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 Abstract—According to the development of technology, 

enormous amount of  data are being generated as a continuous 

basis from Social media, IOT devices, and web etc. This lead to 

big data era. Many researchers are paying attention on  

massive amount of data stream  processing coming  with a 

rapid rate  to gain valuable information in real-time or to make 

immediate decision .Data Ingestion Stage is an important part 

in data stream  processing system .It is responsible for  the data 

collection from different  locations and then deliver this data  

for processing. The most important requirement of data 

ingestion  is  to provide low latency, high throughput, and 

scalability with many data producers and consumers. It can  

influence on entire stream processing performance. In big data 

stream computing, speed at which data being created  and  

explosive growth of data  lead to  new challenges. One 

challenge is   to accurately ingest different stream data into a 

processing platform or data storage platform.Current existing 

data stream ingestion systems use  a combination of  Apache 

NiFi  and Kafka. Apache Nifi is used for collection and 

preprocessing of  structured  and unstructured data feeds. 

Kafka is used for message distribution. However, processor 

such as MergeRecord in Nifi can be memory , I/O CPU 

intensive.As a result,when processing massive data streams 

creation  with high speed can  lead to a lot of memory effort , 

input/output  bottleneck or central processing unit (CPU) 

bottleneck.It leads to impact on the performance of stream 

processing layer and  it is not appropriate  for time sensitive 

applications. In this paper, we propose to use a combination  of 

StreamSets Data Collector  and  Kafka  to collect and 

transform from various sources of structured and 

unstructured feeds. 
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I. INTRODUCTION  

According to unprecedented development of device 

technologies, such as Internet of Things (IoT), smartphones, 

smart sensors and 5G technology, enormous amount of data  

are generated on a daily basis[1]. The amount of data is 

getting bigger and bigger. In research and industrial 

communities, Big Data has obtained a great amount of 

attention .Big Data Stream Computing is one of the type of 

Big data which need to be processed with low latency to 

provide real time requirement. In Big Data applications, 

there has been gradually increasing moving from batch 

based processing to stream-based processing that enable 

them to gain valuable information in real-time[3]. Due to 

explosive growth of data, enterprise also have enormous 

stream data that necessary to process in real time to make 

immediate decision for organization profit. There is an 

increasing demand for E-commerce, web site analytics ,  

intrusion  detection and  other practical applications. 

     

A typical distributed stream processing systems  compose  

of  three layers  including data collection  , data ingestion 

and stream processing[1] . In data collection stage, massive 

amount of stream records are being generated from event 

sources(e.g. sensors, smart devices).Data ingestion layer is 

responsible for acquiring  stream records, partitioned ,pre-

processed to facilitate consumption and manages flow of 

information  from incoming  data sources to processing and 

storage engine .Finally, in  stream processing phase, big data 

engines correspond to consume data stream buffered by data 

ingestion phase  using a pull-based model ,obtaining 

consequent results and send this result to the storage layer. 

In storage layer, it has the responsibility  for retaining data 

in databases for long-term persistence or  storing data in-

memory. The stored data can be used for further processing. 

In computing big stream data   in real time, it is to reduce 

necessary to focus on reducing end-to-end latency of the 

three stage pipeline because of interesting to get  immediate 

results as fast as possible.  The importance of data ingestion 

cannot be overlooked as it can affect  on the  whole stream 

processing system. When the speed at which new records 

are created   is very fast , one such challenge is  the ability to 

provide high throughput at the same time .In data ingestion 

stage, it is essential to acquire stream data records with high 

throughput from producer and also serve the consumers with 

high throughput in pulling data records[3]. It also not only 

need to reduce  the producers’ write latency but also 

consumers‘  read latency to guarantee low  end-to-end 

latency. 

Therefore, Big Data engines need to design having 

scalability   with many concurrent consumers, which 

support processing millions of records within a  second [2] . 

Motion data needs  to manage the  flow of data because 

many organizations have stored data   that need to be 

migrated and processed in  different locations. Within a 

local  center  traditional streaming data analytics systems are 

mostly limited to handle data flows. Nowadays, many 

organizations are operating over data centers  in distinct 

geographic locations as the world has become more 

connected. One such challenge that encounter in streaming 

analytics system is how to collect ,connect massive data 

streams across the globes  and  how to ingest  many 

different data sources obtaining from real-time headlines 

from social media live multimedia, IoT data and blogs .In 

data ingestion phase, one challenging task is to ensure how 

to accurately provide  continuous streaming data ingestion 

and to control management of incoming data flow .So, there 

is a  need to  provide new technology and systems that can 

support robustness and   desired scalability in solving 



failures.  Research study about streaming data ingestion  

previously has  been focused  on  bulk data loading, 

deduplication ,data integration and  integrity constraint 

maintenance. 

      State of the art streaming data  ingestion methodologies 

use a combination of Apache Nifi and Kafka  for accurately 

data ingestion  and merging data streams from different 

location into a processing platform. Apache Nifi is used for 

data stream acquisition ,data stream integration and 

extraction.Apache  kafka is used for data stream 

distribution. However ,our observation  show that some 

processor such as MergeContent, MergeRecord in Nifi can 

be memory , I/O CPU intensive.As a result, high speed of 

creating new streaming data  and enormous amount of data 

can  lead to performance delay in input/output (I/O) and use 

a a lot of memory, disk/network , or the central processing 

unit (CPU)  bottleneck . One such requirement in data 

stream processing system is low latency. It leads to impact 

on the performance of stream processing layer and  it is not 

appropriate  for time sensitive applications .In this paper, we 

propose a light weight ,high performance and scalable 

streaming data ingestion  framework  for  stream data 

processing. We propose to use  a combination of Streamsets 

Control Hub  instead of Apache Nifi  and kafka  for data 

stream distribution to solve performance bottleneck 

problems in Apache Nifi. 

     The paper  is arranged as follows .In section II, related 

work with data stream ingestion are reviewed. In section III, 

describes the propose system architecture. Section IV details 

our experimental and evaluation results. Finally, concluding 

the paper. 

II. RELATED WORK 

      Wei Jiang[1] proposed an improved  data ingestion 

architecture for  stream processing system in real time 

General architecture of  stream processing system   consists 

of   a combination Apache Flume   ,Apache Kafka and  

Storm. Flume is applied for  collection the source data from 

clients. Kafka is deployed for message distribution .Flume is 

a  JVM process which consume resource  of producer 

machine .This matter impact  on  the performance of the 

producer’s machine. Authors focus on  data loading process 

of kafka.An important factor need to be consider when using 

kafka is  speed mismatch between message producers and 

consumers as it can impact on the whole stream processing 

system. Author use Kafka cat as  a non JVM process instead 

of  flume  to transfer data from the source to Kafka topic 

directly and this lead to  reduce the network transmission.In 

order to avoid the performance bottleneck problem in Kafka 

during data loading, Kafka use memory file system instead 

of disk file system. 

       Haruna Isah [2] describes among three stages of data 

stream processing,the importance of data ingestion  cannot 

be overlooked and it has great influence on whole stream 
processing system.This paper  aim to accurately ingest  

various sources of data streams and integrate data streams 

generated from various sources into an analytic platform. 

Authors examines  the fundamental requirements of  data 

stream ingestion systems and propose fault-tolerant and 

scalable a data stream ingestion and integration framework . 

Authors proposed  to use  a combination of  Apache Nifi 

and kafka.Apache Nifi is deployed for acquiring data 

streams, integration  and extraction .Kafka is deployed as a 

message distribution.This  combination  can  serve as a 

reusable component across many feeds of structured and 

unstructured input data in a given platform. In this paper, 

authors point out  some nifi processors such as 

MergeContent  can lead to performance bottleneck  in  

input/output (I/O) , memory, disk/network usage, or the 

central processing Unit because Nifi run inside a  java 

virtual machine. In order to guarantee  for high volume and 

high-performance dataflows, NiFi configuration is far from 

ideal . 

        In this paper, authors[3] presents data ingestion system 

need to  provide high throughput, low latency.It also needs 

the capability to scale many data producers and consumers. 

Apache Kafka  use static stream partitioning and offset-

based record access,. These design can impact ingestion 

phase ability to support high throughput and low latency. In 

order to alleviate  Kafka limitation, authors propose KerA, a 

data ingestion framework that use  a dynamic partitioning 

scheme and  lightweight indexing .It can improve 

throughput latency and scalability of data ingestion layer. 

       Gobblin[4] is a kind of  data ingestion framework that is 

developed by LinkedIn. According to an increasing  amount 

of heterogeneous LinkedIn’s data sources, authors proposed 

to use   Gobblin   as a data ingestion  . It supports  adaptors  

for  accessing various data sources  such as Kafka, MySQL, 

S3, and Salesforce. Although authors  focused on improving 

latency , scalability and throughput, they  do not taking into 

account provenance and extensibility issues. 

III.   PROPOSED SYSTEM ARCHITECTURE 

       The paper  emphasize  on data  ingestion     component 

When processing data streams in real time ,the phase of data 

ingestion  is necessary to guaranetee  high throughput and 

reduce latency as much as possible. As a current data stream 

ingestion methodology ,  a combination of apache Nifi and 

Kafka is deployed to process massive data streams arriving 

at rapid rate .But sometimes  Nifi has low performance  

because  some Nifi processors  needs a lot of memory effort, 

CPU  effort. It is not appropriate for making decision in real 

time as it can increase latency of the processing layer and 

take a lot of processing time. So, data ingestion phase must 

be lightweight as it cannot satisfy the deadline constraint. 

The purpose of this study is for developing lightweight  and 

scalable data ingestion framework  for massive amount of  

streaming  data and to flexibly  control management of data 

flow between  systems. In order to solve problems in 

Apache Nifi, we proposed to use StreamSets Data 

Collector(SDC) instead of Apache Nifi and deploy Kafka 

for streaming data distribution .Fig. 1 shows framework for 

proposed data flow management architecture. Our 

framework architecture  is divided into three components 

,(1) Streaming Data Collection from disparate sources (2) 

Data Stream Preprocessing  such as extraction ,enrichment 

and (3) Routing Data Streams to various downstream 

systems such as storage layer or processing layer. 

 

 

 

 

 

       



 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

  

 

 

 
 

 

 
Fig. 1.  Data Flow Management Architecture 

 

A. Streaming  Data Collection   

     The process of acquiring data streams generated from 

several sources with different formats  is called data streams 

collection [1] .It is also the main entry  point for processing 

data streams. Incoming data streams  from social media such 

as facebook,twitter ,IoT  devices and sensors   are bringing 

into a  processing platform .In this paper ,we are deploying 

StreamSets Data Collector(SDC)  for stream acquisition. 

StreamSets Data Collector Framework provide  common 

data access .The framework [8]  supports common  data 

access schemes such as, modern devices Representational 

State Transfer (REST) API, Streaming API, or custom 

schemes and sockets  or application interaction patterns such 

as  publish-subscribe and stream protocols .  

        The main reason of  choosing StreamSets Data 

Collector is also a powerful and  lightweight  data collection 

engine that can access and collect streams data in real time 

We can route and process data streams using data collector. 

This StreamSets Data Collector [6]   provides an attractive  

web-based user interface (UI) to configure pipelines, 

preview data, monitor pipelines, and review snapshots of 

data. We can define the flow of data for Data Collector and 

can configure a pipeline. A pipeline consists of stages that 

represent the origin and destination of the pipeline, and any 

additional processing that we want to perform. Data 

Collector processes data when it arrives at the origin and 

waits quietly when not needed. 

     We can view real-time statistics about our data, inspect 

data as it passes through the pipeline, or take a close look at 

a snapshot of data. We will check each processor inside 

your dataflow to make sure all processors are correctly 

configured before we can run .Processors in StreamSets can 

exchange record. The ingested data stream   is automatically 

converted into standard record-oriented format. There are no 

queues in between processors in StreamSets  Data Collector 

and they are not represented visually  different with Apache 

NiFi. The advantage of using  StreamSets Data Collector  is 

that it can process binary data. Some sources, such as Kafka 

Consumer, can read messages from the Kafka topic and pass 

them to other processors or external systems without parsing 

the structure of the binary message into the record format. 

This allows us to forward the efficient data to some other 

destination with minimum overhead. 

        Some of the StreamSets processors may generate 

events, including errors. You should use special processors 

called Executors to handle that. For example, there is Email 

Executor, which can send emails when an error has 

occurred.Similar with Nifi, StreamSets Data Collector is 

used as a technology for motion data and it supports flow-

based processing.  Moreover it can also be deployed for 

acquiring data ,processing basic event and to distribute data 

streams to various downstream components. It can 

accommodate diverse  dataflows  being generated from the 

connected world. 

B. Data Stream Preprocessing  

The ingested data stream is necessary to  transform  

based on intended application and the incoming data stream 

nature. Preprocessing data streams include several tasks 

such as noise ,language, content parsing, data type 

transformations and duplicate detection 

• Data Stream Extraction 

    The incoming data stream  can be  raw format.We 

need to convert  ingested stream data into different schemas  

depending on the different kind of  downstream analytics. 

As an example ,detection of duplicate  data  streams and  

filtering  deduplicate data  is  a extraction task in  stream 

data ingestion.StreamSets Data Collector can support 

processors such as Record Deduplicator to detect duplicate 

record in dataflow. 

• Data Stream Enrichment 

    Data Stream Enrichment is the process of  getting  

data  arriving from external sources(such as file, API  or 

database) and adding them  with ingested data  in order to  

get more details information. By using join operation, 

enrichment can be performed. StreamSets Data Collector 

provides processors such as Static Lookup 

C.  Routing Stream Distrtibution 

           Distribution unstructured or structured data from 

multiple producers  or multiple sources  into storage 

processing component( such as Cassandra or HDFS) or a 

processing  system (such  as  Flink ,  Spark Streaming or 

Storm) from RabbitMQ, Kafka or MQTT message queue  

[3] . StreamSets Data Collector(SDC) can be directly used 

for connecting big data stream computing engines such as 

Spark Streaming by using custom processors. However, 

StreamSets Data Collector is not a good choice for using  to 

deliver enormous amount and high speed continuous data 

streams  to processing systems beacause of complex 

structure pipeline in analytics. Moreover, the process of 

streaming data ingestion is necessary to extend and scale to 

multiple producers and multiple consumers . If we  add a 

new data consumers such as Apache Flink job  in 

StreamSets Data Collector, we need to change the flow. 

        In this paper, we choose to use  Apache Kafka  for 

routing data streams  to different processing engines or 

storage engines  as it  can allow to connect multiple 

 



consumers and multiple producers without changing the 

flow of data pipeline. The main reason of choosing  Apache 

Kafka  as a data steam distribution  is   the ability of  

durable ,scalable and fast publish-subscribe messaging 

system. Apache Kafka is developed by LinkedIn and  it has 

unique advantages comparing with current distributed 

messaging systems .Apache Kafka has many features 

including low latency, multi-language support, high 

reliability, horizontal scalability , asynchronous 

communications and high throughput. Kafka can also be 

used for both offline and real-time message processing .It 

can perform collection  and submitting massive log data in a 

low-latency environment .Apache Kafka is composed of 

three components such as Kafka producers ,Kafka 

brokers,Kafka consumers. Kafka Producers are responsible 

for publishing or writing messages into a Kafka message 

queue or Kafka topic. A topic can also be viewed  as a  feed 

name or message category  in which messages are 

published. A Kafka broker can perform multiple reads 

ranging from hundreds of megabytes  and multiple writes 

per second from  multiple client. The creation of Kafka 

topics are performed on Kafka broker.  Kafka   broker is 

working as a Kafka server and it can also store the required  

messages. Kafka Consumers is allowed to subscribe one or 

more Kafka topic to retrieve messages based on messages 

pulling from Kafka brokers. Kafka Consumers can be 

divided into offline consumers and real time consumers. 

Most common use of offline consumers are Hadoop and 

traditional data warehouse. Offline Consumers are used for 

consuming and storing messages for offline analysis. 

NoSQL databases like HBase or Cassandra and Apache 

Storm are real-time consumers and it can be used for 

consuming messages and store in unstructured query 

language database .Especially,Apache Storm is used for data 

stream processing in real time. 

        In this paper, StreamSets Data Collector is utilized  in 

the role of Kafka producer. Streamsets Data Collector is  

bringing data from multiple sources   and send data to 

appropriate Kafka topic .Our proposed ingestion framework 

,a combination of  StreamSets Data Collector and Kafka  

can provide the power of adding or removing consumers at 

any time without modifying data ingestion pipeline. Next 

section, we will evaluate the performance of data ingestion 

framework by using global news feeds as a case study of  

monitoring news articles. 

IV. EXPERIMENTAL  EVALUATION 

    We will evaluate performance of our proposed design  

compared with  Nifi –Kafka   using data streams that 

obtained from global news API  as a case study of  breaking 

news headlines  monitoring in this part.We can obtain  

worldwide breaking news headlines . Moreover, we can also 

search  articles from blogs all over the web and news 

sources by using our news API. 

 

A. Use Case Scenario 

In order to show management of dataflow  utility in Fig. 

2, we evaluate  breaking news articles monitoring as  a case 

study with  following requirements. 

• Ingest  streaming breaking news headlines from 
News API 

• Remove noise such as duplicates and  fake news  in 
the data streams  

• Distribute breaking news feed to appropriate 
analytics engines or permanent data store 

 

                  

 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
Fig.  2.  Worldwide live news articles processing architecture with a 

lightweight   and scalable dataflow management   
 

B. Performance Evaluation  

    We compare  data loading performance efficiency of 

StreamSets Data Collector  and    Apache Nifi  using data 

streams from News API under the same condition. In Fig. 3 

we can see the obtained experimental outcome. Under same 

condition, we can view  data loading efficiency of 

Streamsets Data Collector based producer  are higher  

throughput than  Apache Nifi based producer machine. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Performance comparison of   loading performance between                

Apache    Nifi  and  StreamSets  Data Collector 

 As a second experiment, we also test the performance 
impact of processors  such as  FlattenJson  in  Apache Nifi 
and StreamSets Data Collector .In Fig. 4,we illustrate 
screenshots of processed world wide live news feeds in 
Apache Nifi . In StreamSets Data Collector ,live monitoring 
is the single feature different from Apache Nifi. Monitor 
panel  display statistics for the processing pipeline by 
default. In Fig. 5,Fig. 6,Fig. 7, we can show summary 
statistics  of processed live news feeds in StreamSets Data 

 

 



Collector. Fig. 5 shows processed record counts without 
error during a minute. In Fig. 6,no of records consumed per 
second is shown and runtime statistics for  pipeline can be 
viewed in Fig. 7.We also find that performance of  operators 
in Streamsets Data Collector  is  lightweight  and faster than  
Apache Nifi ‘s  operators performance. As a future work, we 
need to do more detail experiments by exploring 
deployment and making evaluation for improving  the 
system performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.  4. Screenshot of processed worldwide live news feeds in Apache Nifi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Fig. 5. Record count in StreamSets  Data Collector 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 6. Record throughput in StreamSets Data Collector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Fig 7. Screenshots of runtime statistics processed live news feeds in    
StreamSets   Data Collector 

 

 

 

 
 

 



V. CONCLUSION 

 Nowadays, massive amount of data stream are generated 
from various sources   such as   social media ,sensor  and 
IOT devices. Most organizations  collect  data and analyze   
on     this  data  for business profit  in real time.The most 
important requirement of processing streaming data  is  to 
provide high throughput and reduce latency. The importance  
of data stream ingestion cannot be ignored because it  can 
impact on the whole data stream processing system.Data  
stream   Ingestion component should be   lightweight, high 
throughput scalable .Moreover,It  need to support the flow of 
data between many producers and many consumers. As a 
current data stream ingestion methodology ,  a combination 
of apache Nifi and Kafka is deployed to process massive data 
streams arriving at rapid rate. Apache Nifi is deployed for 
data stream collection and data stream preproessing. Kafka  
is used to distribute motion data  to processing layer or 
storage layer. However, Apache Nifi is low performance  as 
processors in Nifi  are IO intensive ,memory intensive and 
CPU intensive. It can lead to undesirable effect such as high 
latency in processing stream data in real time. So, it cannot 
be  guaranteed to support immediate decision  as  it miss 
deadline in data stream processing. 

 In this  study, we   propose a   lightweight and scalable 
data ingestion framework for streaming data ingestion.  We 
propose to use  a combination of StreamSets Data Collector 
and kafka. As a case study, we compare  data loading 
efficiency performance of  Streamsets Data Collector  and    
Apache Nifi  using data streams from News API under the 
same condition. We find that the data loading efficiency of 
StreamSets Data Collector is higher than Apache Nifi 
StreamSets Data Collector is scalable and lightweight.  
Moreover,   it can also manage data flow and  it can solve the 
problem of processors performance bottleneck  in Apache 
Nifi. 
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