

Developing Scalable and Lightweight Data Stream

Ingestion Framework for Stream Processing

 Nwe Ni Hlaing

 Faculty of Computing

University of Computer

Studies,Yangon

Yangon, Myanmar

nwenihlaing@ucsy.edu.mm

Thi Thi Soe Nyunt

Faculty of Computer Science

 University of Computer

Studies,Yangon

Yangon, Myanmar

thithi@ucsy.edu.mm

 Abstract—According to the development of technology,

enormous amount of data are being generated as a continuous

basis from Social media, IOT devices, and web etc. This lead to

big data era. Many researchers are paying attention on

massive amount of data stream processing coming with a

rapid rate to gain valuable information in real-time or to make

immediate decision .Data Ingestion Stage is an important part

in data stream processing system .It is responsible for the data

collection from different locations and then deliver this data

for processing. The most important requirement of data

ingestion is to provide low latency, high throughput, and

scalability with many data producers and consumers. It can

influence on entire stream processing performance. In big data

stream computing, speed at which data being created and

explosive growth of data lead to new challenges. One

challenge is to accurately ingest different stream data into a

processing platform or data storage platform.Current existing

data stream ingestion systems use a combination of Apache

NiFi and Kafka. Apache Nifi is used for collection and

preprocessing of structured and unstructured data feeds.

Kafka is used for message distribution. However, processor

such as MergeRecord in Nifi can be memory , I/O CPU

intensive.As a result,when processing massive data streams

creation with high speed can lead to a lot of memory effort ,

input/output bottleneck or central processing unit (CPU)

bottleneck.It leads to impact on the performance of stream

processing layer and it is not appropriate for time sensitive

applications. In this paper, we propose to use a combination of

StreamSets Data Collector and Kafka to collect and

transform from various sources of structured and

unstructured feeds.

Keywords— StreamSets Data Collector, Stream Ingestion,

Apache Kafka ,Big Data

I. INTRODUCTION

According to unprecedented development of device

technologies, such as Internet of Things (IoT), smartphones,

smart sensors and 5G technology, enormous amount of data

are generated on a daily basis[1]. The amount of data is

getting bigger and bigger. In research and industrial

communities, Big Data has obtained a great amount of

attention .Big Data Stream Computing is one of the type of

Big data which need to be processed with low latency to

provide real time requirement. In Big Data applications,

there has been gradually increasing moving from batch

based processing to stream-based processing that enable

them to gain valuable information in real-time[3]. Due to

explosive growth of data, enterprise also have enormous

stream data that necessary to process in real time to make

immediate decision for organization profit. There is an

increasing demand for E-commerce, web site analytics ,

intrusion detection and other practical applications.

A typical distributed stream processing systems compose

of three layers including data collection , data ingestion

and stream processing[1] . In data collection stage, massive

amount of stream records are being generated from event

sources(e.g. sensors, smart devices).Data ingestion layer is

responsible for acquiring stream records, partitioned ,pre-

processed to facilitate consumption and manages flow of

information from incoming data sources to processing and

storage engine .Finally, in stream processing phase, big data

engines correspond to consume data stream buffered by data

ingestion phase using a pull-based model ,obtaining

consequent results and send this result to the storage layer.

In storage layer, it has the responsibility for retaining data

in databases for long-term persistence or storing data in-

memory. The stored data can be used for further processing.

In computing big stream data in real time, it is to reduce

necessary to focus on reducing end-to-end latency of the

three stage pipeline because of interesting to get immediate

results as fast as possible. The importance of data ingestion

cannot be overlooked as it can affect on the whole stream

processing system. When the speed at which new records

are created is very fast , one such challenge is the ability to

provide high throughput at the same time .In data ingestion

stage, it is essential to acquire stream data records with high

throughput from producer and also serve the consumers with

high throughput in pulling data records[3]. It also not only

need to reduce the producers’ write latency but also

consumers‘ read latency to guarantee low end-to-end

latency.

Therefore, Big Data engines need to design having

scalability with many concurrent consumers, which

support processing millions of records within a second [2] .

Motion data needs to manage the flow of data because

many organizations have stored data that need to be

migrated and processed in different locations. Within a

local center traditional streaming data analytics systems are

mostly limited to handle data flows. Nowadays, many

organizations are operating over data centers in distinct

geographic locations as the world has become more

connected. One such challenge that encounter in streaming

analytics system is how to collect ,connect massive data

streams across the globes and how to ingest many

different data sources obtaining from real-time headlines

from social media live multimedia, IoT data and blogs .In

data ingestion phase, one challenging task is to ensure how

to accurately provide continuous streaming data ingestion

and to control management of incoming data flow .So, there

is a need to provide new technology and systems that can

support robustness and desired scalability in solving

failures. Research study about streaming data ingestion

previously has been focused on bulk data loading,

deduplication ,data integration and integrity constraint

maintenance.

 State of the art streaming data ingestion methodologies

use a combination of Apache Nifi and Kafka for accurately

data ingestion and merging data streams from different

location into a processing platform. Apache Nifi is used for

data stream acquisition ,data stream integration and

extraction.Apache kafka is used for data stream

distribution. However ,our observation show that some

processor such as MergeContent, MergeRecord in Nifi can

be memory , I/O CPU intensive.As a result, high speed of

creating new streaming data and enormous amount of data

can lead to performance delay in input/output (I/O) and use

a a lot of memory, disk/network , or the central processing

unit (CPU) bottleneck . One such requirement in data

stream processing system is low latency. It leads to impact

on the performance of stream processing layer and it is not

appropriate for time sensitive applications .In this paper, we

propose a light weight ,high performance and scalable

streaming data ingestion framework for stream data

processing. We propose to use a combination of Streamsets

Control Hub instead of Apache Nifi and kafka for data

stream distribution to solve performance bottleneck

problems in Apache Nifi.

 The paper is arranged as follows .In section II, related

work with data stream ingestion are reviewed. In section III,

describes the propose system architecture. Section IV details

our experimental and evaluation results. Finally, concluding

the paper.

II. RELATED WORK

 Wei Jiang[1] proposed an improved data ingestion

architecture for stream processing system in real time

General architecture of stream processing system consists

of a combination Apache Flume ,Apache Kafka and

Storm. Flume is applied for collection the source data from

clients. Kafka is deployed for message distribution .Flume is

a JVM process which consume resource of producer

machine .This matter impact on the performance of the

producer’s machine. Authors focus on data loading process

of kafka.An important factor need to be consider when using

kafka is speed mismatch between message producers and

consumers as it can impact on the whole stream processing

system. Author use Kafka cat as a non JVM process instead

of flume to transfer data from the source to Kafka topic

directly and this lead to reduce the network transmission.In

order to avoid the performance bottleneck problem in Kafka

during data loading, Kafka use memory file system instead

of disk file system.

 Haruna Isah [2] describes among three stages of data

stream processing,the importance of data ingestion cannot

be overlooked and it has great influence on whole stream
processing system.This paper aim to accurately ingest

various sources of data streams and integrate data streams

generated from various sources into an analytic platform.

Authors examines the fundamental requirements of data

stream ingestion systems and propose fault-tolerant and

scalable a data stream ingestion and integration framework .

Authors proposed to use a combination of Apache Nifi

and kafka.Apache Nifi is deployed for acquiring data

streams, integration and extraction .Kafka is deployed as a

message distribution.This combination can serve as a

reusable component across many feeds of structured and

unstructured input data in a given platform. In this paper,

authors point out some nifi processors such as

MergeContent can lead to performance bottleneck in

input/output (I/O) , memory, disk/network usage, or the

central processing Unit because Nifi run inside a java

virtual machine. In order to guarantee for high volume and

high-performance dataflows, NiFi configuration is far from

ideal .

 In this paper, authors[3] presents data ingestion system

need to provide high throughput, low latency.It also needs

the capability to scale many data producers and consumers.

Apache Kafka use static stream partitioning and offset-

based record access,. These design can impact ingestion

phase ability to support high throughput and low latency. In

order to alleviate Kafka limitation, authors propose KerA, a

data ingestion framework that use a dynamic partitioning

scheme and lightweight indexing .It can improve

throughput latency and scalability of data ingestion layer.

 Gobblin[4] is a kind of data ingestion framework that is

developed by LinkedIn. According to an increasing amount

of heterogeneous LinkedIn’s data sources, authors proposed

to use Gobblin as a data ingestion . It supports adaptors

for accessing various data sources such as Kafka, MySQL,

S3, and Salesforce. Although authors focused on improving

latency , scalability and throughput, they do not taking into

account provenance and extensibility issues.

III. PROPOSED SYSTEM ARCHITECTURE

 The paper emphasize on data ingestion component

When processing data streams in real time ,the phase of data

ingestion is necessary to guaranetee high throughput and

reduce latency as much as possible. As a current data stream

ingestion methodology , a combination of apache Nifi and

Kafka is deployed to process massive data streams arriving

at rapid rate .But sometimes Nifi has low performance

because some Nifi processors needs a lot of memory effort,

CPU effort. It is not appropriate for making decision in real

time as it can increase latency of the processing layer and

take a lot of processing time. So, data ingestion phase must

be lightweight as it cannot satisfy the deadline constraint.

The purpose of this study is for developing lightweight and

scalable data ingestion framework for massive amount of

streaming data and to flexibly control management of data

flow between systems. In order to solve problems in

Apache Nifi, we proposed to use StreamSets Data

Collector(SDC) instead of Apache Nifi and deploy Kafka

for streaming data distribution .Fig. 1 shows framework for

proposed data flow management architecture. Our

framework architecture is divided into three components

,(1) Streaming Data Collection from disparate sources (2)

Data Stream Preprocessing such as extraction ,enrichment

and (3) Routing Data Streams to various downstream

systems such as storage layer or processing layer.

Fig. 1. Data Flow Management Architecture

A. Streaming Data Collection

 The process of acquiring data streams generated from

several sources with different formats is called data streams

collection [1] .It is also the main entry point for processing

data streams. Incoming data streams from social media such

as facebook,twitter ,IoT devices and sensors are bringing

into a processing platform .In this paper ,we are deploying

StreamSets Data Collector(SDC) for stream acquisition.

StreamSets Data Collector Framework provide common

data access .The framework [8] supports common data

access schemes such as, modern devices Representational

State Transfer (REST) API, Streaming API, or custom

schemes and sockets or application interaction patterns such

as publish-subscribe and stream protocols .

 The main reason of choosing StreamSets Data

Collector is also a powerful and lightweight data collection

engine that can access and collect streams data in real time

We can route and process data streams using data collector.

This StreamSets Data Collector [6] provides an attractive

web-based user interface (UI) to configure pipelines,

preview data, monitor pipelines, and review snapshots of

data. We can define the flow of data for Data Collector and

can configure a pipeline. A pipeline consists of stages that

represent the origin and destination of the pipeline, and any

additional processing that we want to perform. Data

Collector processes data when it arrives at the origin and

waits quietly when not needed.

 We can view real-time statistics about our data, inspect

data as it passes through the pipeline, or take a close look at

a snapshot of data. We will check each processor inside

your dataflow to make sure all processors are correctly

configured before we can run .Processors in StreamSets can

exchange record. The ingested data stream is automatically

converted into standard record-oriented format. There are no

queues in between processors in StreamSets Data Collector

and they are not represented visually different with Apache

NiFi. The advantage of using StreamSets Data Collector is

that it can process binary data. Some sources, such as Kafka

Consumer, can read messages from the Kafka topic and pass

them to other processors or external systems without parsing

the structure of the binary message into the record format.

This allows us to forward the efficient data to some other

destination with minimum overhead.

 Some of the StreamSets processors may generate

events, including errors. You should use special processors

called Executors to handle that. For example, there is Email

Executor, which can send emails when an error has

occurred.Similar with Nifi, StreamSets Data Collector is

used as a technology for motion data and it supports flow-

based processing. Moreover it can also be deployed for

acquiring data ,processing basic event and to distribute data

streams to various downstream components. It can

accommodate diverse dataflows being generated from the

connected world.

B. Data Stream Preprocessing

The ingested data stream is necessary to transform

based on intended application and the incoming data stream

nature. Preprocessing data streams include several tasks

such as noise ,language, content parsing, data type

transformations and duplicate detection

• Data Stream Extraction

 The incoming data stream can be raw format.We

need to convert ingested stream data into different schemas

depending on the different kind of downstream analytics.

As an example ,detection of duplicate data streams and

filtering deduplicate data is a extraction task in stream

data ingestion.StreamSets Data Collector can support

processors such as Record Deduplicator to detect duplicate

record in dataflow.

• Data Stream Enrichment

 Data Stream Enrichment is the process of getting

data arriving from external sources(such as file, API or

database) and adding them with ingested data in order to

get more details information. By using join operation,

enrichment can be performed. StreamSets Data Collector

provides processors such as Static Lookup

C. Routing Stream Distrtibution

 Distribution unstructured or structured data from

multiple producers or multiple sources into storage

processing component(such as Cassandra or HDFS) or a

processing system (such as Flink , Spark Streaming or

Storm) from RabbitMQ, Kafka or MQTT message queue

[3] . StreamSets Data Collector(SDC) can be directly used

for connecting big data stream computing engines such as

Spark Streaming by using custom processors. However,

StreamSets Data Collector is not a good choice for using to

deliver enormous amount and high speed continuous data

streams to processing systems beacause of complex

structure pipeline in analytics. Moreover, the process of

streaming data ingestion is necessary to extend and scale to

multiple producers and multiple consumers . If we add a

new data consumers such as Apache Flink job in

StreamSets Data Collector, we need to change the flow.

 In this paper, we choose to use Apache Kafka for

routing data streams to different processing engines or

storage engines as it can allow to connect multiple

consumers and multiple producers without changing the

flow of data pipeline. The main reason of choosing Apache

Kafka as a data steam distribution is the ability of

durable ,scalable and fast publish-subscribe messaging

system. Apache Kafka is developed by LinkedIn and it has

unique advantages comparing with current distributed

messaging systems .Apache Kafka has many features

including low latency, multi-language support, high

reliability, horizontal scalability , asynchronous

communications and high throughput. Kafka can also be

used for both offline and real-time message processing .It

can perform collection and submitting massive log data in a

low-latency environment .Apache Kafka is composed of

three components such as Kafka producers ,Kafka

brokers,Kafka consumers. Kafka Producers are responsible

for publishing or writing messages into a Kafka message

queue or Kafka topic. A topic can also be viewed as a feed

name or message category in which messages are

published. A Kafka broker can perform multiple reads

ranging from hundreds of megabytes and multiple writes

per second from multiple client. The creation of Kafka

topics are performed on Kafka broker. Kafka broker is

working as a Kafka server and it can also store the required

messages. Kafka Consumers is allowed to subscribe one or

more Kafka topic to retrieve messages based on messages

pulling from Kafka brokers. Kafka Consumers can be

divided into offline consumers and real time consumers.

Most common use of offline consumers are Hadoop and

traditional data warehouse. Offline Consumers are used for

consuming and storing messages for offline analysis.

NoSQL databases like HBase or Cassandra and Apache

Storm are real-time consumers and it can be used for

consuming messages and store in unstructured query

language database .Especially,Apache Storm is used for data

stream processing in real time.

 In this paper, StreamSets Data Collector is utilized in

the role of Kafka producer. Streamsets Data Collector is

bringing data from multiple sources and send data to

appropriate Kafka topic .Our proposed ingestion framework

,a combination of StreamSets Data Collector and Kafka

can provide the power of adding or removing consumers at

any time without modifying data ingestion pipeline. Next

section, we will evaluate the performance of data ingestion

framework by using global news feeds as a case study of

monitoring news articles.

IV. EXPERIMENTAL EVALUATION

 We will evaluate performance of our proposed design

compared with Nifi –Kafka using data streams that

obtained from global news API as a case study of breaking

news headlines monitoring in this part.We can obtain

worldwide breaking news headlines . Moreover, we can also

search articles from blogs all over the web and news

sources by using our news API.

A. Use Case Scenario

In order to show management of dataflow utility in Fig.

2, we evaluate breaking news articles monitoring as a case

study with following requirements.

• Ingest streaming breaking news headlines from
News API

• Remove noise such as duplicates and fake news in
the data streams

• Distribute breaking news feed to appropriate
analytics engines or permanent data store

Fig. 2. Worldwide live news articles processing architecture with a

lightweight and scalable dataflow management

B. Performance Evaluation

 We compare data loading performance efficiency of

StreamSets Data Collector and Apache Nifi using data

streams from News API under the same condition. In Fig. 3

we can see the obtained experimental outcome. Under same

condition, we can view data loading efficiency of

Streamsets Data Collector based producer are higher

throughput than Apache Nifi based producer machine.

Fig. 3. Performance comparison of loading performance between

Apache Nifi and StreamSets Data Collector

 As a second experiment, we also test the performance
impact of processors such as FlattenJson in Apache Nifi
and StreamSets Data Collector .In Fig. 4,we illustrate
screenshots of processed world wide live news feeds in
Apache Nifi . In StreamSets Data Collector ,live monitoring
is the single feature different from Apache Nifi. Monitor
panel display statistics for the processing pipeline by
default. In Fig. 5,Fig. 6,Fig. 7, we can show summary
statistics of processed live news feeds in StreamSets Data

Collector. Fig. 5 shows processed record counts without
error during a minute. In Fig. 6,no of records consumed per
second is shown and runtime statistics for pipeline can be
viewed in Fig. 7.We also find that performance of operators
in Streamsets Data Collector is lightweight and faster than
Apache Nifi ‘s operators performance. As a future work, we
need to do more detail experiments by exploring
deployment and making evaluation for improving the
system performance.

 Fig. 4. Screenshot of processed worldwide live news feeds in Apache Nifi

 Fig. 5. Record count in StreamSets Data Collector

 Fig. 6. Record throughput in StreamSets Data Collector

Fig 7. Screenshots of runtime statistics processed live news feeds in
StreamSets Data Collector

V. CONCLUSION

 Nowadays, massive amount of data stream are generated
from various sources such as social media ,sensor and
IOT devices. Most organizations collect data and analyze
on this data for business profit in real time.The most
important requirement of processing streaming data is to
provide high throughput and reduce latency. The importance
of data stream ingestion cannot be ignored because it can
impact on the whole data stream processing system.Data
stream Ingestion component should be lightweight, high
throughput scalable .Moreover,It need to support the flow of
data between many producers and many consumers. As a
current data stream ingestion methodology , a combination
of apache Nifi and Kafka is deployed to process massive data
streams arriving at rapid rate. Apache Nifi is deployed for
data stream collection and data stream preproessing. Kafka
is used to distribute motion data to processing layer or
storage layer. However, Apache Nifi is low performance as
processors in Nifi are IO intensive ,memory intensive and
CPU intensive. It can lead to undesirable effect such as high
latency in processing stream data in real time. So, it cannot
be guaranteed to support immediate decision as it miss
deadline in data stream processing.

 In this study, we propose a lightweight and scalable
data ingestion framework for streaming data ingestion. We
propose to use a combination of StreamSets Data Collector
and kafka. As a case study, we compare data loading
efficiency performance of Streamsets Data Collector and
Apache Nifi using data streams from News API under the
same condition. We find that the data loading efficiency of
StreamSets Data Collector is higher than Apache Nifi
StreamSets Data Collector is scalable and lightweight.
Moreover, it can also manage data flow and it can solve the
problem of processors performance bottleneck in Apache
Nifi.

REFERENCES

[1] J W. Jiang, L-G.Xu. H-B,Hu, and Y.Mae, “Improvement Design for

Distributed Real-Time Stream Processing Systemss,” JOURNAL OF
ELECTRONIC SCIENCE AND TECHNOLOGY, VOL. 17, NO. 1,
MARCH 2019

[2] H.Isah,F. Zulkernine,” A Scalable and Robust Framework for Data
Stream Ingestion”,2018 IEEE International Conference on Big Data
(Big Data),2018

[3] O.-C. Marcu et al., "KerA: Scalable Data Ingestion for
StreamProcessing," in ICDCS 2018-38th IEEE International
Conference on Distributed Computing Systems, pp. 1-6, 2018

[4] L. Qiao et al., "Gobblin: Unifying data ingestion for Hadoop,"

Proceedings of the VLDB Endowment, vol. 8, no. 12, pp.1764 -
1769,2015

[5] Get breaking news headlines, and search for articles from news
sources and blogs all over the web Avaliable :

 https://newsapi.org/

[6] htps://streamsets.com/documentation/datacollector/3.5.0/help/datacoll
ector/UserGuide/Tutorial/BasicTutorial.html

https://newsapi.org/

