

for this algorithm, and frequent item sets in the

current sliding- window are discovered. All the

68

GTrees are evaluated by the algorithm, because the

support count of their root item will be greater than

or equal to the minimum support count. The sub-

Gtrees are also traversed only when the support count

of the root of a GTree is frequent. For example, only

if the support count of the root of GTree A is greater

than the given minimum support count, A is a

frequent item set, and its sub-GTrees are constructed.

A detailed example of the working of the above

algorithm is available in the paper referred[2].

All frequent or infrequent data items of

transactions are stored in the base-tree. The GMTree

is a little different from FPTree. In GMTree the data

items of a transaction are sorted in canonical order

before adding them to the GMTree whereas in FP

Tree the ordering is based on frequency.

Two DB scans are required in the case of FP

Tree algorithm, whereas only one DB scan will be

required by the GMTree. Hence for real-time

applications, the GMTree-GTree algorithm works

better and is more suitable than the FP-growth

algorithm[20], [12], [23].

3.3. Mining Closed Frequent Item Sets,

Association Rules and Implementation on

Hadoop

The GMTree-GTree algorithm[26] has been

modified to mine for frequently occurring closed item

sets[24], [26]. Closed frequent item sets are those

which are both closed and whose support is more

than a minimum threshold. Consider an item set for

which there does not exist any superset which has

equal support count, then that item set is closed in the

specifies data set.

Closed frequent item sets are used more than

maximal frequent item set because when efficiency is

of more importance that space, the support of the

subsets is provided by them. Hence an additional pass

is not required to find this information.

Knowledge discovery is also very important

and is usually obtained by mining association rules

[19], [11], [14]. This gives us some insight into the

data and helps us to learn from it. These are basically

if/then statements that support us to discover

relationships between data which seems unassociated

in a relational database and we can consider other

data warehouses or repositories also. For example, let

us consider two frequent item sets {a, c, e} with

support count 2.

The dataset is illustrated in table 2 as follows:

Table 2. Sample dataset

TID Items

100 a c d

200 b c e

300 a b c e

400 b e

500 a c e

 For every non empty subset s of I, output the rule:

s -> (I-s),

if supportcount(I)/supportcount(s)>= minimum

confidence.

Let us suppose the minimum confidence be 60.
For R1: a, c -> e

Confidence = 2/3 = 66.66%. Rule is selected. For R2:

c -> a, e

Confidence = 2/4 = 50%. Rule is rejected.

Figure 2. Hadoop GMTee-GTree flowchart

4. Results and Discussion

The GMTree-GTree algorithm was first

implemented in single node using Java and was

tested using the BMS- WebView-1 dataset which is a

real world dataset from KDD CUP 2000 and consists

of click stream data of a web store Gazelle. Then, this

algorithm was implemented on the Hadoop

framework after making some modifications and the

time taken was compared to that of single node using

Java. The dataset used for comparison was a web

documents dataset "webdocs" from the FIMI

repository. It is a transactional dataset that contains

the main characteristics of a spidered collection of

web html documents. The size of the dataset is about

1.48 GB and contains approximately 1.7 million

documents. The experiments were performed on the

following system: Single node using Java: Hardware:

Intel core i5, 8GB RAM, CPU 2.4 GHz Software:

Windows 10, Java with JDK 1.8 Hadoop

implementation: Hardware: Intel core i5, 4 GB RAM,

CPU 2.4 GHz Software: Ubuntu 16.10, Java with

JDK 1.8, Hadoop 2.7.2 (pseudo distributed mode).

The proposed system used the two different dataset

69

sizes. The “webdocs” is huge real-life transactional

dataset which size is more bigger than KDD CUP

2000, sequences of click stream data.

Figure 3. iTable and lTable along with complete

and closed frequent item sets

Figure 3 shows the iTable and lTable of the

constructed GMTree along with the complete

frequent item sets, closed frequent item sets along

with their support count and the association rules

with 60 percent confidence and minimum support set

to 4. This result is for the small dataset, as shown in

Table 1. As we can see, the iTable contains the items

A, B, C, etc and their frequencies. The lTable

contains the item, its maximum frequency and the

last nodes in which it is present, which helps us to

track the transactions easily. For example, here for C,

the max frequency is 1 and it is present in the nodes 3

and 11. So, from this we get the frequent item sets by

eliminating the ones below the minimum support

count. Also, the closed frequent item sets and the

association rules are obtained by the method as

discussed in section 3.2.

Figure 4. Hadoop implementation

Figure 4 is a screenshot when the Hadoop

implementation of the GMtree-Gtree algorithm was

completed successfully. The GMTree-GTree

algorithm was executed in the Hadoop framework

with 50 input splits, 2 maps and 2 reducer. The total

execution time taken is almost 2 hours using Hadoop

while it took almost 10 hours to complete execution

using single node Java program.

Figure 5. Time comparison of Java and Hadoop

implementation

Figure 5 shows a graph that compares the

execution time taken by the implementation in single

node Java and Hadoop framework. It can be seen that

it takes much lesser time using Hadoop as compared

to simple Java execution as Hadoop is designed to

handle big data efficiently and splits the given input

and feeds each input split into different mappers that

execute parallely. This leads to the significant time

reduction in Hadoop framework as compared to a

sequential execution in single node using Java.

5. Conclusion and Future Work

The Hadoop GMTree-GTree algorithm works

well for mining frequently occurring patterns in real-

time streaming data. As the results, the algorithm

adds new transactions to the GMTree without any

need for restructuring. Here, GTree is used for

constructing the projection-tree in order to discover

the frequently occurring item sets. So, this algorithm

would be more time-efficient for mining the complete

frequent item sets from dynamic, streams of data

also. The GMTree-GTree algorithm execution time

taken on Hadoop(pseudo distributed mode) is more

less than the same proposed algorithm execute on

single node Java.

As future work, Hadoop GM-Tree and GTree

will be compared with another tree algorithm for data

70

stream mining considering the real time conditions

which implemented on Hadoop.

References

[1] C. Giannella, J. Han, J. Pei, X. Yan, and P.S.

Yu, Mining frequent patterns in data streams at

multiple time granularities, pp. 192-209.

[2] C.H. Lee, C.R. Lin, M.S. Chen. Sliding window

filtering: an efficient method for incremental

mining on a time-variant database. Information

Systems 2005; 30: 227-244.

[3] C. K. S. Leung and Q. I. Khan, DSTree: atree

structure for the mining of frequent sets from

data streams, Proc. 10th Int. Symp. Database

Engineering and Applications, 2006.

[4] C. K. Leung, Q. I. Khan, Z. Li, and T. Hoque,

CanTree: a canonical order tree forincremental

frequent pattern mining, Knowledge and

Information Systems, 2007, pp.287-311.

[5] C. K.S. Leung, Q.I. Khan, T. Hoque. CanTree: A

Tree Structure for Efficient Incremental Mining

of Frequent Patterns.Proceedings of the Fifth

IEEE International Conference on Data Mining

2005.

[6] C. Lee, C. Lin and M. Chen, Sliding window

filtering: An efficient method for incremental

mining on a time-variant database. Information

Systems, Vol. 30, 2005, pp. 227-244.

[7] G. Krempl, I. Zliobaite and et al., Open

challenges for data stream mining research,

ACM SIGKDD Explorations Newsletter, June

2014, pp. 1-10.

[8] G. Mao, Wu, X. Zhu, and G. Chen, Mining

Maximal Frequent Itemsets from Data Streams,

Journal of Information Science. vol. 33, no. 3,

2007, pp.251-262.

[9] H. Li, N. Zhang and Z, Chen, A Simple but

Effective Maximal Frequent Itemset Mining

Algorithm over Streams, Journal of Software,

Vol. 7, No. 1, 2012, pp. 25-32.

[10] H. Li and S. Lee, Mining requent itemsets over

data streams using efficient window sliding

techniques, Expert Systems with Applications,

No. 36, 2009, pp. 1466-1477.

[11] J. Chang and W. Lee, A Sliding window method

for finding recently frequent itemsets over online

data streams. Journal of Information Science and

Engineering, Vol. 24, No. 4, 2004, pp.753-762.

[12] J. Han, J. Pei, Y. Yin, R. Mao. Mining Frequent

Patterns without Candidate Generation: A

Frequent-Pattern Tree Approach.Data Mining

and Knowledge Discovery 2004; 8: 53–87.

[13] J. Kim, B. Hwang. Real-time stream data

mining based on CanTree and GTree.

Information Sciences 2016; 367 368: 512-528.

[14] L. Shen, H. Shen, L. Cheng. New algorithms for

efficient mining of association rules. Inf. Sci.

1999; 118: 254–268.

[15] M. J. Zaki and C. J. Hsiao, Efficent algorithms

for mining closed itemsets and their lattice

structure, IEEE Trans. Knowledge and Data

Engineering, vol. 17, no. 4, 2005, pp.462-478.

[16] M. J. Zaki and C.-J. Hsiao, “Charm: An efficient

algorithm for closed itemset mining.” in SDM,

vol. 2. SIAM, 2002, pp. 457–473.

[17] N. Jiang and Le Gruenwald, Research issues in

data stream association rule mining, SIGMOD

Record, Vol. 35, No. 1, Mar. 2006, pp. 14-19.

[18] P. Y. Hsu, Y. L. Chen and C. C. Ling,

Algorithms for mining association rules in bag

databases, Information Sciences, vol.166, 2004,

pp.31-47.

[19] R. Agrawal, T. Imielinski, A.N. Swami. Mining

association rules between sets of items in large

databases. Proceedings of the ACM SIGMOD

Conference on Management of Data 1993; 207–

216.

[20] S.K.Tanbeer, C.F. Ahmed, B.S. Jeong, Y.K.Lee.

Sliding window-based frequent pattern mining

over data streams. Information Sciences 2009;

179: 3843-3865.

[21] T.-P. Hong, C.-W. Lin and Y.-L. Wu, An

efficient FUFP-tree maintenance algorithm for

record modification, International Journal of

Innovative Computing, Information and Control,

vol.4, no.11, pp.2875-2887, 2008.

[22] T. P. Hong, C. W. Lin and Y. L. Wu,

Incremental fast updated frequent pattern trees,

Expert Systems with Applications, vol.34, 2008,

pp.2424-2435.

[23] T.T. Nguyen. A Compact FP-tree for Fast

Frequent Pattern Retrieval. PACLIC 2013; 27.

[24] V. Kumar, S.R. Satapathy. A novel technique

for mining closed frequent item sets using

variable sliding window. IEEE International

Advance Computing Conference (IACC) 2014;

504–510.

[25] W. Cheung and O. R. Zaiane, “Incremental

mining of frequent pat- terns without candidate

generation or support constraint,” in Database

Engineering and Applications Symposium, 2003.

71

Proceedings. Seventh International. IEEE, 2003,

pp. 111–116.

[26] Y. Chi, H. Wang, P.S. Yu, R.R. Muntz. Catch

the moment: maintaining closed frequent item

sets over a data stream sliding window. Knowl.

Inf. Syst. 2006; 10 (3): 265–294.

