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Abstract 

 Efficiencies in farming practice in many parts 

of South East Asia can make substantial, positive 

differences to villages and communities. The use of 

automated decision-assistance tools such as Bayesian 

Belief Networks (BBNs) can help to accomplish this. 

For the problem described herein, farmers attempt to 

grow both rice and shrimp crops in the same physical 

area. The motivation becomes one of finding a set of 

conditions that minimises the probabilities of crop 

failures. In this work, we explore an existing BBN 

and determine a range of likely environmental 

scenarios and the factors that farmers can control to 

help improve the likelihood of harvesting successful 

rice and shrimp crops. 

 

1. Introduction 

 Farming any crop requires the efficient use of 

resources so as to ensure high yield and low risk of 

crop failure. This is especially so for subsistence 

farming across the developing world. It is often the 

case that farming practice is driven by experience and 

information handed down from previous generations 

or those in the community. Increasingly, however, 

this knowledge coupled with advances in agriculture, 

machine intelligence and data analytics means that 

far more precision can be embedded into traditional 

practice to ensure better and more consistent 

cropping outcomes. In this paper, we examine one 

such system, in which rice and shrimp are 

simultaneously farmed in the same physical area in 

the Mekong Delta, Vietnam. Using an existing belief 

system, encoded as a Bayesian Belief Network 

(BBN), we are able to derive sets of conditions with 

appropriate decision values that improve the 

probability of crop success. Additionally, we are able 

to pinpoint the reasons for these, which gives us 

greater insight into the causal connections in the 

network. 

 The remainder of this paper is organised as 

follows. Section 2 describes Bayesian Belief 

Networks (BBNs). Section 3 outlines how 

information was elicited and structured as a BBN 

applied to the rice/shrimp problem and analyses the 

resulting network to determine which variables 

define either the decision or scenario vectors. Section 

4 explores the model outcomes, and shows how 

recommended actions can be deduced and delivered. 

Finally, Section 5 provides some concluding remarks 

and outlines future directions for this research. 

 

2. Bayesian Belief Networks 

 The world consists of complex sets of 

interrelationships that are often non-linear and 

probabilistic in nature. A popular modelling 

technique that is able to capture relationships such as 

these, is referred to as Bayesian Belief Networks [1, 

2]. Technically, a BBN is a directed, acyclic graph. 

Each node in the graph is called a Conditional 
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Probability Table (CPT) and has a set of mutually 

exclusive states that show the probability of 

achieving a particular outcome, given the condition 

of its parent nodes. In effect, any ultimate parent 

node is considered input to the problem, whereas an 

ultimate child node is an output. These networks may 

be of unlimited size and complexity in terms of the 

number of nodes and links.  

 Given the above characteristics, BBNs have 

been applied extensively to ecological and 

environmental systems [3]. There is a number of 

articles that demonstrate their effectiveness. A couple 

of the more relevant and related examples are briefly 

discussed here. The predecessor work to this current 

paper will be discussed more extensively in the next 

section. 

 Using a collaborative approach, between 

farmers and researchers, to knowledge elicitation, 

Smith, Russel and King [4] develop a BBN that 

models the interaction between rodents (rats in 

particular) and growing rice crops in Cambodia. The 

aim of this system is to find effective rodent control 

measures that minimise harm to the human 

population. To this end, two BBNs were developed. 

The first concentrated on maximising the 

effectiveness of the rodent traps while the second 

concerned the cost benefit ratio. From this, a better 

understanding of the system interactions was gained. 

 One of the main issues with BBNs are that 

they are based on human beliefs, and these are 

encoded into networks. In quite similar circumstances 

to the work described in this paper, Baran, Jantunen 

and Chheng [5] developed BBN-based decision 

support systems for water management in situations 

of conflicting, conjunctive water use in agriculture in 

the Mekong Delta. Pollino, Woodberry, Nicolson, 

Korb and Hart [6] endeavored to classify CPT nodes 

as either based on belief (via knowledge elicitation), 

or determine if they can be encoded with 

scientifically established data. They demonstrated 

this “parametisation” approach for the development 

of a BBN to study risks to native fish communities in 

the Goulburn Catchment area (Victoria, Australia). 

Given the improved reliability of the model, they 

were able to confidently rank the risks to assist 

management prioritisation efforts. 

3. A BBN Applied to the Rice/Shrimp 

Problem  

 The work in this paper extends that of Stewart-

Koster et al [7] by performing data   analysis on their 

rice/shrimp BBN. In their paper they describe a 

combined aquiculture system in which rice and 

shrimp crops are grown in the same physical area. 

Essentially, this system consists of a pond which 

contains a raised soil platform surrounded by a 

narrow, but deep ditch. The rice is planted on the 

platform while the shrimp mainly inhabit the ditch, 

but often feed on algae associated with the rice plants 

during the night. Both crops, however, require quite 

different conditions in order to be successful. One of 

the main   differences is that of salty/brackish water. 

While shrimp may prefer this, it is a major limitation 

to growing rice. 

 Resolving issues like the above is not easy, 

and hence models of the system need to be 

constructed in order to properly understand it. These 

model designs require the collaboration of farmers, 

scientists, facilitators and even translators in a 

process the authors refer to as   participatory 

modelling. The result of this is the production of a 

model in the form of a BBN which will allow farmers 

(the end users) to predict the probability of rice and 

shrimp crop failure under certain conditions such as 

expected rainfall volume, timing of the onset of the 

wet season, rice colour (a visual indicator of nutrient 

deficiency) and the quality of the shrimp stock. For 

reference, their BBN is reproduced in Figure 1 at the 

end of this paper. 

 The analysis conducted by Stewart-Koster et 

al. [7] revealed a number of interesting characteristics 

of the network. These are governed by the 

perceptions of the farmers, rather than necessarily 

historical or scientific fact. One of the major findings 

was that the systems were governed, more than 

anything else, by the timing of the wet season onset. 

This perception influences, for example, how much 

fertiliser they thought should be applied to the rice 

crop, or the quality of the water. On the soil side, 

better quality soil would influence the shrimp 

stocking density that the farmers could use. Overall 

better quality soil was associated with the probability 

of lower crop failure. However, overall, through the 

BBN elicitation process, it was found that farmers 

were generally pessimistic about the success of their 

rice crops, but more optimistic about shrimp harvests.  

 The work described in this paper focusses on 

extracting knowledge from the BBN. By inspecting 

Figure 1 it may be seen that two key nodes provide 

information about outcomes: “Risk of rice failure” 

and “Risk of shrimp failure”. By testing inputs to 

other nodes, particularly those that define the farming 

environment or represent actions that farmers might 
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take, it is possible to discover the sets of conditions 

that minimise the probability of rice and shrimp 

failure. This is not so much a process of optimisation 

as one of data mining, discovering relationships by 

inspection of data [8]. It is possible in this case since 

selecting one of the possible input conditions for a 

node sets the probability of that condition to 100%, 

and the possibility of other conditions to 0%. Hence, 

there are a finite and limited set of combinations to 

explore.  

 Further inspection of Figure 1 reveals a 

number of nodes that together define specific 

scenarios. Two – “Rainfall volume” and “Wet season 

onset” – define the governing climatic conditions for 

the season. Together with “Soil nutrient load”, they 

set the environment in which farmers’ actions must 

be taken. Farmers can then decide on a number of 

actions prior to planting. They can choose to apply 

liming agents to the soil, and can till the soil. Other 

factors that may affect the final outcomes will be 

what shrimp stocking density they choose, whether 

they decide to plant salt-tolerant rice, and what water 

colour management option they use. 

 At planting, it is possible for farmers to make 

a series of measurements and estimations: of “Soil 

salinity”, “Platform soil pH”, “Water temp[erature]”, 

“Wet season water salinity” and “Soil nutrient load”. 

In Figure 1, the corresponding nodes “cut-out” 

influences of nodes above, setting the scenario for the 

planting season. Farmers actions are now limited to 

whether to choose salt-tolerant rice, the stocking 

density of shrimp, and water colour management 

option. 

 After planting, it would be possible to lower 

the “cut-out” further, defining the scenario by 

“Platform soil quality” and “Wet season 

W[ater]Q[uality]”, and what choices were made for 

rice salt-tolerance and shrimp stocking density. 

However, we have chosen to keep the “higher level” 

nodes from the planting season scenario because 

these are based on physical measurements, rather 

than subjective assessment: for example, whether wet 

season water quality was “good for shrimp”. 

Farmers’ actions are now limited to assessing rice 

colour (as part of the scenario), which will determine 

the level of fertiliser applied, and water colour 

management. 

 We have now divided the farming into three 

periods: pre-planting, planting, and post-planting. In 

each period, a number of conditions define a 

particular scenario, and farmers can make a number 

of choices, gradually decreasing in flexibility as the 

season progresses. 

 To investigate these different cases, we 

undertook three experiments, one for each of the 

three periods of interest. For each period, we 

repeatedly ran the BBN, entering “findings” for the 

nodes to define each scenario. Then each of the 

possible actions and choices were entered for each 

scenario. The corresponding “belief” of the 

probability of failure of the rice crop and shrimp crop 

was recorded for each combination of choices in each 

scenario. 

 It may be noted that Figure 1 includes a 

number of actions responding to shrimp stress and 

disease. While these actions significantly impact 

shrimp survival rates, they are critically dependent on 

a number of unknown factors, such as the timing of 

detection of shrimp stress. For this reason, these 

factors were not included in this particular study. 

4. Outcomes of the Rice/Shrimp Model  

 Once the data had been gathered for each of 

the experiments, structured essentially as a complete 

enumeration of a decision tree [9], they were 

analysed to determine optimal practices within a 

given period and scenario. A separate dataset was 

delivered for each experiment, corresponding to one 

of the three periods (pre-planting, planting and post-

planting. Three corresponding scripts in the R 

statistical analysis language [10] were developed to 

extract the data for a given scenario, reorder the data 

for monotonic increase in probability of shrimp 

failure and determine the set of conditions for 

mutually minimal probability of failure of rice and 

shrimp crops. The scripts output this information in 

text and graphical form. 

 An example of the output from the pre-

planting analysis is shown in Figure 2. This shows 

the optimal actions for a scenario of early onset of the 

wet season with heavy rainfall and high soil nutrient 

load. 

 The “sweet spot” for best outcomes has 

automatically been circled on the graphs of 

probability of rice crop failure (dashed line, upper 

graph, overlaid with simple moving average 

smoothing) and shrimp crop failure (solid line, upper 

graph). The conditions to achieve the minimal 

probability of failure in each crop (presented at the 

top) are given at top left. (The scenario conditions are 

provided for reference at the top right.) Actions taken 

are graphed below. These allow exploration of “what 

if” variations; for example, it can be seen that if 
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shrimp crop density is increased to “high” (labelled 

dotted line below the main graph, toward the right) 

there is a corresponding major increase in the 

probability of shrimp crop failure. 

 An example of output for the planting season 

is shown in Figure 3. The scenario shown is for low 

soil and water salinity, balanced soil pH, high soil 

nutrient load and low water temperature. As can be 

seen, there are fewer actions available to farmers (the 

graphs have fewer distinct cases within the scenario, 

though there are more scenarios defined.) Once again 

the link between stocking density and shrimp crop 

failure can be seen. 

 Finally, an example of post-planting output is 

shown in Figure 4. The scenario is now defined by 8 

conditions, and there is only one choice available to 

farmers: water colour management option. The 

optimal actions also mention that fertiliser applied 

should be above the recommended level. However, 

this is not a “free” choice – it is determined by the 

farmer’s assessment of the rice colour, and the factors 

contributing to the “Platform soil quality”, 

determined by the choice of scenario. It must be 

extracted from the BBN data by searching for the 

fertiliser level with the highest conditional 

probability corresponding to the optimal actions 

within the scenario. This highlights a consideration 

that should ideally be kept in mind when designing 

BBNs – nodes defining actions to be chosen should 

not have parent nodes that constrict their conditional 

probabilities. The only choice left at this stage is 

water colour management, which has negligible 

impact on outcomes. While there are only two states 

within each scenario depending on this choice, there 

are over 2500 distinct scenarios of detailed 

specification. 

 

5. Conclusion  

 The work described in this paper has harvested 

knowledge from data generated by a Bayesian Belief 

Network (BBN) derived from extensive prior 

consultation and development work. It provides an 

overview of how the knowledge was extracted using 

simple data mining and visualisation techniques. It is 

hoped that novel presentation of the outcomes can 

provide guidance and assistance to farmers on the 

land, and consultation is planned to try to determine 

what questions are of prime interest, and how 

information can best be presented.  

 A second phase of the broader research 

program is looking to incorporate scientific data from 

experiments in the field into a new BBN. The 

structure of this new BBN is being informed by the 

attempts at knowledge extraction reported in this 

paper; in particular, ensuring that nodes that embody 

decisions should not be subject to constraint of the 

choices from “parent” nodes. The conceptual 

partitioning of the network into distinct phases 

corresponding to different periods of the growing 

season is also being given further attention, to allow 

easy entry of field data to “cut-out” effects from 

“higher” nodes at the boundary between phases. 

 In terms of practical application of this 

approach, we would like to transfer the knowledge 

described in this paper into a mobile app that will be 

readily available to farmers as a decision support 

tool. The idea would be for the app to access a data 

file that is the output of all possible scenarios with 

decision variables, the decision tree, from the BBN. 

Users of the app, such as farmers and regional 

planners, would simply select the scenario (with 

fields such as wet season onset, and rainfall volume) 

to return the recommended actions (e.g. soil lime 

treatment and tilling, rice salt tolerance, shrimp 

stocking density, etc.) to maximise their chances of 

simultaneously harvesting successful rice and shrimp 

crops. The recommendations would be tailored to the 

needs of one of the many, specific scenarios. Further 

refinements might include entering production costs 

and yield income to incorporate economic conditions 

into the decision making under the model. 
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Figure 2. Pre-planting experimental output. 
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Figure 3. Planting season experimental output. 
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Figure 4. Post-planting experimental output 
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