
DUPLICATE RECORD DETECTION

IN DATA CLEANING

USING DCS++ ALGORITHM

YIN YIN PHYO

M.C.Sc. JUNE 2021

DUPLICATE RECORD DETECTION

IN DATA CLEANING

USING DCS++ ALGORITHM

By

YIN YIN PHYO

B.C.Sc.

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Master of Computer Science

(M.C.Sc.)

University of Computer Studies, Yangon

JUNE 2021

i

ACKNOWLEDGEMENTS

First of all, I wish to express my deepest gratitude and sincere

appreciation to all persons, who contributed directly or indirectly towards the

achievement of completing the thesis and helped me throughout the period of

studies in University of Computer Studies, Yangon.

As being one of the first of these persons, I would like to express my

appreciation and sincere thanks to Prof. Dr. Mie Mie Thet Thwin , the Rector,

the University of Computer Studies, Yangon, for her kind permission to submit

this thesis and general guidance, workable environment during the period of

study.

I would like to extend gratitude to Prof. Dr. Yadana Thein, Pro Rector,

the University of Computer Studies, Yangon, for her kind permission to submit

this thesis.

My heartfelt thanks and respect go to Dr. Thi Thi Soe Nyunt, Professor

and Head of Faculty of Computer Science, University of Computer Studies,

Yangon, for her administrative support and invaluable guidance, as Dean of

Master Course, throughout the development of the thesis.

I also deeply thank Daw Aye Aye Khine, Associate Professor,

Department of English, the University of Computer Studies, Yangon, for editing

my thesis from the language point of view.

A special word of gratitude is due to my supervisor, Dr. Thidar Win,

Lecturer, Software Department, the University of Computer Studies, Yangon,

for her invaluable recommendations regarding the thesis topic, giving me

detailed guidance throughout the work of this thesis and support for my thesis

work.

In addition, I would like to thank the board of examiners for making

precious comments and detailed corrections to my thesis and those who are

pressing power to improve the end result.

ii

Last but not least, I am grateful to my family who has provided fully

emotional or physical support throughout my student life. And then, I especially

thank all my teachers for their valuable advice, opinions and participation in the

seminars. Lastly, I also would like to thank my colleagues, friends and staff of

University of Computer Studies, Yangon for providing necessary information,

documentation requirements and collaboration during the seminars.

iii

STATEMENT OF ORIGINALITY

I hereby certify that the work embodies in this thesis is the result of original

research and has not been submitted for a higher degree to any other University or

Institution.

------------------------- ---------------------------

 Date Yin Yin Phyo

iv

ABSTRACT

 Nowadays, Duplicate Record Detection is a multiple record search process that

represents the same physical entity in a dataset. It is also known as the record linkage

(or) entity matching. The databases contain a very large dataset. Datasets contain

duplicate records that do not share a common key or contain errors such as incomplete

information, transcription errors and missing or differing standard formats (non-

standardized abbreviations) in the detailed schemas of records from multiple databases.

Therefore, the duplicate detection needs to complete its process in a very shorter time.

Duplicate detection requires an algorithm for determining whether records are duplicate

records or not.

 In this system, the researcher calculates a similarity metric that is commonly

used to find similar field items and uses the Duplicate Count Strategy-Multi Record

Increase (DCS++) Algorithm for approximately duplicate records detection over

publication xml dataset.

v

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS i

STATEMENT OF ORIGINALITY iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES vii

LIST OF TABLES viii

LIST OF EQUATIONS ix

CHAPTER 1 INTRODUCTION 1

 1.1 Motivation 2

 1.2 Related Works 2

 1.3 Objectives of the Thesis 3

 1.4 Organization of the Thesis 3

CHAPTER 2 THEORETICAL BACKGROUND 5

 2.1 Data Quality 5

 2.2 An Overview of Data Cleaning 6

 2.3 Record Matching Problem 7

2.4 Field Matching Techniques 8

 2.5 Record Matching Techniques 10

 2.5.1 Notation 10

 2.5.2 Probabilistic Matching Models 11

 2.5.3 Supervised and Semi-Supervised Learning 11

 2.5.4 Active-Learning-Based Techniques 11

 2.5.5 Distance-Based Techniques 12

 2.5.6 Rule-Based Approaches 12

 2.5.7 Unsupervised Learning 13

 2.6 Improving the Efficiency of Duplicate Detection 13

 2.6.1 Sorted Neighborhood Approach 13

 2.6.2 Duplicate Count Strategy Approach 14

 2.6.2.1 Basic Strategy 15

 2.6.2.2 Multi Record Increase Approach 16

vi

CHAPTER 3 DESIGN OF THE PROPOSED SYSTEM 18

 3.1 Overview of the Proposed System 18

 3.2 Overview of Cora Publication XML Dataset

3.3 Data Preprocessing

19

21

 3.3.1 Data Parsing 21

 3.3.2 Data Standardization 22

 3.4 Duplicate Detection

 3.4.1 Key Creation

 3.4.2 Sorting Phase

 3.4.3 Merging Phase

 3.4.3.1 Duplicate Count Strategy++ Algorithm

 3.4.3.2 Matching Criteria

 3.4.3.3 Similarity Measuring

23

23

24

24

24

26

26

 3.5 Performance Evaluation 31

CHAPTER 4 IMPLEMENTATION OF THE PROPOSED SYSTEM 32

 4.1 Experimental Setup 32

 4.2 Implementation of the System 33

 4.3 Experimental Result 39

CHAPTER 5 CONCLUSION 42

 5.1 Limitations and Further Extensions 42

AUTHORôS PUBLICATION 44

REFERENCES 45

APPENDIX A : OUTPUT DATA OF PROPOSED SYSTEM 47

vii

LIST OF FIGURES

 Page

Figure 2.1 Sorted Neighborhood Method (SNM) 14

Figure 2.2 Overview of Duplicate Count Strategy (DCS) 16

Figure 2.3 Overview of Duplicate Count Strategy-Multi Record

Increase (DCS++)

17

Figure 3.1 Overview of the Proposed System 19

Figure 3.2 Sample XML Cora Dataset 20

Figure 3.3 Duplicate Count Strategy-Multi Record Increase

Algorithm

24

Figure 3.4 Levenshteinôs Distance Algorithm 28

Figure 4.1 Main Section of the Proposed System 34

Figure 4.2 Raw Dataset in Table Form 35

Figure 4.3 Cora Publication XML Dataset 36

Figure 4.4 Standardized Dataset 37

Figure 4.5 Key Creation 37

Figure 4.6 Sorting Keys 38

Figure 4.7 Duplicate Record Detection 39

Figure 4.8 Execution Results with Window Size 10 40

Figure 4.9 Execution Results with Window Size 20 40

Figure 4.10 Execution Results with Window Size 30 40

Figure 4.11 Performance Evaluation of Duplicate Detection 41

viii

LIST OF TABLES

 Page

Table 2.1 Example of Defined Rules 12

Table 3.1 Example of Parsed Cora Publication XML Dataset 21

Table 3.2 Example of Standardized Fields 22

Table 3.3 Example of Key Creation 23

Table 3.4 Sample Distance Matrix using Levenshteinôs

Algorithm

27

Table 3.5 Sample Calculation of Similarity Score in Two

Records (R1, R2) with Threshold 0.7

29

Table 3.6 Sample Calculation of Similarity Score in Two

Records (R3, R4) with Threshold 0.7

30

Table 3.7 Example of Field Similarities and Record Similarities 31

Table 4.1 Results of Performance Evaluation 40

ix

LIST OF EQUATIONS

 Page

Equation 3.1 Field Similarity 28

Equation 3.2 Record Similarity 28

Equation 3.3 Recall 31

Equation 3.4 False Positive Error 31

Equation 3.5 False Negative Error 31

Equation 3.6 Precision 31

1

CHAPTER 1

INTRODUCTION

 Nowadays, the amount of data within the data warehouses becomes more and

more huge and data errors or inconsistent data in these data warehouses also grow

rapidly as the technology advances. In the economic world, invalid and duplicate data

can be costly because it can affect the key decisions for operations in many industries

and the production of business organizations. Therefore, data needs to be good quality.

In order to improve data quality, data cleaning is especially necessary when integrating

disparate data sources [1]. By integrating data from different sources and implementing

a data warehouse, organizations become aware of possible differences and systematic

conflicts.

 The problem of identifying duplicate records in the database is an important step

in the data cleanup and integration process. Data reduction is the process of detecting

and removing data errors, inconsistencies, and duplicate data. Duplicate detection is

one of the solutions of data cleaning. It has two tasks to detect duplicate records

efficiently and effectively:

¶ the representation of the data may vary slightly, so a specific similarity measure

needs to be defined to compare pairs of records and

¶ not all records can be peer compared because the data set may be large. To

perform the task two, a number of algorithms have been proposed that split the

dataset and compare all pairs of records in each partition.

 Sorted Neighborhood Method (SNM) is a known way to advance the window

by classifying data based on the sorting key and comparing only the records displayed

in the same window. This paper proposes the Duplicate Count Strategy-Multi Record

Increase Approach (DCS++), a variation of SNM and improvement of Duplicate Count

Strategy (DCS). If a duplicate is found on the sorted dataset, it can also detect the other

possible duplicates by comparing the next w - 1 record of that duplicate. It can also

reduce the comparing time by skipping windows for duplicates. Therefore, the proposed

system can be faster and can detect more duplicate records.

2

1.1 Motivation

 As the technology advances, every dataset contains some errors, incomplete

information and unstandardized formats. Every analyst experiences in wasting time for

wrong conclusions because of these errors. And the time needed for analysis is typically

spent in ñcleaningò the data. In the business world, incorrect data can be costly in

queries time and storage space for large scale databases. The duplicated records can

cause incorrect results in analysis queries and erroneous data mining model to be built.

The problem of detecting and eliminating duplicated data is one of the major problems

in the broad area of data cleaning and data quality. To remove duplicate records from a

dataset, the main consideration is how to decide that two records are duplicated.

Records are compared to determine their degree of similarity, which implies that

corresponding fields in the records has to be compared.

1.2 Related Works

 Many researchers do research on duplicate record detection with different

efficient and effective blocking and windowing methods [2].

 Ying Pei et al. [3] implemented the K-medoids clustering algorithm (IKMC) to

solve the problem of detecting almost duplicate records. It is considered as one

separated data object for every record in the database. It uses the Edit Distance method

to get similarity values between records. Finally, clustering of these similarity values

can detect duplicate records. The algorithm can automatically adjust the number of

clusters by comparing the similarity value with a predefined similarity threshold. This

algorithm shows good detection accuracy and high availability.

Qiaoqiao Yang et al. [4] implemented the SNM algorithm based on some edit

distances and variable windows to solve the shortcomings of the SNM algorithm. The

algorithm proposed in this paper is based on the various edit distances and variable

windows. The experiment's data set comes from the refrigeration industry management

system. This proposed algorithm can efficiently recognize duplicate big data records.

However, there is still the problem of improving the recall ratio and handling non-

standard samples.

Jumoke Soyemi et al. [5] implemented a system for detecting duplicate records

in a database using a simil matching algorithm. The Simil algorithm is based on

3

calculating the similarity between two strings. This proposed system can only be used

to clean up data and prevent incorrect data from accessing the database.

1.3 Objectives of the Thesis

 The main objectives of the thesis are as follows:

¶ To study the concepts of data cleaning

¶ To learn empirical methods such as sorted neighborhood method and its

improvement methods

¶ To apply Duplicate Count Strategy-Multi Record Increase (DCS++)

algorithm with Levenshtein Distance Algorithm of field matching

techniques

¶ To provide the duplicates identification by using Adaptive DCS++

method

¶ To explore the effective and efficient method on duplicates detection

process

1.4 Organization of the Thesis

 This thesis is mainly composed of five chapters.

 Chapter 1 is the introductory section where the introduction of duplicated

records detection, the related works, the objectives and the organization of the thesis

are presented.

 Chapter 2 describes the background theory related to this thesis such as data

quality, data cleaning, record matching problem, field matching techniques, record

matching techniques and the duplicate records detection approaches.

 Chapter 3 presents the design of the proposed system that is described as the

system flow, description about Cora publication dataset that is used, the detail steps of

parsing, standardization in preprocessing, the field similarity measuring using Edit

Distance or Levenshtein Distance algorithm, the detection of duplicate record pairs

using Duplicate Count Strategy-Multi Record Increase (DCS++) algorithm and

performance evaluation.

 Chapter 4 mainly describes the implementation of the proposed system in detail

that includes the experimental setup, the systemôs implementation, the process of

4

detecting duplicate record pairs from xml dataset using DCS++ algorithm and the

experimental result.

 Finally, Chapter 5 concludes this thesis by highlighting the limitations and

further improvement works of the proposed system.

5

CHAPTER 2

BACKGROUND THEORY

 Nowadays, the word ódataô is mostly used to talk about the facts that are kept

and shared electronically in databases. Quality of data is critical in getting to final

analysis. Most of the organizations pay attention to the good quality of data for making

business decisions. Data cleaning is one of the main processes of data preparation and

correcting the inaccurate records from a record set, table or database. This chapter

describes data quality, overview of data cleaning, the techniques of field matching with

string data, record matching techniques and the several approaches of duplicate records

detection process.

2.1 Data Quality

 Data are abstract representations of chosen characteristics of real-world objects

such as people and places, etc. When the data meets the expectations of data consumers,

that data can be considered as high quality of data. The source of the data is frequently

times the significant factor. Data entry or data transcription is inherently prone to bias

or systematic errors both simple and complex. Data quality is one of the most critical

issues in data management since dirty data frequently leads to inaccurate data analytic

results and incorrect business decisions. The quality of data can be defined by two

related factors [24]. They are firstly how well the data meets the expectations of data

consumers and secondly how well the data represents the objects, events and concepts.

In practice, data quality could also be a priority for specialists included with a large

range of information systems, starting from the data warehousing and business

intelligence to customer relationship management and supply chain management.

Particularly measuring the quality of data such as the use of data evolves and

the amount of data is one of the most important challenges for data quality experts. This

section briefly covers the most issues of data quality with a specific effort of duplicates.

First, the idea of data quality dimensions as a method through which data quality will

be measured and then completely different perspectives of data cleaning, which are

usually performed before duplicate detection is covered. These broadly cited

dimensions of data quality are as follows:

¶ Accuracy: Is that the data accurately representing the real-world entity or event?

6

¶ Consistency: Is that the data not containing syntactical anomalies and

contradictions?

¶ Integrity: Are the relationships between attributes and entities consistent?

¶ Timeliness: Is that the data representing the real circumstance and is it available

at the time needed?

¶ Completeness: Is all necessary data that are representing the entity or event

present?

¶ Validity: Are all data values within the value domains specified?

¶ Uniqueness: Is there a single view of the data?

 Quality data does not essentially mean the perfect data. But both data and

schema dimensions are important. The low quality data can deeply influence the

standard processes of business, whereas a schema of low quality. The major data quality

problems can roughly be distinguished between single-source and multi-source

problems and also between scheme-related and instance-related problems. They can be

solved by data cleaning and data transformation. The problems of instance-level refer

to data entry errors such as misspellings, redundancies or duplicates, contradictory

values and inconsistencies in the actual data contents which are visible at the scheme

level. These instance-level problems are the main effort of data cleaning. Thus, it

focuses on the instance-level problems to be utilized on publication datasets.

2.2 An Overview of Data Cleaning

 Organizations are obtaining huge amounts of data from different data sources

in order to build the huge data repositories that control applications with the objectives

of investing and more knowledgeable analytics. Data collection and acquisition

regularly introduce errors in data such as missing values, typographical errors,

improperly formatted entries, duplicated entries for the same real-world entity and

violations of business and data integrity rules.

Data cleaning is the important process of data preparation for analyzing data in

the analytical process by removing or modifying data that is incorrect, incomplete,

inappropriate, repeated or improperly formatted in an integrating data warehouse or

database. Data cleaning is not simply used to remove information but to make more

space for new data and to increase the accuracy of datasets. Data cleaning includes other

7

activities such as fixing syntax and spelling errors, formatting data sets, fixing missing

codes, empty fields and identifying duplicate data.

Data cleaning problems [22] typically consist of dealing with the lack of

standardization in representing attributes, incomplete and missing data, determining

usability, erroneous data, etc., Manual entry can also lead to incomplete, missing data

and non-standard entry like naming conventions "Marry J." and "M.Jomes". Additional

commonly problem in data cleaning can be the entry of duplicate data.

A survey mostly in data science and machine learning (ML) reveals that dirty

data is the most common obstacle that has been faced dealing with data. With the

popularity of data science, it has become progressively evident that data creation,

unification, preparation and cleaning are key enablers in releasing the value of data.

The development of efficient and effective data cleaning solutions is challenging and

overflowing with deep theoretical and engineering issues. In any case of the type of

data errors to be fixed, data cleaning activities usually contain two phases:

¶ Error detection where different errors are identified and probably validated by

experts.

¶ Error repair where updates to the database are applied (or suggested to human

experts) to pass the data to a cleaner state appropriate for downstream

applications and analytics.

2.3 Record Matching Problem

 With huge totals of data that are stored in data warehouses, mining information,

and knowledge in databases has become a significant problem in recent researches.

Data mining is the KDD process or the "knowledge discovery in databases" process as

the analysis step.

A number of developing mining applications in information providing services

such as data warehousing and online services need to combine information from

different data sources to get better user performance, to improve the provided services,

and to increase the business chances in organizations. These heterogeneous sources can

be relational databases or web pages which provide information about the same real-

world entities but describe these entities differently. It can be more storage space, long

data retrieving time and wrong decision making by describing the same real-world

object as different objects. The solving inconsistencies and different descriptions in

8

entities is the issue addressed in these different record values which describe the same

semantic entity.

Detecting the possible duplicate records in a single database or multiple related

databases is one of the abilities to do record matching. The duplicate detection is the

main issue in Merge/Purge task which is to identify entry errors and combine multiple

records. This task is also called data cleaning or data scrubbing. One significant

research area of approximate record matching is the approximate string matching. Two

different problems are considered in the survey by [6]. First, the description of

equivalence allows only small differences within the two strings. The equivalence of

two strings is the same as the mathematical concept of equivalence. Second, the

similarity problem allows for more typing errors such as transposed letters, missing

letters, etc. String matching has been one of the most considered issues in computer

science. The best approach is based on edit distance.

2.4 Field Matching Techniques

Field Matching Technique is the inner stage of duplicate detection while the

outer stage of duplicate detection is applied as the record matching technique. The

duplicate detection depends on the string comparison techniques for resolving

typographic variation in the string data and for errors in the numeric data. Resolving

typographical errors can be critical in a record linkage. In case the comparisons of string

pairs are done only in an exact character-by-character way, numerous matches may be

lost.

The list of different techniques for field matching in the context of duplicate

record detection includes:

¶ Character-based similarity measurement

¶ Token-based similarity measurement

¶ Similarity measurement of pronunciation

¶ Numerical similarity measurement

 This section describes techniques that have been applied for matching fields

with string data in the context of duplicate record detection. Character-based similarity

metrics handle typographical errors well. In this proposed system, Edit Distance (or)

Levenshtein Distance Algorithm is used to calculate field matching similarity scores. It

covers the following similarity metrics:

9

Edit distance: Edit Distance is the minimum number of edit operations on a single

character that is required to convert the string one into string two. Three types of edit

operations are possible. They are:

¶ Insertion: insert a character into the string.

¶ Deletion: delete a character from the string.

¶ Substitution: replace a character with another character.

 In the simplest procedure, one edit operation has cost 1. This kind of edit

distance is also mentioned as Levenshtein distance [7]. Needleman and Wunsch [8]

improved the original edit distance model and allowed for different costs for different

edit distance operations. The edit distance metrics are more suitable for detecting

typographical errors but they are typically ineffective for other types of mismatches.

Affine gap distance: The edit distance metric does not effort well when matching

strings that have been shortened (e.g, Hana R. Smith. vs. Hannar Richard Smith.). The

affine gap distance metric [9] offers a solution to this problem by introducing two extra

edit operations: open gap and extend gap. The extending gap cost is usually smaller

than the opening gap cost and this result in smaller cost drawbacks for gap mismatches

than the equivalent cost under the edit distance metric.

Smith-Waterman distance: Smith and Waterman [10] defined an extension of

edit distance and affine gap distance, in which mismatches at the beginning and the end

of strings have lower costs than mismatches in the middle. This metric lets for better

strings local alignment (i.e., substring matching). So, the two strings "Prof. Mary R.

Jones, University of Calgary" and "Mary R. Jones, Prof." can match in a short distance

by using the Smith-Waterman distance because the prefixes and suffixes are ignored.

The distance between two strings can be calculated using a dynamic programming

technique to find the lowest cost of changes that converts one string into another.

Pinheiro and Sun [11] suggested a similar similarity measure which tries to find the

best character alignment for the two compared strings s1 and s2 so that the number of

character mismatches is minimized.

10

Jaro distance metric: Jaro [12] presented a string comparison algorithm that was

fundamentally used for comparison of first and last names. The calculating the Jaro

metric algorithm for two strings s1 and s2 includes the following stages:

¶ Compute the string lengths |s1| and |s2|.

¶ Search the "common characters" c within the two strings.

¶ Search the ñnumber of transpositionsò t that is the number of transpositions. It

is calculated as follows by comparing the Ὥ common character in s1 with the

Ὥ common character in s2. Each non-matching character is a transposition.

Q-gram distance: The q-grams are short character substrings of length q of the

database strings [13]. The intuition behind the use of q-grams as a basis for approximate

string matching is that when two strings s1 and s2 are similar, they share a large number

of q-grams in common. Given a string s, its q-grams are gained by sliding a window of

length q over the characters of a string s. Since q-grams at the starting and the end of

the string can have less than q characters from s, the strings are theoretically expanded

by "padding" the starting and the end of the string with q - 1 occurrences of a special

padding character, not in the original alphabet.

2.5 Record Matching Techniques

 The record consists of multiple fields and it can make the problem of duplicate

detection rather more complex. The field matching and string matching methods will

be applied to match individual fields of a record. There also are various record matching

approaches to solve the record matching problems. This section reviews various

approaches during this category mostly knowledge-based, distance-based, and

induction-based addition as supervised learning and unsupervised learning.

2.5.1 Notation

 The two tables óAô and óBô have ónô comparable fields. Assume that these two

tables are wanted to match without loss of generality. Within the record matching

problem, each record pair (‌ȟ‍); (‌ ˰ ὃȟ‍ ˰ὄ) is allocated to at least one of the two

classes óMô and óNô. The category óMô contains the ñmatchò record pairs that represent

the same entity and also the class óNô contains the ñnon-matchò record pairs that

represent two different entities.

11

 Each record pair (‌ȟ‍) is presented as a random ὺὩὧὸέὶ ὼ ὼȟȢȢȢȟὼ ,

where T denotes the transpose of the vector with n components that relate to the n

comparable fields of tables A and B. Each ὼ shows the level of agreement of the Ὥ

field for the records ‌ and ‍. Several approaches use binary values for the ὼôs. Set

ὼ ρ if field Ὥ agrees and ὼ π if field Ὥ disagrees.

2.5.2 Probabilistic Matching Models

 Newcombe et al. [14] was the principal to acknowledge the duplicate detection

Bayesian inference problem. Then, Fellegi and Sunter [15] formalized the intuition of

Newcombe et al. and introduced the notation which is additionally employed in

duplicate detection literature. The comparison ὺὩὧὸέὶ ὼ is the input to a decision rule

that assigns ὼ to ὓ or to ὔ. The most assumption is that ὼ is a random vector whose

density function is different for each of these two classes. Then, if the density function

for every class is known, the duplicate detection problem becomes a Bayesian inference

problem.

2.5.3 Supervised and Semi-Supervised Learning

 A Bayesian approach is used in the probabilistic model to classify the record

pairs into two classes, M and N. This model was widely used in duplicate detection

tasks as an application of the Fellegi-Sunter model. While the Fellegi-Sunter approach

dominated the field for quite twenty years, the development of new classification

techniques in the machine learning and statistics communities encouraged the

development of new deduplication techniques. The supervised learning systems depend

upon the existence of training data within the variety of record pairs, pre-labeled as

matching or not.

2.5.4 Active-Learning-Based Techniques

 One of the problems with the supervised learning techniques is the need for a

huge number of training examples. Whereas it is simple to make a huge number of

training pairs that are either obviously non-duplicates or exactly duplicates, it is very

difficult to produce the ambiguous cases that would help to form a highly precise

classifier. Based on this observation, some duplicate detection systems used active

learning techniques [16] to automatically locate such ambiguous pairs. Not at all like

12

an "ordinary" learner that is trained using a static training set, an "active" learner

effectively choices subsets of instances from unlabeled data, which, when labeled, will

provide the highest information gain to the learner.

2.5.5 Distance-Based Techniques

 The way of avoiding the need for training data or some human effort to create

the matching models is to define a distance metric for records which does not need

modification through training data. It is probable to match similar records without the

requirement for training using the distance metric and an appropriate matching

threshold. One approach is to treat a record as a long field and use one of the distance

metrics described in Section 2.4 to decide which records are similar or not. Monge and

Elkan [17] suggested a string matching algorithm for detecting extremely similar

records. The basic idea is the applying a general purpose field matching algorithm,

especially one that is able to account for distance in the strings and to play the role of

the duplicate detection algorithm. The distance-based approaches that conflate each

record in one big field may ignore the important information that can be used for

duplicate detection. A simple approach uses the appropriate distance metric for each

field to measure the distance between individual fields and then calculates the weighted

distance between the records.

2.5.6 Rule-Based Approaches

 The rule-based approaches can be considered as distance-based techniques,

where the distance of two records is either 0 or 1 by using the rules to define whether

two records are the same or not. Yu Jiang and Can Lin [18] proposed a rule-based

method for de-duplicating article records across databases. Table 2.1 shows as an

example which an expert might define rules.

Table 2.1 Example of Defined Rules

IF age < 22 THEN status = undergraduate

ELSE status =graduate

IF distanceFromHome > 10 THEN transportation = car

ELSE transportation = bicycle

13

2.5.7 Unsupervised Learning

 Ravikumar and Cohen [19] follow a similar approach and propose a graphical,

hierarchical model for learning to match record pairs. The basis of this method is to

model each field of the comparison vector as a latent binary variable which shows

whether the two fields match or not. Bhattacharya and Getoor [20] proposed to use the

Latent Dirichlet Allocation generative model to perform the duplicate detection. In this

model, the latent variable is a unique identifier for each entity in the database.

2.6 Improving the Efficiency of Duplicate Detection

 The process of identifying whether two records refer to the same real-world

object, we have focused primarily on the quality of comparison procedures and not on

the efficiency of the duplicate detection process. The fundamental issue of improving

the duplicate detection speed is described in this section. Blocking and windowing

methods can be applied to decrease the cost of record comparison in the efficiency of

record comparison improvement. The most significant characteristic for windowing is

the Sorted Neighborhood Method (SNM).

2.6.1 Sorted Neighborhood Approach

Using a sorted neighborhood approach can reduce the cost of comparing records

and increase the efficiency of comparing records. Hernáandez and Stolfo [21] describe

the sorted neighborhood approach. The sorted neighborhood approach involves three

steps:

¶ Create sorting key: A key for each record in the dataset is allocated to each

record. Keys are created by concatenating the values of two or more attributes.

¶ Sort the data: The records in the database are sorted based on the sorting key.

¶ Merge: A fixed size window is moved through the list of records sequentially

to limit the comparison of records matching to those records in the window.

Each new record that enters this window is compared to the previous record to

find a ñmatchingò record.

 The Sorted Neighborhood Method uses fixed size windows. If the selection of

window size is too small, some actual duplicate records may be lost and using larger

window size will often result in unnecessary comparisons within the window. The

14

effectiveness of the sorted neighborhood approach depends greatly on the creation of

sorting keys. Figure 2.1 shows an example of the sorted neighborhood method.

Figure 2.1 Sorted Neighborhood Method (SNM)

2.6.2 Duplicate Count Strategy Approach

 The Duplicate Count strategy (DCS) is the extension of the Sorted

Neighborhood Method (SNM). It is based on the windowing methods and varies the

window size based on the number of detected duplicate pairs. The set of compared

records differs from the original SNM because of the increase and decrease of the

window size. Changing the window size does not certainly result in additional

comparisons but it can also reduce the number of comparisons in the detection process.

However, adapting the window size should result in a higher efficiency for a given

effectiveness or in an overall higher effectiveness for a given efficiency.

 DCS uses the number of records in the window as an initial window size. The

more duplicates of a record are found within a window if the window is larger. On the

other hand, if a duplicate of a record in its neighborhood is not found, at that point we

expect that there are no duplicates or the duplicates are very far away within the sorting

order. The record is compared with w - 1 successors in the beginning step. So the current

window can be defined as ὡ ὭȟὭ ύ ρ. If no duplicates can be found in this

a

e

f

g

h

z

Window size is

fixed to 3

Report

duplicates

15

window, there is no need to increase the window. But if there is at least one duplicate,

then start increasing the window.

2.6.2.1 Basic Strategy

 The basic strategy includes increasing the window size by one record. The basic

duplicate count strategy involves the following steps:

1. Assign the sorting key to each record and sort the records.

2. Create the window with initial window size w.

3. Compare the first record with all other records in the window.

4. Increase the window size while
detected duplicates

comparisons
 ‰ (‰: average number of

comparisons per duplicate)

5. Slide the window (initial window size w)

6. Calculate transitive closure.

 Figure 2.2 shows the overview of duplicate count strategy steps.

16

Figure 2.2 Overview of Duplicate Count Strategy (DCS)

2.6.2.2 Multi Record Increase Approach

 DCS++ is an enhancement of the basic strategy by increasing the variant

multiple records. There are two main ideas in the multi record increase approach instead

of increasing the window by just one record. First, if each duplicate is found, the next

w-1 adjacent records of that duplicate are added to the window even if the average is

lower than the threshold ‰. Second, windows for duplicates have been omitted to save

the comparisons. Skip window for r in Figure 2.3. It uses the transitive closure to find

additional duplicates and to save some of the record comparisons. Assume that the

record pairs (r1, r) and (r, r) are duplicates, with ρ ς σ. Calculating the transitive

closure returns the additional duplicate pair (r2, r3). Therefore, there is no need to check

the window 7 ËȟË × ρ and then this window is skipped. There is no loss in the

window because the window for r covers all comparisons that r would have made.

17

Figure 2.3 shows the overview of duplicate count strategy multi record increase

approach.

 Figure 2.3 Overview of Duplicate Count Strategy-Multi Record Increase

 (DCS++)

18

CHAPTER 3

DESIGN OF THE PROPOSED SYSTEM

The main purpose of this system is to detect the possible duplicate record pairs

in the dataset. The repeated data takes up a lot of storage space in the data warehouse

and takes longer for retrieving the exact data. There are two main tasks for duplicate

detection. They are the field matching technique as the inner stage of duplicate

detection and the record matching technique as the outer stage of duplicate detection.

In this system, Edit Distance (or) Levenshtein Distance Algorithm is used for field

matching and DCS++ Algorithm is used to detect duplicate record pairs. For dataset,

the Cora publication dataset is used as a case study for the experiment. The system is

implemented on the Window and MacOS platforms with the PHP programming

language and XAMPP cross-platform web server. PHP is an acronym for Hypertext

Preprocessor (earlier called, Personal Home Page) [25].

3.1 Overview of the Proposed System

Figure 3.1 shows the overview of the proposed duplicate detection system. Data

preparation is performed by parsing from the input xml raw dataset and standardizing

parsed data which can lead to fast identification of duplicates. After the data preparation

phase, the data are normally stored in such a way to be easily compared in next phases.

DCS++ is one of the improvements of SNM (Sorted Neighborhood Method). So, key

creation and sorting are the same phases of SNM but DCS++ do not use the fixed

window size. It is based on the windowing method. The records are sorted based on the

sorting key to compare the possible duplicates by keeping the same record next and

then slides a window of adaptive size sequentially over the sorted records. All records

within such a window are compared with each other and identified as candidate

duplicates.

19

Figure 3.1 Overview of the Proposed System

3.2 Overview of Cora Publication XML Dataset

 In this system, XML Cora Dataset is used as an experimental dataset for input

records and parsing them to detect syntax errors. This dataset contains bibliographic

information for scientific papers. It provides 1,879 objects.

The Cora dataset is prepared by the original Andrew McCallum and his versions

of this dataset are provided on his data web page [26]. Many publications in record

linkage and entity records over the years used these various versions of the Cora dataset.

Figure 3.2 shows the example of publication XML Cora dataset.

Start

Cora

Publication

Dataset

Data Parsing

Data

Standardization

Sorting

Key Creation

Merging

Retrieve

Duplicates

End

Duplicate Count

Strategy ++

(DCS++)

20

Figure 3.2 Sample XML Cora Dataset

<CORA>

<NEWREFERENCE id="1">

ahlskog1994a

<author>

M. Ahlskog, J. Paloheimo, H. Stubb, P. Dyreklev, M. Fahlman, O.</author>

<title>Inganas and M.R.</title>

<journal>Andersson, J Appl. Phys.,</journal>

<volume>76,</volume>

<pages>893,</pages>

<date>(1994).</date>

</NEWREFERENCE>

<NEWREFERENCE id="2">

ahlskog1994a

<author> M. Ahlskog, J. Paloheimo, H. Stubb, P. Dyreklev, M. Fahlman, O.

Inganas and M.R. Andersson, </author>

<journal> J Appl. Phys., </journal>

<volume> 76, </volume>

<pages>893, </pages>

<date> (1994). </date>

</NEWREFERENCE>

é

<NEWREFERENCE id="9">

asfahl1992a

<author> C. RayAsfahl. </author>

<title> Robots and Manufacturing Automation. </title>

<publisher> John Wiley and Sons, </publisher>

<address> New York, </address>

<note> second edition, </note>

<date> 1992. </date>

</NEWREFERENCE>

<NEWREFERENCE id="10">

benford1993a

<author> Steve Benford and Lennart E. Fahlen. </author>

<title> A spatial model of interaction in large virtual environments. </title>

<booktitle> In Proceedings of ECSCW'93, </booktitle>

<address> Milan, </address>

<date> 1993. </date>

</NEWREFERENCE>

 ...

</CORA>

21

3.3 Data Preprocessing

 The duplicate record detection needs a data preprocessing phase that is a

necessary step in data cleanup before the process of duplicate detection. The data

preprocessing phase involves data parsing, data transformation and standardization

procedures. The data preparation techniques are also described in terms of ETL

(extraction, transformation, loading) [24].

 In this system, parsing and data standardization of preprocessing phase must be

performed first to increase the quality of in-flow data and the second to make the data

comparable and more usable.

3.3.1 Data Parsing

 Data parsing is the first main component in the data preprocessing phase of the

matching record. The data field is easier to correct, standardize and match data by

parsing it because the data parsing allows comparing the individual components rather

than long strings of data.

 In this system, Cora publication XML dataset is used as input. And then it

includes the removing xml tags in publication records and parsing them to detect syntax

errors. Example of a parsed XML dataset is shown in Table 3.1.

Table 3.1 Example of Parsed Cora Publication XML Dataset

ID REF

Name

Author Title Date ...

R1 ahlskog19

94a

M. Ahlskog, J.

Paloheimo, H.

Stubb, P. Dyreklev,

M. Fahlman, O.

Inganas and M.R. (1994).

R2
asfahl199

2a
C. RayAsfahl.

Robots and Manufacturing

Automation.
1992.

R3 benford19

93a

Steve Benford and

Lennart E. Fahlen.

A spatial model of interaction in

large virtual environments.

1993.

R4 benford19

94a

Benford, S., and

Fahln, L.

Viewpoints, Actionpoints and

Spatial Frames for Collaborative

User Interfaces,

June

1994,

R5 carlson19

93a

Carlson, C. ;

L.E.Fahln.

Integrated CSCW Tools Within a

Shared 3D Virtual Environment.

1993.

22

3.3.2 Data Standardization

 Data standardization is the process of standardizing the represented information

in some fields to a uniform specific format. There may be different data formats in

different records which come from a variety of data sources and need to be converted

to a uniform representation prior to the process of detecting duplicates. If there is no

data standardization, numerous duplicate entries might be chosen as non-duplicates

wrongly. It is based on the fact that common identifying information cannot be

compared.

In this system, author name, date and title are standardized. Author names can

be all authors participating in the publication. But only the first author is extracted and

formatted into the first character of First Name, dot (.) and Last Name only. Date

includes one or combination of year, month and dates. The system extracts only the

year from date value and title must not be empty. Therefore, these preprocessed data

fields can be easily used in the key creation and possible duplicate records detection

processes. Table 3.2 shows an example of standardized fields in record.

Table 3.2 Example of Standardized Fields

Author Names Standardized Author

Names

Date Standardized

Date

First

Name

Last Name

Steve Benford and

Lennart E. Fahlen.

S. Benford 1993. 1993

Brown, D. F., Moura,

H. and Watt, D. A.

D. Brown (1992b), 1992

B. Buth et. al., B. Buth 1992, 1992

Benford, S., Bowers,

J., Fahln, L.,

Greenhalgh, C., and

Snowdon, D.,

S. Benford May 7-11,

1995,

1995

Daelemans, W., Van

den Bosch, A., and

Weijters, T.

W. Daelemans (1989). 1989

23

3.4 Duplicate Detection

 The system has mainly focused on empirical algorithms which contain sorting,

windowing and blocking methods. In this section, possible duplicate records are

detected by using duplicate count strategy-multi record increase approach (DCS++). It

is an enhancement of the sorted neighborhood method and basic duplicate count

strategy (DCS). It tends to decrease the number of record comparisons when records in

a dataset are detected as duplicate. Firstly, the key creation process described in section

3.4.1 must be performed to sort the records in a dataset and to detect near duplicates

easily. And then, these sorted records are used as inputs to DCS++ algorithm for

detecting duplicates. These record pairs are identified by DCS++ algorithm and then

computed their similarity scores using Levenshtein distance algorithm.

3.4.1 Key Creation

 During the key creation process, a sorted key is generated for each record in the

dataset by extracting the relevant fields or portions of fields from a significant

discriminating attribute. The effectiveness of DCS++ algorithm highly depends on the

selection of keys in key creation process to sort the records. The process of key selection

is a highly knowledge-intensive and domain specific process [23].

 In this system, a key consists of the combination of the first letter of First Name,

three consonants of Last Name, last two digits of Date field and four consonants of Title

field which are included in preprocessed records. These choices are made since the

domain expert determined that last names are usually misspelled due to errors in

vowels, vocalized sounds. Table 3.3 shows an example of records and keys used in this

system.

Table 3.3 Example of Key Creation

RID First Last Date Title Key

R1 C. RayAsfahl 1992 Robots and Manufacturing

Automation.
CRYS92RBTS

R2 S. Benford 1993 A spatial model of interaction in

large virtual environments.
SBNF93SPTL

R3 D. Brown 1992 Actress: an action semantics

directed compiler generator,
DBRW92CTRS

R4 B. Buth 1992 Provably correct compiler BBTH92PRVB

24

development and

implementation.

R5 C. Carl son 1993 Integrated CSCW Tools Within a

Shared 3D Virtual Environment.

CCRL93NTGR

3.4.2 Sorting Phase

 The records are sorted in the data list based on the foundation of the key selected

in the earlier phase. A sorting key is characterized to be a sequence of attributes or a

sequence of substrings inside the attributes chosen from the preprocessed record in an

important manner. The sorted keys are used for sorting the entire dataset with the

purpose that all matching or possible duplicate records will appear close to each other

in the final sorted list for this system.

3.4.3 Merging Phase

 After preprocessed Cora publication XML records have been sorted in sorting

phase, the system uses DCS++ algorithm through the consecutive list of records

limiting the comparisons for duplicate detection. DCS++ is an improvement of sorted

neighborhood method by adapting the window size to detect duplicates effectively and

by removing the skipped window to reduce the number of comparisons.

3.4.3.1 Duplicate Count Strategy++ Algorithm

 In this experiment, the initial window size (w) is provided as 20 and DCS++

threshold (Ø) is recommended as not to miss any duplicates. The detail of

Duplicate Count Strategy-Multi Record Increase (DCS++) algorithm is described in

Figure 3.3.

Algorithm: Duplicate Count Strategy-Multi Record Increase Algorithm

Require: w > 1 and 0 < Ø ˽ 1 (w: initial window size, Ø: DCS++ threshold)

1. sort records by sorting key

2. populate window win with first w records of records

3. skipRecords Ŷ null /* records to be skipped */

 /* iterate over all records and search for duplicates */

25

4. for j = 1 to records.length - 1 do

5. if win[1] NOT IN skipRecords then

6. numDuplicates Ŷ 0 /* number of detected duplicates */

7. numComparisons Ŷ 0 /* number of comparisons */

8. k Ŷ 2

 /* iterate over win to find dup. of rec win[1] */

9. while k ˽ win.length do

 /* check if record pair is a duplicate */

10. if isDuplicate (win[1] , win[k]) then

11. emit duplicate pair (win[1] , win[k])

12. skipRecords.add (win[k])

13. numDuplicates Ŷ numDuplicates + 1

 /* increase window size from k by w-1 records */

14. while win.length < k+w-1 and j + win.length < records.length do

15. win.add (records [j + win.length + 1])

16. end while

17. end if

18. numComparisons Ŷ numComparisons+1

 /* potentially increase window size by 1 */

19. if k = win.length and j + k < records.length and (numDuplicates /

 numComparisons) ˾ Ø then

20. win.add (records [j + k - 1])

21. end if

22. k Ŷ k + 1

23. end while

24. end if

 /* slide window */

25. win.remove(1)

26. if win.length < w and j + k < records.length then

27. win.add (records [j + k - 1])

28. else /* trim window to size w */

29. while win.length > w do

26

30. win.remove (win.length) /* remove last record from win */

31. end while

32. end if

33. j Ŷ j + 1

34. end for

35. calculate transitive closure.

Figure 3.3 Duplicate Count Strategy-Multi Record Increase Algorithm

3.4.3.2 Matching Criteria

 This system uses the publication XML Cora dataset, which stores bibliographic

information in various fields of scientific publications papers. And comparisons

between the records within that dataset are performed according to four matching

criteria. That is, similarity between these criteria is computed using dynamic

programming algorithms.

The most data fields in a Cora publication record are the free-text strings. To do

string comparison, this system uses an edit distance dynamic programming algorithm.

And there are four matching criteria for the system:

¶ E(Key) = String edit distance of key field

¶ E(Title) = String edit distance of title field

¶ E(Author) = String edit distance of author field

¶ E(Date) = String edit distance of date field

3.4.3.3 Similarity Measuring

 Similarity measuring must be implemented for field matching and string

matching. There are various algorithms to use such as Edit Distance, N-grams

algorithm, Smith Waterman algorithm, Jaro algorithm and Text Similarity Measure

algorithm. Among them, this system uses the Edit Distance (or) Levenshtein Distance

algorithm as it is a widely used metric to define the string similarity.

Levenshtein Distance Algorithm: Levenshtein distance is a metric for

measuring the amount of difference between two sequences. The Levenshtein distance

between two strings is defined as the minimum number of edits necessary to transform

27

one string into the other string with the allowable edit operations such as insertion,

deletion and substitution of a single character. Typographical errors stem from

mistyping ("hte" vs. "the") whereas cognitive errors are actual mistakes. It is also

related to note that spelling errors can be single or numerous error misspellings. In this

system, Levenshtein Distance Algorithm is used for checking the words.

 For example, the Levenshtein distance between "survey" and "surgery" is 2,

since these two edits change one string into the other and there is no way to do it with

fewer than two edits:

d (v,w) = minimum number of elementary operations to transform v => w.

For example, v = survey survey

 w = surgery surgey substitute (+1)

 surgery insert (+1)

Levenshtein distance d (v,w) = 2

Similarity Score = 1 - (2 / 7) = 0.71

 Let P be ȿὺȿ ρ ȿύȿ ρ matrix where ὖȟ represents the minimum

number of operations to match ὺȟὺȟȣȟὺ with ύȟύȟȣȟύ . The matrix P is

constructed as follows:

╟░ȟ ░

╟ȟ▒ ▒

╟░ȟ▒ ╘█ ○░ ◌▒ ȟ╟░ ȟ▒

╞◄▐▄►◌░▼▄ □░▪╟░ ȟ▒ȟ╟░ȟ▒ ȟ╟░ ȟ▒

 Table 3.4 shows the example of distance matrix using Levenshetin's Algorithm

and Figure 3.4 shows the Levenshtein Distance Algorithm.

Table 3.4 Sample Distance Matrix using Levenshteinôs Algorithm

 S U R V E Y

 0 1 2 3 4 5 6

S 1 0 1 2 3 4 5

U 2 1 0 1 2 3 4

R 3 2 2 0 1 2 3

G 4 3 3 1 1 2 3

E 5 4 4 2 2 1 2

R 6 5 5 4 3 2 2

Y 7 6 6 5 4 3 2

28

Figure 3.4 Levenshteinôs Distance Algorithm

Field Similarity : Let X and Y be records and ὪȟὪȟȣȟὪ be the tokens of the

corresponding fields in record X. The tokens of the fields in record Y be

ὪȟὪȟȣȟὪ . For calculating the field similarity, each token Ὢ , ρ Ὥ ὲ is

compared with tokens Ὢ , ρ Ὥ ά . The field similarity for X and Y:

ὛὭάὢȟὣ В Ὢ В Ὢ Ⱦ ὲ ά (3.1)

Record Similarity : Assume a database has fields ὊȟὊȟὊȟȣȟὊ with field

weightages ὡȟὡȟὡȟȣȟὡ respectively. The record similarity for X and Y:

В ὛὭάὢȟὣ ὡ (3.2)

 In the proposed system, Equation 3.1 is used to compute the similarity values

of Key, Title, Author and Date between two fields. Equation 3.2 is used to compute the

similarity value of records. The field weightages are assigned as 0.2 in Key, 0.5 in Title,

int LevDistance (Strl, Str2)

{

for i from 0 to lenStr1

d[i, 0] := i

for j from 0 to lenStr2

d[0, j] := j

for i from 1 to lenStr1

for j from 1 to lenStr2

if str1 [i] = = str2 [j] then cost := 0

else cost := 1

d[i, j] := minimum (

 d[i-1, j] + 1, // deletion

 d[i, j-1] + 1, // insertion

 d[i-1, j-1] + cost // substitution

)

return d[lenStrl, lenStr2]

}

29

0.2 in Author and 0.1 in Date. Our field similarity threshold except date field and record

similarity threshold such as 0.7 are duplicate records by using Equation 3.2 and

therefore, it should be merged. If the similarity score is equal to one, the two records

are a perfect match. If a record pair has a similarity value that is equal or higher than

the similarity threshold, it is considered as duplicate records, otherwise non-duplicate.

 Table 3.5 and Table 3.6 show the sample calculations of similarity score

between records by using Equation 3.1 and 3.2 with threshold 0.7. In Table 3.5, the

resulting similarity score between R1 and R2 is less than the similarity threshold.

Therefore, the system assumed that R1 and R2 are non-duplicated records.

Table 3.5 Sample Calculation of Similarity Score in Two Records (R1, R2) with

 Threshold 0.7

 Author Date Title Key

R1 C.RayAsfahl 1992

Robots and

Manufacturing

Automation.

CRYS92RBTS

R2 S.Benford 1993

A spatial

model of

interaction in

large virtual

environments.

SBNF94VWPN

Levenshtein

Distance
9 1 44 9

╢░□╕╡ȟ╡ 0.19 (19%)
0.75

(75%)
0.28 (28%) 0.1(10%)

╢░□╕╡ȟ╡ ╦░
0.19 * 0.2 =

0.038

0.75 *

0.1 =

0.075

0.28 * 0.5 =

0.14
0.1 * 0.2 = 0.02

В ╢░□╕╡ ȟ╡ ╦░
▪
░ = 0.038 + 0.075 + 0.14 + 0.02 = 0.273

(result: Non-duplicate pair)

 In Table 3.6, the resulting similarity score is equal to the similarity threshold

0.7. Therefore, R3 and R4 are the duplicated records.

30

Table 3.6 Sample Calculation of Similarity Score in Two Records (R3, R4) with

 Threshold 0.7

 Author Date Title Key

R3 A.Bruce 1994 Goal-directed

Classification

Using Linear

Machine

Decision

Trees.

ABRC94GLDR

R4 C.Brodley 1994 Goal-directed

Classification

Using Linear

Machine

Decision

Trees.

CBRD94GLDR

Levenshtein

Distance

5 0 0 2

╢░□╕╡ȟ╡
0.45(45%) 1(100%) 1(100%) 0.02 (80%)

╢░□╕╡ȟ╡ ╦░ 0.45 * 0.2 =

0.09

1 * 0.1 =

0.1

1 * 0.5 = 0.5 0.02 * 0.2 =

0.004

В ╢░□╕╡ ȟ╡ ╦░
▪
░ = 0.09+0.1+0.5+0.004 = 0.694

(result: Duplicate pair)

 Table 3.7 shows the summary of calculations in Table 3.5 and Table 3.6 for

sample records such as R1, R2, R3 and R4. Table 3.7 displays the similarity score of

each field between two records and then the system assumes that the records in a

comparison as a duplicate record or not by using Equation 3.2 for calculation of record

similarity.

31

Table3.7 Example of Field Similarities and Record Similarities

RID RID Author

Sim

Date

Sim

Title

Sim

Key

Sim
╢░□╕╧ȟ╨ ╦░

▪

░

Result

R1 R2 0.038 0.075 0.14 0.02 0.3

Non

duplicate

pair

R3 R4 0.09 0.1 0.5 0.004 0.7
Duplicate

pair

3.5 Performance Evaluation

 In this system, the performance of the algorithm is measured using: Recall,

False Positive Error (FP), False Negative Error (FN) and Precision.

Recall

 The percentage of duplicate records is that the system correctly identifies.

Recall percentage is computed by following equation:

Recall =

 ρππϷ (3.3)

False Positive Error (FP)

 The percentage of records incorrectly identified as duplicates. FP percentage is

defined as the equation:

FP =

 ρππϷ (3.4)

False Negative Error (FN)

 The percentage of duplicate records is that the system does not detect. FN

percentage is computed by following equation:

FN = 100% Recall (3.5)

Precision

 The percentage of information reported as relevant by the system that is correct.

Precision percentage is defined as the equation:

Precision = 100% FP (3.6)

32

CHAPTER 4

IMPLEM ENTATION OF THE PROPOSED SYSTEM

 In this system, the possible duplicate records in XML Cora publication dataset

are detected by using the DCS++ approach and Levenshtein distance algorithm. The

data preparation step must be done before duplicate detection. And then, these

preprocessed records become the input to duplicate detection process. According to the

proposed approach, key creation process must be performed firstly to sort the records

in dataset. These sorted records are used in field matching and record matching to detect

as duplicate pairs.

 This chapter describes the software and hardware requirements for

environmental setup before running the system, the program interface designs for each

step of data preparation process such as data parsing, data standardization and proposed

duplicate records detection process. After that, based on the results of the duplicate

detection process, performance evaluation of the system is described.

4.1 Experimental Setup

In order to evaluate the proposed algorithms, install XAMPP [27] on Windows

or OS X. Apache service is started in the XAMPP Control Panel as a local server.

XAMPP is the most popular in web development environment. XAMPP is a totally

free, easy to install Apache distribution containing MariaDB, PHP, and Perl. The open

source package of XAMPP has been set up to be extremely easy to install and to use.

The experimental environments are as follows:

¶ Hardware configurations

- Operating System: Windows 8, macOS Catalina

- CPU: Core i5@3 GHz

- Memory: 8 GB

¶ Software requirements

- XAMPP version: 7.3.0 64 bit, and

- PHP version: 7.3.0

33

4.2 Implementation of the System

 When the system is started, it appears as shown in Figure 4.1. It shows the

buttons that are representing each step of the duplicate record detection process and the

process of changing window size and similarity threshold for getting different results.

The About menu section shows an overview of the proposed system and algorithms

that are used in this system. And, the last menu of the system, Contact menu, allows us

to view the information of our university.

 Figure 4.1 shows the Home Page, there are five buttons to view each process of

duplicate record detection in the proposed system. Raw Dataset button shows the parsed

Cora data records in a table form, Standardized Dataset button shows the standardized

data fields, Extract Keys button presents the keys in key creation, Sorting Keys button

represent the process of sorting phase before applying the duplicate detection and

Duplicate Detection button shows the final getting result of detection process on Cora

dataset with preset window size and similarity threshold value.

In the changing window size and threshold section, the user can select the

provided window size and the similarity threshold value for testing different detecting

results instead of using default values. The domain experts said that generally the

window size is mostly used between 10 and 30 in DCS++ algorithm for record matching

and the threshold value ranging from 0.5 to 0.9 with the gap of 0.1 is used in

Levenshtein Distance algorithm for field matching of each record. If the user did not

set these values, the system uses the default or best practice values such as 20 for

window size and 0.7 for threshold value.

34

Figure 4.1 Main Section of the Proposed System

If the user clicks Raw Dataset Button from Home Page, the system shows the

parsed records in a table form by parsing the data from XML Cora dataset into

corresponding records. There are a total number of 1879 records in the dataset as shown

in Figure 4.2.

35

Figure 4.2 Raw Dataset in Table Form

If the user clicks the ñView XML Cora Datasetò link in the raw dataset page,

the system appears with the detailed description of XML Cora dataset in the

document tree as shown in Figure 4.3.

36

Figure 4.3 Cora Publication Xml Dataset

If the user clicks the Standardized Dataset Button from the Home Page, the

system standardizes the fields Name, Date and Title. Author Name is standardized as

First and Last by extracting the only first author and formatting it into the first character

of first name, (.) dot and last name only. Date field is standardized by extracting only

the year. Title field must not be the empty string. Figure 4.4 shows the standardized

records in a table form by standardizing the data from parsed Cora dataset.

37

Figure 4.4 Standardized Dataset

 If you click the Extract Keys Button from the Home Page, the system presents

the list of records with created keys. In order to do duplicate detection, first the key

creation process must be performed. In the key creation process, the system creates a

key for each record by combining the first letter of first name, three consonants of last

name, last two numbers of date and four consonants of title values after preprocessing

stage as shown in Figure 4.5. The system needs a key for each relevant record in

detecting near duplicates.

Figure 4.5 Key Creation

38

If the user clicks the Sorting Keys Button from the Home Page, the system

shows the sorted record list by ordering the records according to the sorting keys which

get from the key creation process. During the sorting phase, all matching or possible

duplicate records perform close to each other in the record list as shown in Figure 4.6.

Figure 4.6 Sorting Keys

After sorting, a duplicate detection process can be performed. During the

duplicate detection, the system uses the Levenshtein Distance algorithm to compute the

similarity values between records. By using the DCS++ algorithm, this system reduces

the number of record comparisons by skipping the windows for duplicates.

Five threshold values (0.5, 0.6, 0.7, 0.8, and 0.9) are used to test the duplicate

records in cora publication XML dataset. The main purpose of this is to evaluate

performance of this system. The similarity values of records are greater than threshold

value, and then these records are duplicated and stored in a duplicate list. If the user

wants to do duplicate detection, he/she can choose the desired threshold value and

window size, and then the system will display the result according to the user selected

window size and threshold as shown in Figure 4.7.

39

Figure 4.7 Duplicate Record Detection

4.3 Experimental Result

The proposed system evaluates the performance on Cora publication dataset

which contains 1,879 records. The performance of the system is evaluated according to

the percentages such as Recall, False positive error (FP), False negative error (FN) and

Precision. The evaluation of the system is performed by ranging the threshold value

from 0.5 to 0.9 with the gap of 0.1. The window size is set to be different window sizes

10, 20 and 30 for evaluation.

Figure 4.8, Figure 4.9 and Figure 4.10 show the execution results of the system

for five thresholds (0.5, 0.6, 0.7, 0.8, 0.9) with different window sizes 10, 20 and 30.

40

Figure 4.8 Execution Results with Window Size 10

Figure 4.9 Execution Results with Window Size 20

Figure 4.10 Execution Results with Window Size 30

1841 1841 1841 1841 18411790 1775 1760 1750 1715

51 66 81 91 126

0

500

1000

1500

2000

0.5 0.6 0.7 0.8 0.9

N
o
.

o
f

D
u
p
li
c
a
te

s

Threshold (Ranging from 0.5 to 0.9)

Execution Results of DCS++ with Levenshtein Distance

Algorithm (Window Size = 20)

All Records Duplicates Non Duplicates

1841 1841 1841 1841 18411790 1771 1758 1748 1706

51 70 83 93 135

0

500

1000

1500

2000

0.5 0.6 0.7 0.8 0.9

N
o
.

o
f

D
u
p
li
c
a
te

s

Threshold (Ranging from 0.5 to 0.9)

Execution Results of DCS++ with Levenshtein Distance

Algorithm (Window Size = 10)

All Records Duplicates Non Duplicates

1841 1841 1841 1841 18411791 1777 1761 1754 1721

50 64 80 87 120
0

500

1000

1500

2000

0.5 0.6 0.7 0.8 0.9

N
o
.

o
f

D
u
p
li
c
a
te

s

Threshold (Ranging from 0.5 to 0.9)

Execution Results of DCS++ with Levenshtein Distance

Algorithm (Window Size = 30)

All Records Duplicates Non Duplicates

41

 Figure 4.11 shows the results of performance evaluation with the percentage of

recall, FP, FN and precision by defining the initial window size 20 and five threshold

values (0.5, 0.6, 0.7, 0.8, 0.9). In the proposed approach, the percentage values of recall

and precision are high. Also, the percentage values of FP and FN are less in threshold

values (0.5, 0.6, 0.7). Therefore, it determines that this system identifies duplicate

records being correctly in threshold values (0.5, 0.6, 0.7). Although the percentage

values of precision and FP are good in threshold values (0.8 and 0.9), other percentage

values of recall and FN are not good because the percentage of duplicate records being

correctly identified by the system is less.

 The system assumes that the threshold values (0.5, 0.6 and 0.7) are better than

other threshold values (0.8 and 0.9) for duplicate detection because these are less in the

percentage of FP, FN and high in the percentage of precision and recall. Among them,

we assume that threshold value 0.7 is the best result for duplicate detection of this

system.

Figure 4.11 Performance Evaluation of Duplicate Detection with Window Size 20

0

10

20

30

40

50

60

70

80

90

100

0.5
0.6

0.7
0.8

0.9

%

Threshold (Ranging from 0.5 to 0.9)

0.5 0.6 0.7 0.8 0.9

Recall % 100 96.55 100 81.4 77.36

FP% 1.02 0.97 0.83 0.62 0.38

FN% 0 3.45 0 18.6 22.64

Precision% 98.98 99.03 99.17 99.38 99.62

DCS++ Algorithm with Levenshtein Distance Algorithm

(Window Size = 20)

Recall %

FP%

FN%

Precision%

42

CHAPTER 5

CONCLUSION

In this system, DCS++ algorithm is used to detect possible duplicates in the cora

publication of the dataset. Then, Levenshtein Distance algorithm is used for field

matching of each record. The system was designed and implemented with PHP

programming language on MacOS and Window platforms. The main objective of the

system is to clean data for making business decisions and to reduce time and storage

cost for data warehouses by using data cleaning methodology. Using the performance

evaluation formulae, the evaluation of system performance is calculated based on the

five threshold values. And the better result is the higher the percentage of precision and

recall and then the less in the percentage of FP and FN. Therefore, using the results

from the threshold values defined in the earlier table and chart, it can be concluded that

the threshold value 0.7 is the best threshold value for duplicate detection in publication

dataset using the DCS++ Algorithm. DCS ++ detects more duplicates by adding the

next w-1 records of this duplicate to the window for each detected duplicate. This

system has exceeded using a fixed window size. Time is critical in data cleaning of a

large database. Usage of duplicate detection DCS++ method is to reduce the time taken

on each comparison by skipping windows for duplicates. To sum up, by cleaning

duplicate records in a dataset, it can be used effectively in decision making, query

analysis and achieving high quality dataset. Benefits of the System are:

¶ improving the data quality,

¶ reducing the searching time for finding the desired data,

¶ reducing the extra space in memory due to record duplication and

¶ helping in mining the desired data easily.

5.1 Limitations and Further Extensions

 There are some limitations in the proposed system. This system can only be

used in a homogeneous source dataset such as XML format because it needs the key

creation for some fields of the dependent domain and some changes are also required

to reuse this algorithm for other datasets. If a user wants to test for other datasets rather

than publication datasets, there is a separate process for parsing and normalization

necessary. Therefore, it is limited to testing with a dataset from an independent domain

43

and it cannot handle the heterogeneous source of data. The goal of this system is to

detect duplicate records in cora publication xml dataset. Other duplicate elimination

systems can reference this system in the future as an improvement. Another area of

future work lies in heterogeneous sources of publication datasets or domain-

independent data cleaning.

44

AUTHORôS PUBLICATION

[1] Yin Yin Phyo, Thidar Win, ñDuplicate Record Detection in Data Cleaning

Using DCS++ Algorithmò, in the Proceedings of the (Paper ID: 80286, Accepted Date:

6th March 2020) Conference on Parallel and Soft Computing (PSC 2020), Yangon,

Myanmar, 2020.

45

REFERENCES

[1] ZM Guo, AY Zhou, ñResearch on data quality and data cleaning: A survey[J]ò,

Journal of Software, 2002, 13(11): 2076-2082.

[2] Draisbach, Uwe and Felix Naumann, ñA Comparison and Generalization of

Blocking and Windowing Algorithms for Duplicate Detectionò, 2009.

[3] P. Ying, X. Jungang, C. Zhiwang, and S. Jian, ñIKMC: An Improved K-Medoids

Clustering Method for Near-Duplicated Records Detectionò, in Computational

Intelligence and Software Engineering, International Conference on, Wuhan,

2009.

[4] Q. Yang, Z. Guo, K. Wang, ñThe SNM Algorithm Based on a Variety of Edit

Distance and Variable Windowò, The 7th International Conference on Computer

Engineering and Networks, 2017.

[5] Jumoke Soyemi, James Adegboye, ñDatabase Record Duplicate Detection

System using Simil Algorithm,ò International Journal on Computer Science and

Engineering (IJCSE),vol 10, 2018.

[6] P. A. V. Hall and G. R. Dowling, ñApproximate string matchingò, ACM

Computing Surveys, 12(4):381-402, 1980.

[7] Abdulkhudhur, Hanan Najm, ñAn improved Levenshtein algorithm for spelling

correction word candidate list generationò, 2016.

[8] S. B. Needleman and C. D. Wunsch, "A general method applicable to the search

for similarities in the amino acid sequence of two proteins", Journal of Molecular

Biology. 48 (3): 443ï53, 1970.

[9] Wang C, Yan RX, Wang XF, Si JN, Zhang Z, "Comparison of linear gap

penalties and profile-based variable gap penalties in profile-profile alignments",

Comput Biol Chem. 35 (5): 308ï318, October 2011.

[10] Smith, Temple F. and Waterman, Michael S., "Identification of Common

Molecular Subsequences", Journal of Molecular Biology. 147 (1): 195ï197,

1981.

[11] Pinheiro, Jose C., and Don X. Sun, "Methods for linking and mining massive

heterogeneous databases.", In Proceedings of the Fourth International

Conference on Knowledge Discovery and Data Mining, pp. 309-313, 1998.

[12] Winkler, W. E.,"Overview of Record Linkage and Current Research Directions",

Research Report Series, RRS, 2006.

46

[13] Ukkonen, Esko, ñApproximate String Matching with q-grams and Maximal

Matches.ò, Theoretical Computer Science, 1992.

[14] H. B. Newcombe, J. M. Kennedy. S. J. Axford and A.P. James, "Automatic

linkage of vital records", Science, 130(3381):954-959, 1959.

[15] I P. Fellegi and A. B. Sunter, "A theory for record linkage", Journal of the

American Statistical Association, 64(328):1183-1210, 1969.

[16] Bachman, Philip & Sordoni, Alessandro & Trischler, Adam, "Learning

Algorithms for Active Learning", 2017.

[17] E. Monge and C. P. Elkan, "The field matching problem: Algorithms and

applications", In Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining (KDD-96), pages 267-270, 1996.

[18] Yu Jiang, Can Lin, Weiyi Meng, Clement Yu, Aaron M. Cohen, Neil R.

Smalheiser, "Rule-based deduplication of article records from bibliographic

databases", Database, Volume 2014, 2014.

[19] Ravikumar, Pradeep; William Weston Cohen, "A Hierarchical Graphical Model

for Record Linkage", 20th Conference on Uncertainty in Artificial Intelligence,

2004.

[20] Bhattacharya, Indrajit; Lise Getoor, Latent Dirichlet, ñAllocation Model for

Entity Resolutionò, Computer Science Department, University of Maryland,

2005.

[21] Hernández, Mauricio Antonio; Salvatore Joseph Stolfo, "Real-world Data is

Dirty: Data Cleansing and The Merge/Purge Problem", Data Mining and

Knowledge Discovery 2 (1): 9--37, 1998.

[22] Kimball, Ralph; Joe Caserta, "The data warehouse ETL toolkit: Practical

techniques for extracting, cleaning, conforming, and delivering data", 2004.

[23] Hong T.P. ,Kuo C.S., Chi S. C., "A fuzzy data mining algorithm for quantitative

values", The Third International Conference on Knowledge Based Intelligent

Information Engineering Systems.

[24] David Corrales, Agapito Ledezma, Juan Corrales. ñFrom Theory to Practice: A

Data Quality Framework for Classification Tasksò, Symmetry, 2018

[25] https://www.php.net

[26] https://hpi.de/naumann/projects/repeatability/datasets/cora-dataset.html

[27] https://www.apachefriends.org/index.html

https://www.php.net/
https://hpi.de/naumann/projects/repeatability/datasets/cora-dataset.html
https://www.apachefriends.org/index.html

47

APPENDIX A : OUTPUT DATA OF PROPOSED SYSTEM

 In this section, the 20 objects of XML Cora dataset, the output of dataset in data

preparation including data parsing, data standardization and the output of duplicates in

duplicate record detection system are presented as the sample data of step by step

procedures.

XML Cora Dataset

<CORA>

 <NEWREFERENCE id="1">

ahlskog1994a

 <author> M. Ahlskog, J. Paloheimo, H. Stubb, P. Dyreklev, M.

Fahlman, O. </author>

 <title> Inganas and M.R. </title>

 <journal> Andersson, J Appl. Phys., </journal>

 <volume> 76, </volume>

 <pages>893,</pages>

 <date> (1994). </date>

 </NEWREFERENCE>

 <NEWREFERENCE id="2">

ahlskog1994a

 <author> M. Ahlskog, J. Paloheimo, H. Stubb, P. Dyreklev, M.

Fahlman, O. Inganas and M.R. Andersson, </author>

 <journal> J Appl. Phys., </journal>

 <volume> 76, </volume>

 <pages>893, </pages>

 <date> (1994). </date>

 </NEWREFERENCE>

 <NEWREFERENCE id="3">

ahlskog1994a

 <author> M. Ahlskog, J. Paloheimo, H. Stubb, P. Dyreklev, M.

Fahlman, O. Inganas and M.R. Andersson, </author>

 <journal> J Appl. Phys.,</journal>

 <volume> 76, </volume>

 <pages>893, </pages>

 <date> (1994). </date>

 </NEWREFERENCE>

 <NEWREFERENCE id="4">

ahlskog1994a

 <author> M. Ahlskog, J. Paloheimo, H. Stubb, P. Dyreklev, M.

Fahlman, O. Inganas and M.R. Andersson,</author>

 <journal> J Appl. Phys., </journal>

 <volume> 76, </volume>

 <pages>893, </pages>

 <date> (1994). </date>

 </NEWREFERENCE>

 <NEWREFERENCE id="5">

48

ahlskog1994a

 <author> M. Ahlskog, J. Paloheimo, H. Stubb, P. Dyreklev, M.

Fahlman, O. Inganas and M.R. Andersson,</author>

 <journal> J Appl. Phys., </journal>

 <volume> 76, </volume>

 <pages>893, </pages>

 <date> (1994). </date>

 </NEWREFERENCE>

 <NEWREFERENCE id="6">

ahlskog1994a

 <author> M. Ahlskog, J. Paloheimo, H. Stubb, P. Dyreklev, M.

Fahlman, O. Inganas and M.R. Andersson,</author>

 <journal> J Appl. Phys., </journal>

 <volume> 76, </volume>

 <pages>893, </pages>

 <date> (1994). </date>

 </NEWREFERENCE>

 <NEWREFERENCE id="7">

ahlskog1994a

 <author> M. Ahlskog, J. Paloheimo, H. Stubb, P. Dyreklev, M.

Fahlman, O. Inganas and M.R. Andersson,</author>

 <journal> J Appl. Phys., </journal>

 <volume> 76, </volume>

 <pages>893, </pages>

 <date> (1994). </date>

 </NEWREFERENCE>

 <NEWREFERENCE id="8">

ahlskog1994a

 <author> M. Ahlskog, J. Paloheimo, H. Stubb, P. Dyreklev, M.

Fahlman, O. Inganas and M.R. Andersson,</author>

 <journal> Journal of Applied Physics, </journal>

 <volume> 76, </volume>

 <pages>893, </pages>

 <date> (1994). </date>

 </NEWREFERENCE>

 <NEWREFERENCE id="9">

asfahl1992a

 <author> C. Ray Asfahl. </author>

 <title> Robots and Manufacturing Automation. </title>

 <publisher> John Wiley and Sons, </publisher>

 <address> New York, </address>

 <note> second edition, </note>

 <date> 1992. </date>

 </NEWREFERENCE>

 <NEWREFERENCE id="10">

benford1993a

 <author> Steve Benford and Lennart E. Fahlen. </author>

 <title> A spatial model of interaction in large virtual environments.

</title>

 <booktitle> In Proceedings of ECSCW'93, </booktitle>

49

 <address> Milan, </address>

 <date> 1993. </date>

 </NEWREFERENCE>

 <NEWREFERENCE id="11">

benford1994a

 <author> Benford, S., and Fahln, L. </author>

 <date> (1994), </date>

 <title> Viewpoints, Actionpoints and Spatial Frames for Collaborative

User Interfaces, </title>

 <booktitle> 6th ERCIM workshop, </booktitle>

 <date> June 1994, </date>

 <address>Stockholm. </address>

 </NEWREFERENCE>

 <NEWREFERENCE id="12">

benford1995a

 <author> Benford, S., Bowers, J., Fahln, L., Greenhalgh, C., and

Snowdon, D., </author>

 <title> User Embodiment in Collaborative Virtual Environments,

</title>

 <booktitle> in Proc. ACM Conference on Human Factors in

Computing Systems (CHI95), </booktitle>

 <date> May 7-11, 1995,</date>

 <address> Denver, Colorado, USA. </address>

 </NEWREFERENCE>

 <NEWREFERENCE id="13">

benford1995a

 <author> Benford, S., Bowers, J., Fahlen, L.E., Greenhalgh, C.,

Snowdon, D. </author>

 <date> (1995). </date>

 <title> User Embodiment in Collaborative Virtual Environments.

</title>

 <booktitle> In Proceedings of CHI95, </booktitle>

 <pages> 242-249. </pages>

 </NEWREFERENCE>

 <NEWREFERENCE id="14">

benford1995a

 <author> Benford, S., Bowers, J., Fahlen, L.E., Greenhalgh, C.,

Snowdon, D. </author>

 <title> User Embodiment in Collaborative Virtual Environments.

</title>

 <booktitle> In Proceedings of CHI95, </booktitle>

 <volume> 242 249. </volume>

 <date>1994.</date>

 </NEWREFERENCE>

 <NEWREFERENCE id="15">

benford1995b

 <author> Steve Benford, John Bowers, Lennart Fahlen, Chris

Greenhalg, John Mariani, and Tom Rodden. </author>

 <title> Networked Virtual realitty and Cooperative Work. </title>

 <journal> Presence,</journal>

50

 <volume> 4(4) </volume>

 <pages> 364-386, </pages>

 <date> 1995. </date>

 </NEWREFERENCE>

 <NEWREFERENCE id="16">

brown1992a

 <author> Brown, D. F., Moura, H. and Watt, D. A. </author>

 <date> (1992b), </date>

 <title> Actress: an action semantics directed compiler generator,

</title>

 <editor> in U. Kas-tens and P. Pfahler, eds, </editor>

 <booktitle> `Proceedings of the International Workshop on Compiler

Construction (CC-92)', </booktitle>

 <note>Vol. 641 of Lecture Notes in Computer Science, </note>

 <publisher> Springer-Verlag, </publisher>

 <address> Paderborn, Germany, </address>

 <pages> pp. 95-109. </pages>

 </NEWREFERENCE>

 <NEWREFERENCE id="17">

brown1992a

 <author> Brown, D. F., Moura, H. and Watt, D. A. </author>

 <date> (1992b), </date>

 <title> Actress: an action semantics directed compiler generator,

</title>

 <editor> in U. Kas-tens and P. Pfahler, eds, </editor>

 <booktitle> `Proceedings of the International Workshop on Compiler

Construction (CC-92)', </booktitle>

 <note>Vol. 641 of Lecture Notes in Computer Science, </note>

 <publisher> Springer-Verlag, </publisher>

 <address> Paderborn, Germany, </address>

 <pages> pp. 95-109. </pages>

 </NEWREFERENCE>

 <NEWREFERENCE id="18">

brown1992a

 <author> D. F. Brown, H. Moura, and D. A. Watt. Actress: </author>

 <title> an action semantics directed compiler generator. </title>

 <editor> In U. Kastens and P. Pfahler, editors, </editor>

 <booktitle> Proceedings of the 4th International Conference on

Compiler Construction (CC'92), </booktitle>

 <note>volume 641 of Lecture Notes in Computer Science, </note>

 <pages> pages 95-109, </pages>

 <address> Paderborn, FRG, </address>

 <date>October 1992. </date>

 <publisher> Springer-Verlag. </publisher>

 </NEWREFERENCE>

 <NEWREFERENCE id="19">

buth1992a 5.

 <author> B. Buth, K.-H. Buth, M. Franzle, B. v. Karger, Y.

Lakhneche, H. Langmaack, and M. Muller-Olm. </author>

51

 <title> Provably correct compiler development and implementation.

</title>

 <editor> In U. Kastens and P. Pfahler, editors, </editor>

 <booktitle> Compiler Construction, </booktitle>

 <note>volume 641 of Lecture Notes in Computer Science. </note>

 <publisher> Springer-Verlag, </publisher>

 <date> 1992. </date>

 </NEWREFERENCE>

 <NEWREFERENCE id="20">

buth1992a 6.

 <author> B. Buth et. al., </author>

 <date> 1992, </date>

 <title> Provably Correct Compiler Implementation, </title>

 <editor> in U. Karstens and P. Pfahler (eds.) </editor>

 <booktitle> Compiler Construction, </booktitle>

 <publisher> Springer Verlag, LNCS 641, </publisher>

 <pages> pp. 141-155. </pages>

 </NEWREFERENCE>

</CORA>

52

Parsed Dataset

53

54

55

56

57

Standardized Dataset

58

59

