
Moving Region-based Fast Encoding Scheme for
HEVC Inter Coding

Ei Ei Tun
Department of Electrical Engineering

Chulalongkorn University
Bangkok 10330, Thailand

Faculty of Computer Systems and Technologies
University of Computer Studies, Yangon

Yangon, Myanmar
eieitun@ieee.org

Htoo Maung Maung
Department of Research and Innovation

Ministry of Education
Yangon, Myanmar

htoomaung@ieee.org

Supavadee Aramvith
Multimedia Data Analytics and Processing Research Unit

Department of Electrical Engineering
Chulalongkorn University
Bangkok 10330, Thailand
supavadee@a.chula.ac.th

Yoshikazu Miyanaga
Chitose Institute of Science and Technology

Chitose, Hokkaido 066-8655, Japan
y-miyana@photon.chitose.ac.jp

Abstract—This paper proposes a fast inter encoding scheme
for High Efficiency Video Coding (HEVC) by utilizing a moving
region (MR) to enhance the video quality of our previous scheme
for HEVC. Our previous scheme modeled the coding tree unit
(CTU) partitioning problem as an optimization problem and
solved it by a simple optimizer called a genetic algorithm (GA).
To improve the quality of our previous work especially at a low
bitrate, the motion information of each CTU is analyzed with the
frame difference method. Next, the CTU is categorized into two
groups: MR and non-MR. Then, the partitioning pattern (PP)
of the current CTU is calculated by GA if the current CTU is
in MR. Otherwise, PP from the collocated CTU of the previous
key frame is utilized. According to the experimental results, MR-
based algorithm can achieve an improved video quality compared
with our previous algorithm.

Index Terms—High efficiency video coding, coding tree unit,
partitioning pattern, moving region, genetic algorithm

I. INTRODUCTION

ITU-T and ISO/IEC have built a collaborative research to
launch High Efficiency Video Coding (HEVC) [1] principally
for the high definition (HD) and Ultra HD (UHD) videos.
HEVC outperforms the encoded video with the 50% bitrate
reduction under the comparable video quality of its antecedent
called H.264/AVC [2]. However, the computational cost of
HEVC is significantly high and not realistic for a real-
time environment due to its advanced coding implementations
mainly coding tree unit (CTU) partitioning as shown in Fig. 1.
To carry out the fast algorithm, the earlier schemes have
statistically estimated CTU partition by analyzing the original
nature of CTU partitioning of HEVC such as in [3]– [5]. From
a few years ago, machine learning (ML) approaches [6]– [10]
focused on fast encoding due to the learning ability from huge

a b

c d

m

f g
h i

j

k l

e

e m

ba c d j k l

gf h i

depth 0

depth 1

depth 2

depth 3

Fig. 1. Example CTU partitioning pattern of PartyScene.

and complex data amount to the optimal conclusion. To lessen
the computational complexity of HEVC inter coding, we firstly
presented a fast coding unit (CU) coding method by utilizing
a genetic algorithm (GA) [11] for searching the partitioning
pattern (PP) for each CTU. Nowadays, the temporal correlation
between successive frames is huge since the frame rate of HD
video is 50/60 frames per second (fps) and UHD video is up
to 120 fps. Therefore, the time intervals between sucessive
frames are extremely small such as 0.02, 0.03, 0.05, and 0.07
seconds for two, four, six, and eight sucessive frames of the
120 fps test sequence, respectively. Due to these insignificant
time intervals, it is reasonable to share PPs of one frame to its
sucessive frames under a comparable video quality. To apply
for both low to the high frame rates and to accompany a group
of pictures (GOP) of coding structure, we reasonably defined
a sharing range as four which is the default GOP size of low
delay (LD) and low delay P (LDP) configurations. Then, we
utilized GA [12] to find PPs for only the important frame,
named key frame, and shared to three following frames, also
known as common frames, by considering the high temporal

d2,1d2,0 d2,2 d2,3 d2,5d2,4 d2,6 d2,7 d2,9d2,8 d2,10 d2,11 d2,13d2,12 d2,14d2,15

d0

d1,1 d1,2 d1,3d1,0

64x64 CTU

32x32 CU

16x16 CU

8x8 CU

Fig. 2. Chromosome pattern of a genetic algorithm.

correlation of the current video sequences. The key frame is
usually encoded by using small quantization parameter (QP)
value to get a better video quality than the common frame.
Thanks to the effective chromosome structure as shown in
Fig. 2 and fitness function, our previous fast encoding scheme
[11] achieves 16.7% and 62.5% time saving (TS) on average
with a comparable video quality compared with state-of-the-art
ML-based fast encoding [10] and original HEVC test model
16.5 (HM16.5), respectively, under the LDP configuration with
enabled rate control (RC).

The main idea of the previously proposed scheme is to
significantly reduce the computational complexity with a com-
parable video quality especially at a high bitrate. In current
communication networks including 5G, the available band-
width is going up. Apparently, we can increase the bitrate to
be high and we can consider high bitrate in video coding. Our
method gets a comparable peak signal to noise ratio (PSNR) at
a high bitrate with a significant time saving. For the calculation
cost for small equipment, the reduction in calculation cost
should be an important issue. However, there is some quality
degradation of our previous method at a low bitrate. Therefore,
to increase the PSNR value of our previous encoding scheme at
a low bitrate especially for the video sequence which has fast-
moving objects, we analyze the motion information of each
CTU and determine whether the current CTU should utilize
the partitioning pattern from the collocated CTU of the key
frame or not.

II. PROPOSED FAST ENCODING SCHEME

A. Moving Region Extraction

To get the moving region information of the video frame,
we utilize the frame differencing method (FDM) with a global
motion vector (MV) which can lower the motion effect of the
camera. To quickly find a global motion vector (GMV), the
gray projection method (GPM) is reasonably utilized in our
proposed system. GPM is very practical for time-constrained

Fig. 3. Moving region result from FDM.

applications because of its low computational complexity.
Firstly, we calculate GMV by using GPM. Then, we predict
the motion-compensated frame with GMV as the previous
frame. And then, we determine the frame difference value
among the current frame and the motion-compensated frame
for every CTU using

Dctu(f) =

[
Fctu(f)− Fctu(f − 1, GMV)

]
× wctu (1)

where Dctu is the frame difference for the specific CTU,
GMV is the global motion vector, f is the current, and (f−1)
is the motion-compensated frames. To assign a specific weight
valued based on the location of CTU, we use three heuristic
values of wctu based on three specific locations of the frame
such as core, middle, and boundary region. Finally, we define
the MV array for the current frame by using a predefined
threshold

MV [ctu] =

{
1, if Dctu(f)/Davg(f) > Th

0, otherwise
(2)

where Davg(f) is the average difference value for the current
frame and Th is empirically selected as 0.75. As shown in
Fig. 3, there are two regions: MR and non-MR. The black
color represents the CTUs of non-MR.

B. Overall Algorithm

In [11], three main stages are necessary for encoding each
CTU of the key frame. First, the rate distortion (RD) costs for
85 CUs were roughly calculated with the most common mode
SKIP/MERGE if the depth of CTU is 0 and its maximum depth
is 3. Next, PP for each CTU was efficiently calculated by a
simple optimizer, named GA, and our innovative formulation
for fitness function and effective definition for chromosome

Algorithm 1 Moving Region based Fast Encoding Scheme for the common frames
Ensure: ppArrKFrame
Require: ppArrCFrames

Step 1: Calculate Moving Vector array MV for common frame

1: ctu← 1
2: for each ctu <= numberOfCTU do
3: MV [ctu]← findMVWithFDM(ctu)
4: end for

Step 2: Searching the PPs for the moving region or utilize the PPs of the key frame for the non-moving region

5: ctu← 1
6: n← 0
7: for each ctu <= numberOfCTU do
8: if MV [ctu] == 1 then
9: rdCostArray ← calculateRDCostWithMerge()

10: costd0 ← rdCostArray[n++]
11: i← 0
12: for each i < 4 do
13: costd1,i

← rdCostArray[n++]
14: j ← 4 ∗ i
15: for each j < 4 ∗ i+ 4 do
16: costd2,j

← rdCostArray[n++]
17: k ← 4 ∗ j
18: for each k < 4 ∗ j + 4 do
19: costd3,k

← rdCostArray[n++]
20: end for
21: end for
22: end for
23: chro← 0
24: for each chro < sizeOfPopulation do
25: chroArr[chro]← randomChromosome()
26: d0 d1,0d1,1d1,2d1,3 d2,0d2,1d2,2d2,3d2,4d2,5d2,6d2,7d2,8d2,9d2,10d2,11d2,12d2,13d2,14d2,15 ← chroArr[chro]

27: fit← (1− d0)costd0 + d0

[∑3
i=0(1− d1,i)costd1,i + d1,i

(∑4i+3
j=4i(1− d2,j)costd2,j

+ d2,j
∑4j+3

k=4j costd3,k

)]
28: fitnessArr[chro]← fit
29: end for
30: parentSize← 5
31: sameFitnessFrequency ← 2
32: bestChromosome← findBestChroWithGA(chroArr, fitnessArr, parentSize, sameFitnessFrequency)
33: ppArrCFrames[ctu]← bestChromosome
34: else
35: ppArrCFrames[ctu]← ppArrKFrame[ctu]
36: end if
37: end for
38: return ppArrCFrames

TABLE I
SUMMARY OF NOTATIONS IN ALGORITHM 1.

Notation Description
ppArrCFrames The partitioning pattern array of the non-key frame (common frame)
ppArrKFrame The partitioning pattern array of the previous key frame

ctu The index of current CTU
numberOfCTU Total number of CTUs for each frame

MV Output motion vector array from FDM
findMVWithFDM() Find MV using (1) and (2)

n The index of RD cost array
rdCostArray The RD cost array which is calculated with the most important mode (MERGE/SKIP)

calculateRDCostWithMerge() Calculate the approximate RD cost after encoding MERGE/SKIP mode
costd0 , costd1,i , costd2,j , costd3,k RD cost array for depth 0, 1 and 2

chro The index of the current chromosome
sizeOfPopulation Total number of chromosome for each population

chroArr The chromosome array for each population
randomChromosome() Create a valid chromosome randomly
d0, d1,0...d1,3, d2,0...d2,15 First gene, 4 and 16 genes of chromosome to decide CU partition at depth 0, 1, and 2

fit, fitnessArr The fitness value of each chromosome and fitness array for each population
parentSize Total number of best parent chromosomes for generating a newly better population

sameFitnessFrequency The termination point of GA
findBestChroWithGA() Search the best chromosome based on the fitness value of each chromosome

bestChromosome The best chromosome with the best fitness value

structure of GA. Finally, the CU size was estimated by
utilizing PP.

In this work, we search the partitioning pattern for each
CTU of the key frame by using GA as the same as our previous
work. For common frames, we design an algorithm which is
described in Algorithm 1 for searching partitioning pattern of
each CTU based on MR information. In this algorithm, we
firstly search the MVs of the common frame and utilize the
value of MV for determining whether the PP of the current
CTU will be searched by GA or shared by the collocated
CTU. Table I lists the notations used in the algorithm and
their descriptions.

 25

 26

 27

 28

 29

 30

 31

 32

 1.5 2 2.5 3 3.5 4 4.5 5

P
S

N
R

 (
d
B

)

Bitrate (x100 kbps)

HM16.5
PreviousWithMR
PreviousWithoutMR[11]

Fig. 4. Video quality improvement of the proposed system for BQMall .

 26

 27

 28

 29

 30

 31

 32

 1.5 2 2.5 3 3.5 4 4.5 5

P
S

N
R

 (
d
B

)

Bitrate (x100 kbps)

HM16.5
PreviousWithMR
PreviousWithoutMR[11]

Fig. 5. Video quality improvement of the proposed system for ChinaSpeed .

III. PERFORMANCE EVALUATION

For evaluating the PSNR performance of our MR-based
fast encoding scheme, we implemented our MR scheme on
the previous algorithm [11]. The performance benchmarks
are the original HM16.5 and the previous one without MR
[11] especially for fast movement video sequences such as
BQMall which includes several moving people in foreground
and ChinaSpeed which is a screen recording of a driving
game. Under LDP configuration with enabled RC, we can
achieve a better PSNR value after combining the MR approach
in our previous encoding scheme about 0.32, 0.23, and 0.19
dB at 128, 256, and 512 kbps, respectively, with the same
TS as shown in Fig. 4 of BQMall. According to Fig. 5
for ChinaSpeed, it can be found that our previous algorithm

combined with MR can achieve 0.2, 0.16, and 0.12 dB quality
improvement with the same TS.

IV. CONCLUSION

The previous fast encoding scheme has significantly
achieved time saving due to the effective chromosome struc-
ture and powerful fitness function at a high bit rate. To compat-
ible with our previous approach at a low bitrate, we designed
a moving region extraction by using FDM and combined it
with our GA-based fast encoding. Thanks to the simple and
effective MR information, we can improve the PSNR and can
achieve a similar time saving especially for video sequences
that have fast-moving objects in the foreground scene.

REFERENCES

[1] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–
1668, Dec. 2012.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

[3] L. Shen, Z. Liu, X. Zhang, W. Zhao, and Z. Zhang, “An effective
CU size decision method for HEVC encoders,” IEEE Transactions on
Multimedia, vol. 15, no. 2, pp. 465–470, Feb 2013.

[4] X. Hou and Y. Xue, “Fast coding unit partitioning algorithm for
HEVC,” in 2014 IEEE International Conference on Consumer Elec-
tronics (ICCE), Jan 2014, pp. 7–10.

[5] I. Zupancic, S. G. Blasi, E. Peixoto, and E. Izquierdo, “Inter-prediction
optimizations for video coding using adaptive coding unit visiting order,”
IEEE Transactions on Multimedia, vol. 18, no. 9, pp. 1677–1690, Sept
2016.

[6] X. Shen and L. Yu, “CU splitting early termination based on weighted
SVM,” EURASIP Journal on Image and Video Processing, vol. 2013,
no. 1, p. 4, Jan 2013.

[7] G. Correa, P. A. Assuncao, L. V. Agostini, and L. A. da Silva Cruz,
“Fast HEVC encoding decisions using data mining,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 25, no. 4, pp. 660–
673, April 2015.

[8] Y. Zhang, S. Kwong, X. Wang, H. Yuan, Z. Pan, and L. Xu, “Machine
learning-based coding unit depth decisions for flexible complexity
allocation in high efficiency video coding,” IEEE Transactions on Image
Processing, vol. 24, no. 7, pp. 2225–2238, July 2015.

[9] A. Heindel, T. Haubner, and A. Kaup, “Fast CU split decisions for
HEVC inter coding using support vector machines,” in 2016 Picture
Coding Symposium (PCS), Dec 2016, pp. 1–5.

[10] L. Zhu, Y. Zhang, S. Kwong, X. Wang, and T. Zhao, “Fuzzy SVM-based
coding unit decision in HEVC,” IEEE Transactions on Broadcasting,
vol. PP, no. 99, pp. 1–14, 2017.

[11] E. E. Tun, S. Aramvith, and Y. Miyanaga, “Fast coding unit encoding
scheme for HEVC using genetic algorithm,” IEEE Access, vol. 7, pp.
68 010–68 021, May 2019.

[12] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1996.

