
UNIVERSITY DATA RECOVERY SYSTEM USING SEED
BLOCK ALGORITHM

MYAT PHOO NGE

M.C.Sc. SEPTEMBER 2022

UNIVERSITY DATA RECOVERY SYSTEM USING SEED

BLOCK ALGORITHM

By

Myat Phoo Nge

B.C.Sc.

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Computer Science

(M.C.Sc.)

University of Computer Studies, Yangon

September 2022

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere thanks

to those who helped me with various aspects of conducting research and

writing this thesis. To complete this thesis, many things are needed like

my hard work as well as the supporting of many people.

First and foremost, I would like to express my deepest gratitude

and my thanks to Dr. Mie Mie Khin, Rector, the University of Computer

Studies, Yangon, for her kind permission to submit this thesis.

I would like to express my appreciation to Dr. Si Si Mar Win and

Dr. Tin Zar Thaw, Professor, Faculty of Computer Science, University

of Computer Studies, Yangon, for their superior suggestions,

administrative supports and encouragement during my academic study.

My thanks and regards go to my supervisor, Dr. Yu Wai Hlaing,

Lecturer, Faculty of Computer Science, University of Computer Studies,

Yangon, for her support, guidance, supervision, patience and

encouragement during the period of study towards completion of this

thesis.

I also wish to express my deepest gratitude to Dr. Mya Thandar

Aung, Assistant Lecturer, Department of English, University of

Computer Studies, Yangon, for her editing this thesis from the language

point of view.

Moreover, I would like to extend my thanks to all my teachers who

taught me throughout the master’s degree course and my friends for their

cooperation.

I especially thank to my parents, all of my colleagues, and friends

for their encouragement and help during my thesis.

i

STATEMENT OF ORIGINALITY

I hereby certify that the work embodied in this thesis is the result of
original research and has not been submitted for a higher degree to any
other University or Institution.

……………………… …..……………….

Date Myat Phoo Nge

ii

ABSTRACT

Large amount of data is generated in electronic form. The data

recovery services are required to maintain this data very efficiently. Since

organizations (include universities) have become very dependent on

digital data processing, a breakdown may disrupt the business' regular

routine and stop its operation for a certain amount of time. In order to

prevent data loss and minimize disruptions there have to be well-

designed file backup and recovery procedures. The recovery process can

rebuild the system when it goes down. In this paper we have proposed a

smart remote data backup algorithm, Seed Block Algorithm (SBA). The

main aim of proposed algorithm is two types: the first one is to help the

users to collect information from any remote location in the non-presence

of or loss of network connectivity. Another one is to recover the files if

files get deleted mistakenly or if the server gets destroyed due to any

reason. The time related problems are also solved by proposed SBA such

that it will take minimum time for the recovery procedure. Without using

any of the existing encryption techniques, the proposed paper

concentrates on security features for the backup files stored at remote

servers. This system is implemented by using ASP.Net (C#)

programming language with Microsoft SQL Server 2008.

Keywords: data recovery, smart remote data backup algorithm, SBA

iii

CONTENTS

Page

ACKNOWLEDGEMENTS i

ABSTRACT iii

CONTENTS iv

LIST OF FIGURES vi

LIST OF TABLES vii

CHAPTER 1 INTRODUCTION 1

 1.1 Objectives of the Thesis 2

1.2 Related Work 2

 1.3 Organization of the Thesis 3

CHAPTER 2 THEORICAL BACKGROUND 4

 2.1 Recovery Process 4

 2.2 Backup 6

2.2.1 Grandfather-father-son 7

 2.2.2 Backup Plus Journal 8

 2.3 Checking Points in Distributed System 8

2.3.1 Optimization of Recovery Actions by 9

Checkpoints

 2.4 Classification of Log Data 11

 2.5 Recovery Procedures 14

 2.5.1 Backward Recovery 14

 2.5.2 Forward Recovery 14

 2.5.3 Write-Ahead Logging (WAL) 14

CHAPTER 3 THE CONTROLLING FOR RECOVERY 16

 3.1 Which Failures Have to Be Anticipated 16

 3.2 Summary of Recovery Actions 18

 3.3 The Mapping Hierarchy of A DBMS 20

3.3.1 The Mapping Processing: 20

Objects and Operations

3.3.2 The Storage Hierarchy: 23

Implementation Environment

iv

3.3.3 Different Views of a Database 24

3.4 Crash Recovery 25

3.4.1 State of the Database after a Crash 26

3.4.2 Types of Log Information to Support 27

Recovery Actions

3.4.2.1 Dependencies between Buffer 27

Manager and Recovery Component

3.4.2.1.1 Buffer Management and UNDO 27

 Recovery Actions

3.4.2.1.2 Buffer Management and REDO 28

 Recovery Actions

CHAPTER 4 SYSTEM DESIGN AND IMPLEMENTATION 30

 4.1 Proposed Data Recovery Technique – 32

Seed Block Algorithm (SBA)

 4.2 Benefits of Remote Backup Services 33

4.3 Example Operation of System 33

4.4 RSA Encryption Algorithm 35

4.5 Experimental Results 36

4.6 Implementation of the System 38

CHAPTER 5 CONCLUSION 44

 5.1 Benefits of the System 44

 5.2 Limitations and Further Extensions of the 44

 System

AUTHOR’S PUBLICATIONS 46

REFERENCES 47

v

LIST OF FIGURES

Figure Page

Figure 2.1 A Dataflow Diagram of Backup and Recovery Procedures 6

Figure 2.2 Logical Transition Logging as Implemented In System R 14

Figure 3.1 Scenario for Discussing Transaction-Oriented Recovery 18

Figure 3.2 Storage Hierarchy of a DBMS during Normal Mode of 22

 Operation

Figure 3.3 Page Allocation Principles 25

Figure 4.1 The System Flow Diagram 31

Figure 4.2 Testing (Microsoft Office Word with Different File Sizes) 37

Figure 4.3 Testing (Microsoft Office Power Point with Different 37

File Sizes)

Figure 4.4 Testing (Portable Document Format with Different 38

File Sizes)

Figure 4.5 Testing (Microsoft Office Excel with Different File Sizes) 38

Figure 4.6 Main Page of System 39

Figure 4.7 The Login Page 39

Figure 4.8 The Sign Up Page 40

Figure 4.9 Generate Seed Block File 40

Figure 4.10 ‘User List’ Page 41

Figure 4.11 The Uploading File 41

Figure 4.12 Encryption File 42

Figure 4.13 Recovery Backup File 42

Figure 4.14 Files in Main Server 43

Figure 4.15 Files in Back Up Server 43

vi

LIST OF TABLES

Table Page

Table 3.1 Description of the DB Mapping Hierarchy 21

vii

CHAPTER 1

INTRODUCTION

Nowadays large amount of data is stored in the storage/ backup and becoming

very important to all the organization. Because it is the age of technology, almost all

organizations are based on transaction processing. So, data backup and recovery are

very important for data reliability and data availability.

Since organizations such as universities have become very dependent on

digital data processing, a breakdown may disrupt the business' regular routine and

stop its operation for a certain amount of time. To prevent data loss and minimize

disruptions, there must be well-designed file backup and recovery procedures. The

recovery process can rebuild the system when it goes down. The data recovery

services are required to maintain this data very efficiently.

 Every university, there has a lot of data about students, teachers, staff, and

other school related activities. As technology advances with the times, many changes

are needed in everyday lives. Education is very important for all ages. Therefore, all

the information about university should have backup and recovery planning. In

“University Data Recovery System”, Excel, Power Point and Microsoft Word Files

which are mostly used in university have been recovered in a short time using Seed

Block Algorithm. When the system breaks down, it stops the regular routines of the

business and stops its operation for a certain amount of time. To recover incomplete

transactions, to prevent data loss, and to minimize disruption, the well-designed

backup and recovery procedure is put into use. This system uses a very efficient

algorithm for data backup called Seed Block Algorithm (SBA). It is one of the smart

data backup algorithms for remote data access. The contribution of the proposed SBA

is twofold; 1-SBA helps the users to collect information from any remote area in the

failure of network connection. 2-Recover the files in case if it gets deleted due to any

reason like by mistake or intentionally or if the main server gets destroyed. As a

result, data which is accurate and available when needed may improve the customer’s

satisfaction.

1

1.1 Objective of Thesis

The objectives of thesis are as follows:

• To prevent data loss in University Data Recovery System

• To restore the database to a previous consistent state when the current

state is inconsistent

• To deliver accurate data and timely services to the users

• To understand how data consistency is important in database system

• To implement a data reliable system by using multiple backup servers

• To support data availability (anytime, anywhere) by the aid of backup

servers

• To provide the flexibility for the user to recover their lost data from

any backup server

1.2 Related Work

Exchange Handling Framework (TPS) is the information lifeline for a specific

business association since it is the wellspring of information for data frameworks like

MIS (The board Data Framework) and DSS (Choice Emotionally supportive

networks). TPS can be utilized for the different associations, where information plays

the most noteworthy need. In the improvement of Software engineering, exchange

handling framework are advancing in numerous areas, for example, carrier reservation,

banking, inn, the travel industry, industry, shopping center and medical services. This

framework is quick and dependable enough to deal with the hourly bank exchanges

[4].

Exchange The board Framework (TMS) gave admittance to their transmission

framework to advance culmination in discount power market [5]. Their TMS is

imagined mechanizing and incorporate the market interface and to facilitate security

processes. Their framework upheld the administration of transmission and subordinate

assistance is quick and dependable enough to deal with the hourly market exchanges.

Exchanges are without a doubt the unit of recuperation [10]. Business associations for

the most part use recuperation strategies for information security and dependability.

2

1.3 Organization of the Thesis

This thesis is organized in five chapters. In Chapter 1, the introduction of the

system, objectives and background theory of the transaction processing system (TPS)

used in this system. In Chapter 2 presents the Transaction Processing System and the

data recovery system. Chapter 3 describes the data recovery procedures. Chapter 4

expresses the design and implementation of the system. Finally, Chapter 5 presents

the conclusions of this thesis, limitations and further extension of the system.

3

CHAPTER 2

THEORICAL BACKGROUND

Since business organizations have become very dependent on transaction

processing, a breakdown may disrupt the business' regular routine and stop its

operation for a certain amount of time. In order to prevent data loss and minimize

disruptions there have to be well-designed backup and recovery procedures. The

recovery process can rebuild the system when it goes down.

2.1 Recovery Process

 A Transaction Processing System (TPS) may fizzle for some reasons, for

example, framework disappointment, human blunders, equipment disappointment,

erroneous or invalid information, PC infections, programming application mistakes or

regular or man-made fiascos. As it's impractical to forestall all disappointments, a

TPS should have the option to recognize and address blunders when they happen and

adapt to disappointments. A TPS will go through a recuperation of the information

base which might include the reinforcement, diary, designated spot, and recuperation

director [4]:

• Journal: A journal keeps a review trail of exchanges and information base

changes. Exchange logs and Database change logs are utilized; an exchange

log records every one of the fundamental information for every exchange,

including information values, season of exchange and terminal number. An

information base change log contains when duplicates of records that have

been changed by exchanges.

• Checkpoint: The reason for check pointing is to give a preview of the

information inside the data set. A designated spot, by and large, is any

identifier or other reference that distinguishes the condition of the data set at a

specific moment. Changes to data set pages are acted in memory and are not

really written to circle after each update. Subsequently, occasionally, the data

set framework should play out a designated spot to compose these updates

which are held in-memory to the capacity plate. Composing these updates to

capacity circle makes a moment in which the data set framework can apply the

4

changes contained in an exchange log during recuperation after a surprising

shut down or crash of the data set framework. In the event that a designated

spot is interfered with and recuperation is required, the data set framework

should begin recuperation from a past effective designated spot.

Checkpointing can be either exchange steady or non-exchange reliable (called

additionally fluffy checkpointing). Exchange predictable checkpointing

produces a persevering data set picture that is adequate to recuperate the

information base to the express that was remotely seen right now of beginning

the checkpointing. A non-exchange steady checkpointing brings about a

determined information base picture that is lacking to play out a recuperation

of the data set state. To play out the data set recuperation, extra data is

required, normally contained in exchange logs. Exchange reliable

checkpointing alludes to a predictable data set, which doesn't be guaranteed to

incorporate every one of the most recent committed exchanges, however all

changes made by exchanges, that were committed at the time designated spot

creation was begun, are completely present. A non-predictable exchange

alludes to a designated spot which isn't really a reliable data set, and can't be

recuperated to one without all log records produced for open exchanges

remembered for the designated spot. Contingent upon the kind of data set

administration framework executed a designated spot might consolidate files

or capacity pages (client information), records and capacity pages. Assuming

that no files are integrated into the designated spot, records should be made

when the data set is reestablished from the designated spot picture.

• Recovery Manager: A recuperation director is a program which reestablishes

the data set to a right condition which permits exchange handling to be

restarted.

Depending on how the system failed, there can be two different recovery

procedures used. Generally, the procedure involves restoring data that has been

collected from a backup device and then running the transaction processing again.

5

Figure 2.1 A Dataflow Diagram of Backup and Recovery Procedures

2.2 Backup

In information technology, a backup, or the process of backing up, refers to

the copying and archiving of computer data so it may be used to restore the original

after a data loss event. The verb form is to back up in two words, whereas the noun

is backup [4].

Backups have two particular purposes. The basic role is to recuperate

information after its misfortune, be it by information cancellation or defilement.

Information misfortune can be a typical encounter of PC clients; an overview saw that

as 66% of respondents had lost documents on their home PC. The optional reason for

reinforcements is to recuperate information from a previous time, as per a client

characterized information maintenance strategy, ordinarily designed inside a

reinforcement application for how long duplicates of information are required.

However reinforcements address a straightforward type of catastrophe recuperation,

and ought to be important for any fiasco recuperation plan, reinforcements without

help from anyone else ought not to be viewed as a total calamity recuperation plan.

One justification behind this is not all reinforcement frameworks can reconstitute a

6

PC framework or other complex setup, for example, a PC group, dynamic registry

server, or data set server by basically reestablishing information from reinforcement.

Since a reinforcement framework contains no less than one duplicate of all

information considered worth saving, the information stockpiling necessities can be

critical. Coordinating this extra room and dealing with the reinforcement interaction

can a confounded embrace. An information storehouse model might be utilized to

give design to the capacity. These days, there are a wide range of sorts of information

stockpiling gadgets that are helpful for making reinforcements. There are likewise

various manners by which these gadgets can be sorted out to give geographic overt

repetitiveness, information security, and versatility.

Before information is shipped off their capacity areas, they are chosen,

extricated, and controlled. A wide range of strategies have been created to streamline

the reinforcement methodology. These incorporate advancements for managing open

documents and live information sources as well as pressure, encryption, and de-

duplication, among others. Each reinforcement plan ought to incorporate run-throughs

that approve the unwavering quality of the information being supported. It is essential

to perceive the restrictions and human elements associated with any reinforcement

conspire [7].

There are two primary sorts of back-up systems: grandfather-father-

son and partial backups:

2.2.1 Grandfather-father-son
This system includes taking total reinforcements of all information at normal

stretches – every day, week by week, month to month, or whatever is suitable.

Different ages of reinforcement are held, frequently three which leads to the name.

The latest reinforcement is the child, the past the dad, and the most established

reinforcement is the granddad. This strategy is ordinarily utilized for a bunch

exchange handling framework with an attractive tape. In the event that the framework

fizzles during a bunch run, the expert document is reproduced by reestablishing the

child reinforcement and afterward restarting the cluster. Nonetheless, in the event that

the child reinforcement falls flat, is undermined or obliterated, the past age of

reinforcement (the dad) is utilized.

Moreover, in the event that that fizzles, the age of reinforcement past to the

dad (for example the granddad) is required. Obviously the more seasoned the age, the

7

more the information might be obsolete. Sort out just of records that have changed.

For instance, a full reinforcement could be performed week by week, and fractional

reinforcements taken daily. Recuperation utilizing this plan includes reestablishing the

last full reinforcement and afterward reestablishing all halfway reinforcements to

deliver a forward-thinking data set. This cycle is faster than taking just complete

reinforcements, to the detriment of longer recuperation time.

2.2.2 Backup Plus Journal
This technique is additionally utilized related to customary complete

reinforcements. The expert document is upheld at normal spans. Finished exchanges

since the last reinforcement are put away independently and are called diaries, or

diary records. The expert record can be reproduced by reestablishing the last total

reinforcement and afterward going back over exchanges from the diary documents.

This will create the most forward-thinking duplicate of the information base, however

recuperation might take longer in view of the time expected to handle a volume of

diary records.

2.3 Checking Points in Distributed System

In distributed computing, check pointing is a procedure that endures

disappointments that in any case would drive long-running application to restart all

along. The most fundamental method for carrying out check pointing is to stop the

application, duplicate every one of the expected information from the memory to

dependable capacity (e.g., Parallel record framework) and afterward go on with the

execution. In the event of disappointment, when the application restarts, it doesn't

have to begin without any preparation. Rather, it will peruse the most recent express

("the designated spot") from the steady stockpiling and execute from that.

There are two fundamental methodologies for check pointing in such

frameworks: facilitated check pointing and ungraceful checks pointing. In the planned

check pointing approach, processes should guarantee that their designated spots are

predictable. This is typically accomplished by some sort of two-stage commit

convention calculation. In clumsy check pointing, each cycle designated spots its own

state freely. It should be focused on that just compelling cycles to designate spot their

state at fixed time stretches isn't adequate to guarantee worldwide consistency. The

8

requirement for laying out a predictable state (i.e., no missing messages or copied

messages) may compel different cycles to move back to their designated spots, which

thus might make different cycles roll back to significantly prior designated spots,

which in the most outrageous case might imply that the main steady state found is the

underlying state (the purported cascading type of influence).

Designated spot/Restart: As cluster applications dealt with tens to a huge

number of exchanges where every exchange could handle one record from one

document against a few unique documents the requirement for the application to be

restart-capable eventually without the need to rerun the whole occupation without any

preparation became basic. Subsequently the "designated spot/restart" capacity was

conceived, in which after various exchanges had been handled, a "depiction" or

"designated spot" of the condition of the application could be taken, so, all in all in the

event that the application bombed before the following designated spot it very well

may be restarted by giving it the designated spot data and the last spot in the exchange

document where an exchange had effectively finished. The application could then

restart by then.

Check pointing will quite often be costly, so it was by and large not finished

with each record, but rather at some sensible split the difference between the expenses

of a designated spot versus the worth of the PC time expected to go back over a clump

of records. Subsequently the quantity of records handled for every designated spot

could go from 25 to 200, contingent upon cost factors and the overall intricacy of the

application and the assets expected to restart the application effectively.

2.3.1 Optimization of Recovery Actions by Checkpoints
An proper mix of overt repetitiveness given by log conventions and planning

procedures is essentially all that we require for executing exchange arranged

information base recuperation as depicted. In genuine frameworks, nonetheless, there

are various significant refinements that diminish how much log information required

and the expenses of crash recuperation. In the middle, there is the brief log containing

UNDO and REDO data and extraordinary sections telling the start and end of an

exchange (BOT and EOT, separately). Underneath the transitory log, the exchange

history going before the accident is shown, or more it, recuperation handling for

worldwide UNDO and halfway REDO is connected with the log passages. We have

9

not expected a particular spread methodology. There are two inquiries concerning the

expenses of crash recuperation:

On account of the appeared DB being changed by inadequate exchanges, how

much does the log need to be handled for UNDO recuperation?

In the event that the DBMS doesn't utilize a FORCE discipline, what portion

of the log needs to handle for REDO recuperation? The primary inquiry can without

much of a stretch be replied: If we realize that updates of fragmented exchanges can

have impacted the emerged data set (STEAL), we should filter the impermanent log

document back to the BOT passage of the most established deficient exchange to be

certain that no invalid information are left in the framework. The subsequent inquiry

isn't as straightforward. Retry is begun at a point that is by all accounts picked

randomly.

Why would that be no REDO recuperation for object A? By and large, we can

expect that on account of a FORCE discipline changed pages will be composed

ultimately in light of cradle substitution. One could expect that main the items in the

most as of late changed pages must be revamped - in the event that the change was

brought about by a total exchange. Be that as it may, take a gander at a cushion action

record. The circumstance portrayed is average of numerous enormous information

base applications. The greater part of the changed pages will have been changed "as

of late," however there are a couple of problem areas like Pi, pages that are adjusted

over and over, and, since they are referred to so habitually, have not been composed

from the cradle. Inevitably such pages will contain the updates of many complete

exchanges, and REDO recuperation will accordingly need to return exceptionally far

on the brief log. This makes restart costly. As a general rule, how much log

information to be handled for halfway REDO will increment with the time frame

between two resulting crashes. As such, the higher the accessibility of the framework,

the more exorbitant recuperation will turn into. This is unsuitable for huge, requesting

applications. Thus extra measures are expected for making restart costs autonomous

of interim between disappointments. Such arrangements will be called designated

spots, and are characterized as follows. Producing a designated spot implies gathering

data in a protected spot, which characterizes and restricting how much REDO

recuperation expected after an accident.

10

2.4 Classification of Log Data
Depending on which of the compose and proliferation plans presented above

are being carried out, we should gather log data with the end goal of eliminating

invalid information (adjustments affected by deficient exchanges) from the appeared

data set and enhancing the emerged data set with updates of complete exchanges that

were not held back in it at the hour of crash.

In this part, we momentarily portray what such log information can resemble

and when such information is appropriate to the accident condition of the appeared

data set. Log information is repetitive data, collected for the sole motivation behind

recuperation from an accident or a media disappointment. They don't go through the

planning system of the information base items, yet are gotten on a specific level of the

planning order and composed straightforwardly to nonvolatile capacity, that is to say,

the log records. There are two unique, though not completely symmetrical, standards

for grouping log information. The first is worried about the sort of objects to be

logged. Assuming some piece of the actual portrayal, or at least, the bit pat-tern, is

kept in touch with the log, we allude to it as actual logging; on the off chance that the

administrators and their contentions are recorded on a more significant level, this is

called legitimate logging. The subsequent rule concerns whether the condition of the

information base previously or after a change or the progress causing the change is to

be logged.

Actual State Logging on Page Level - The most fundamental technique, which

is as yet applied in numerous business DBMSs, involves the page as the unit of log

data. Each time a piece of the direct location space is changed by some change,

inclusion, and so on; the entire page containing this piece of the straight location

space is kept in touch with the log. If UNDO logging is required, this will be finished

before the change happens, yielding the alleged before picture. For REDO purposes,

the subsequent page state is recorded as an after picture.

Actual Transition Logging on Page Level - This logging method depends

additionally on pages. Be that as it may, it doesn't expressly record the old and new

conditions of a page; rather it composes the distinction between them to the log. The

capability utilized for figuring the "distinction" between good for nothing strings is

dynamic and acquainted as expected by the recuperation calculation. In the event that

this distinction is applied to the old condition of a page, again utilizing the selective

11

or, the new state will result. Then again, applying it to the new state will yield the old

state.

Actual State Logging on Access Path Level - Actual logging can be applied to

the objects of the entrance way level, in particular, actual records, access way

structures, tables, and so forth. The log part must know about these capacity designs

and record just the changed section, as opposed to aimlessly logging the entire page

around it. The upside of this prerequisite is self-evident: By logging just the actual

items really being changed, space necessities for log documents can be definitely

decreased. One can save much more space by taking advantage of the way that most

access way structures comprise of completely excess data. For instance, one can

totally reproduce a B*-tree from the record events to which it alludes. In itself, this

sort of reproduction is positively excessively costly to be-come a standard strategy for

crash recuperation. Yet, if by some stroke of good luck the changes in the records are

logged, after an accident the comparing B* tree can be recuperated reliably, gave that

a fitting compose discipline has been noticed for the pages containing the tree.

Change Logging on the Access Path Level - On the entrance way level, we are

managing the sections of capacity structures, yet don't have any idea how they are

connected with one another concerning the objects of the data set diagram. This kind

of data is kept up with on more significant levels of the planning order. In the event

that we take a gander at the actual section portrayal (physical progress logging), state

change on this level implies that an actual record, a table passage, and so on is added

to, erased from, or altered in a page. The contentions relating to these activities are the

actual passages, thus there is little contrast among this and the past methodology.

On account of actual state signing on the entrance way level, we set the actual

location along with the section portrayal. Here we place the activity code and item

identifier with a similar sort of contention. Consequently actual change signing on this

level gives nothing basically unique. We can likewise consider coherent progress

logging, endeavoring to take advantage of the grammar of the stockpiling structures

carried out on this level. The sensible expansion, another record event, for instance,

would incorporate every one of the excess table updates, for example, the record id

file, the free space table, and so on, every one of which was unequivocally logged

with the actual plans. Thus we again have a likely saving of log space. In any case, it

is critical to take note of that the coherent changes on this level by and large influence

more than one page. If they (or their opposite administrators for UNDO) are to be

12

applied during recuperation, we should be certain that all impacted pages have a

similar state in the emerged data set. This isn't true with direct page portion, and

utilizing the more costly aberrant plans can't be legitimate by the nearly couple of

advantages yielded by consistent progress signing on the entrance way level.

Consequently intelligent change signing on this level can commonly be precluded,

however will turn out to be more alluring on the following more elevated level.

Consistent Logging on the Record-Oriented Level - At one level higher, it is

feasible to communicate the progressions performed by the exchange program in an

exceptionally minimized way by essentially recording the update DML proclamations

with their boundaries. Regardless of whether a nonprocedural inquiry language is

being utilized over this level, its updates will be decayed into updates of single

records or tuples comparable to the single-record updates of procedural DB dialects.

Accordingly signing on this level implies that main the INSERT, UPDATE, and

DELETE activities, along with their record ids and property estimations, are kept in

touch with the log. The planning system recognizes which sections are impacted,

which pages should be changed, and so forth. In this manner recuperation is

accomplished by re-executing a portion of the recently handled DML explanations.

For UNDO recuperation, obviously, the opposite DML explanation should be

executed, that is to say, a DELETE to remunerate an INSERT as well as the other way

around, and an UP-DATE got back to the first qualities.

These opposite DML proclamations should be created consequently as a

feature of the customary logging action, and hence this approach isn't feasible for

network-situated DBMSs with data bearing between record relations. In such cases, it

very well may be incredibly costly to decide, for instance, the opposite for a

DELETE. Details can be found in Reuter [1981]. Framework R is a genuine

illustration of a framework with legitimate signing on the record-situated level. All

update tasks performed on the tuples are addressed by one summed up alteration

administrator, which isn't unequivocally recorded. This administrator changes a tuple

distinguished by its tuple identifier (TID) from an old worth to another one, the two of

which are recorded. Embedding a tuple involves changing its underlying invalid

worth to the given worth, and erasing a tuple involves the opposite progress.

Subsequently the log contains the data displayed in Figure 2.2. Intelligent progress

logging clearly re-quires an emerged data set that is predictable up to Level 3; that is,

it must be joined with ATOMIC spread plans. Albeit the quantity of log information

13

composed are tiny, recuperation will be more costly than that in different plans, since

it includes the going back over of some DML explanations, this should be possible

more efficiently than the first handling.

Figure 2.2 Logical Transition Logging as Implemented In System R

2.5 Recovery Procedures

 The recovery procedures are backward recovery, Forward recovery and Write-
Ahead Logging.

2.5.1 Backward Recovery

Backward recovery is used to undo unwanted changes to the database. It

reverses the changes made by transactions which have been aborted. It involves the

logic of reprocessing each transaction, which is very time-consuming.

2.5.2 Forward Recovery

It starts with a backup copy of the database. The transaction will then

reprocess according to the transaction journal that occurred between the time the

backup was made and the present time. It's much faster and more accurate. In forward

recovery, the user has to execute unexpected tasks to recover the fault. Forward

recovery is commonly the only way to recover from technical failure or human error

in critical systems.

2.5.3 Write-Ahead Logging (WAL)

Write-Ahead Logging (WAL) is the fundamental rule. It ensures that a record

of every change to the DB is available while attempting to recover from a crash. The

old value of a data item on disk has been overwritten by the new value on disk. To

facilitate the recovery process, the recovery system may need to maintain a number of

lists.

- List of active transactions: transactions started but not committed yet

 - List of committed transactions

14

 - List of aborted transactions

WAL protocol for a recovery that requires both UNDO and REDO. The WAL

log data is a sequence of log records and includes the following:

 Redo records, used for updating disk blocks and insuring file system

consistency during restarts. It needs to redo the effect of the operations from the log.

 Undo records used for transaction rollback. It needs to undo the effect of the

operations from the log.

15

CHAPTER 3

THE CONTROLLING FOR RECOVERY

Understanding the concepts of database recovery requires a clear

comprehension of two factors:

• The type of failure the database has to cope with, and

• The notion of consistency that is assumed as a criterion for describing the

state to be reestablished.

Before beginning a discussion of these factors, the contents of this section rely

on the description of failure types and the concept of a transaction [1].

3.1 Which Failures Have to Be Anticipated

In order to design and implement a recovery component, one must know

precisely which types of failures are to be considered, how often they will occur, how

much time is expected for recovery, etc. One must also make assumptions about the

reliability of the underlying hardware and storage media, and about dependencies

between different failure modes [14]. However, the list of anticipated failures will

never be complete for these reasons:

• For each set of failures that one can think of, there is at least one that was

forgotten.

• Some failures are extremely rare. The cost of redundancy needed to cope with

them may be so high that it may be a sensible design decision to exclude these

failures from consideration. If one of them does occur, however, the system

will not be able to recover from the situation automatically, and the database

will be corrupted. The techniques for handling this catastrophe are beyond the

scope of this paper.

The following subjects of failure should be considered:

Transaction Failure: The transaction of failure has already been mentioned

in the previous section. For various reasons, the transaction program does not reach its

normal commit and has to be reset back to its beginning, either at its own request or

on behalf of the DBMS. Within one application, the ratio of transactions that abort

16

themselves is rather constant, depending only on the amount of incorrect input data,

the quality of consistency checking performed by the transaction program, etc. The

ratio of transactions being aborted by the DBMS, especially those caused by

deadlocks, depends to a great extent on the degree of parallelism, the granularity of

locking used by the DBMS, the logical schema (there may be hot spot data, or data

that are very frequently referenced by many concurrent transactions), and the degree

of interference between concurrent activities.

For classification, it is sufficient to say that transaction failures occur 10-100

times per minute, and that recovery from these failures must take place within the

time required by the transaction for its regular execution.

System Failure: The system failures that are considering can be caused by a

bug in the DBMS code, an operating system fault, or a hardware failure. In each of

these cases processing is terminated in an uncontrolled manner, and we assume that

the contents of main memory are lost. Since database-related secondary (nonvolatile)

storage remains unaffected, we require that a recovery take place in the same amount

of time that would have been required for the execution of all interrupted transactions.

If one transaction is executed within the order of 10 milliseconds to 1 second, the

recovery should take no more than a few minutes. A system failure is assumed to

occur several times a week, depending on the stability of both the DBMS and its

operational environment.

Media Failure: Besides these more or less normal failures, we have to

anticipate the loss of some or all of the secondary storage holding the database. There

are several causes for such a problem, the most common of which are

• bugs in the operating system routines for writing the disk,

• hardware errors in the channel or disk controller,

• head crash,

• Loss of information due to magnetic decay.

Such a situation can only be overcome by full redundancy, that is, by a copy

of the database and an audit trail covering what has happened since then. Magnetic

storage devices are usually very reliable, and recovery from a media failure is not

likely to happen more often than once or twice a year. Depending on the size of a

database, the media used for storing the copy, and the age of the copy, recovery of

this type will take on the order of 1 hour.

17

3.2 Summary of Recovery Actions

As we mentioned in Section 3.1, the notion of consistency that uses for

defining the targets of recovery is tied to the transaction paradigm, which have

encapsulated in the "ACID principle." According to this definition, a database is

consistent if and only if it contains the results of successful transactions. Such a state

will be called transaction consistent or logically consistent. A transaction, in turn,

must not see anything but effects of complete transactions (i.e., a consistent database

in those parts that it uses), and will then, by definition, create a consistent update of

the database. What does that mean for the recovery component? Let us for the

moment ignore transactions being aborted during normal execution and consider only

a system failure (a crash). It might then encounter the situation depicted in Figure 3.1.

Transactions T1, T2, and T3 have committed before the crash, and therefore will

survive. Recovery after a system failure must ensure that the effects of all successful

transactions are actually reflected in the database. But what is to be done with T4 and

T5? Transactions have been defined to be atomic; they either succeed or disappear as

though they had never been entered. There is therefore no choice about what to do

after a system failure; the effects of all incomplete trans- actions must be removed

from the database. Clearly, a recovery component adhering to these principles will

produce a transaction- consistent database. Since all successful transactions have

contributed to the data- base state, it will be the most recent trans- action-consistent

state. We now can distinguish four recovery actions coping with different situations:

Figure 3.1 Scenario for Discussing Transaction-Oriented Recovery

18

Transaction UNDO: If a transaction aborts itself or must be aborted by the

system during normal execution. By definition, UNDO removes all effects of this

transaction from the database and does not influence any other transaction.

Partial REDO: When recovering from a system failure, since execution has

been terminated in an uncontrolled manner, results of complete transactions may not

yet be reflected in the database. Hence they must be repeated, if necessary, by the

recovery component.

Global UNDO: When recovering from a system failure, the effects of all

incomplete transactions have to be rolled back. The database is assumed to be

physically destroyed; therefore, it must start from a copy that reflects the state of the

database some days, weeks, or months ago. Since transactions are typically short, we

need not consider incomplete transactions over such a long time. Rather we have to

supplement the copy with the effects of all transactions that have committed since the

copy was created.

With these definitions we have introduced the transaction as the only unit of

recovery in a database system. This is an ideal condition that does not exactly match

reality. For example, transactions might be nested, that is, composed of smaller sub-

transactions. These sub-transactions also are atomic, consistent, and isolated but they

are not durable. Since the results of sub-transactions are removed whenever the

enclosing transaction is undone, durability can only be guaranteed for the highest

transaction in the composition hierarchy. A two-level nesting of transactions can be

found in System R, in which an arbitrary number of save points can be generated

inside a transaction. The database and the processing state can be reset to any of these

save points by the application program. Another extension of the transaction concept

is necessary in fields like CAD. Here the units of consistent state transitions, that is,

the design steps, are so long (days or weeks) that it is not feasible to treat them as

indivisible actions. Hence these long transactions are consistent, isolated, and durable,

but they are not atomic. It is sufficient for the purpose of taxonomy to consider "ideal"

transactions only.

19

3.3 THE MAPPING HIERARCHY OF A DBMS

There are numerous techniques and algorithms for implementing database

recovery, many of which have been described. It needs to reduce these various

methods to a small set of basic concepts, allowing a simple, yet precise classification

of all reasonable implementation techniques; for the purposes of illustration, we need

a basic model of the DBMS architecture and its hardware environment. This model,

although it contains many familiar terms from systems like INGRES, System R, or

those of the CODASYL [1973, 1978] type, is in fact a rudimentary database

architecture that can also be applied to unconventional approaches like CASSM or

DIRECT although this is not purpose here.

3.3.1 The Mapping Process: Objects and Operations

As shown in Table 3.1, the major steps of dynamic abstraction from the level

of physical storage up to the user consists of some billions of bits stored on disk,

which are interpreted by the DBMS into meaningful information on which the user

can operate. With each levels of abstraction (proceeding from the bottom up), the

objects become more complex, allowing more powerful operations and being

constrained by a larger number of integrity rules. The uppermost interface supports

one of the well-known data models, whether relational, network like, or hierarchical.

Note that this mapping hierarchy is virtually contained in each DBMS, although for

performance reasons it will hardly be reflected in the module structure. We shall

briefly sketch the characteristics of each layer, with enough detail to establish our

taxonomy. For a more complete description see Haerder and Reuter.

20

Table 3.1 Description of the DB Mapping Hierarchy

Level of abstraction Objects Auxiliary mapping data

Nonprocedural or algebraic

access

Relations, views, tuples Logical schema description

Record-oriented,

navigational access

Records, sets, hierarchies,

networks

Logical and physical schema

description

Record and access path

management

Physical records, access

paths

Free space tables, DB- key

translation tables

Propagation control Segments, pages Page tables, Bloom filters

File management Files, blocks Directories, VTOCs, etc.

File Management. The lowest layer operates directly on the bit patterns stored on

some nonvolatile, direct access device like a disk, drum, or even magnetic bubble

memory. This layer copes with the physical characteristics of each storage type and

abstracts these characteristics into fixed- length blocks. These blocks can be read,

written, and identified by a (relative) block number. This kind of abstraction is usually

done by the data management system (DMS) of a normal general-purpose operating

system.

Propagation Control. This level is not usually considered separately in the current

become clear in the following sections we strictly distinguish between pages and

blocks. A page is a fixed-length partition of a linear address space and is mapped into

a physical block by the propagation control layer. Therefore a page can be stored in

different blocks during its lifetime in the database, depending on the strategy

implemented for propagation control.

Access Path Management. This layer implements mapping functions much more

complicated than those performed by sub- ordinate layers. It has to maintain all

physical object representations in the database (records, fields, etc.), and their related

access paths (pointers, hash tables, search trees, etc.) in a potentially unlimited linear

virtual address space. This address space, which is divided into fixed-length pages, is

provided by the upper interface of the sup- porting layer. For performance reasons,

the partitioning of data into pages is still visible on this level.

21

Navigational Access Layer. At the top of this layer we find the operations and

objects that are typical for a procedural data manipulation language (DML).

Occurrences of record types and members of sets are handled by statements like

STORE, MOD- IFY, FIND NEXT, and CONNECT [CO- DASYL 1978]. At this

interface, the user navigates one record at a time through a hierarchy, through a

network, or along logical access paths.

Nonprocedural Access Layer. This level provides a nonprocedural interface to the

database. With each operation the user can handle sets of results rather than single

records. A relational model with high-level query languages like SQL or QUEL is a

convenient example of the abstraction achieved by the top layer .On each level, the

mapping of higher objects to more elementary ones requires additional data structures,

some of which are shown in Table 3.1.

Figure 3.2 Storage Hierarchy of A DBMS During Normal Mode of Operation

22

3.3.2 The Storage Hierarchy: Implementation Environment

Both the number of redundant data required to support the recovery actions

described in Section 3.2 and the methods of collecting such data are strongly

influenced by various properties of the different storage media used by the DBMS. In

particular, the dependencies between volatile and permanent storage have a strong

impact on algorithms for gathering redundant information and implementing recovery

measurement. As a description framework we shall use a storage hierarchy, as shown

in Figure 3.2. It closely resembles the situation that must be dealt with by most of

today's commercial database systems. The host computer, where the application

programs and DBMS are located, has a main memory, which is usually volatile. 8

Hence we assume that the contents of the database buffer, as well as the contents of

the output buffers to the log files, are lost whenever the DBMS terminates

abnormally. Below the volatile main memory there is a two-level hierarchy of

permanent copies of the database. One level contains an on-line version of the

database in direct access memory; the other contains an archive copy as a provision

against loss of the on-line copy. While both are functionally situated on the same

level, the on-line copy is almost always up-to-date, whereas the archive copy can

contain an old state of the database. Our main concern here is data- base recovery,

which, like all provisions for fault tolerance, is based upon redundancy. We have

mentioned one type of redundancy: the archive copy, kept as a starting point for

reconstruction of an up-to-date on-line version of the database (global REDO)[6].

This is discussed in more detail in Section 4. To support this, and other recovery

actions introduced in Section 3.1, two types of log files are required:

Temporary Log: The information collected in this file supports crash

recovery; that is, it contains information needed to reconstruct the most recent

database (DB) buffer. Selective transaction UNDO requires random access to the log

records. Therefore, we assume that the temporary log is located on disk.

Archive Log: This file supports global REDO after a media failure. It

depends on the availability of the archive copy and must contain all changes

committed to the database after the state reflected in the archive copy. Since the

archive log is always processed in sequential order, we assume that the archive log is

written on magnetic tape.

23

3.3.3 Different Views of a Database

In Section 3.3.1, we indicated that the database looks different at each level of

abstraction, with each level using different objects and interfaces. But this is not what

we mean by "different views of a database" in this section. We have observed that the

process of abstraction really begins at Level 3, up to which there is only a more

convenient representation of data in external storage. At this level, abstraction is

dependent on which pages actually establish the linear address space, that is, which

block is read when a certain page is referenced. In the event of a failure, there are

different possibilities for retrieving the contents of a page. These possibilities are

denoted by different views of the database:

The current database comprises all objects accessible to the DBMS during

normal processing. The current contents of all pages can be found on disk, except for

those pages that have been recently modified. Their new contents are found in the DB

buffer. The mapping hierarchy is completely correct. The materialized database is the

state that the DBMS finds at restart after a crash without having applied any log

information. There is no buffer. Hence some page modifications (even of successful

transactions) may not be reflected in the on-line copy. It is also possible that a new

state of a page has been written to disk, but the control structure that maps pages to

blocks has not yet been updated. In this case, a reference to such a page will yield the

old value. This view of the database is what the recovery system has to transform into

the most re- cent logically consistent current database. The physical database is

composed of all blocks of the on-line copy containing page images--current or

obsolete. Depending on the strategy used on Level 2, there may be different values for

one page in the physical database, none of which are necessarily the current contents.

This view is not normally used by recovery procedures, but a salvation program

would try to exploit all information contained therein.

With these views of a database, we can distinguish three types of update

operations-all of which explain the mapping function provided by the propagation

control level. First, we have the modification of page contents caused by some higher-

level module. This operation takes place in the DB buffer and therefore affects only

the current database. Second, there is the write operation, transferring a modified page

24

to a block on disk. In general, this affects only the physical database. If the

information about the block containing the new page value is stored in volatile

memory, the new contents will not be accessible after a crash; that is, it is not yet part

of the materialized database. The operation that makes a previously written page

image part of the materialized database is called propagation. This operation writes

the updated control structures for mapping pages to blocks in a safe, nonvolatile

place, so that they are available after a crash. If pages are always written to the same

block (the so-called "update-in-place" operation, which is done in most commercial

DBMS), writing implicitly is the equivalent of propagation. However, there is an

important difference between these operations if a page can be stored in different

blocks.

Figure 3.3 Page Allocation Principles

3.4 Crash Recovery

In order to illustrate the consequences of the concepts introduced thus far, we

shall present a detailed discussion of crash recovery. First, we consider the state in

which a database is left when the system terminates abnormally. From this we derive

the type of redundant (log) information required to reestablish a transaction-consistent

state, which is the overall purpose of DB recovery. After completing our classification

scheme, we give examples of recovery techniques in currently available database

systems. Note that the results in this section also apply to transaction UNDO--a much

simpler case of global UNDO, which applies when the DBMS is processing normally

and no information is lost [2].

25

3.4.1 State of the Database after a Crash

After a crash, the DBMS has to restart by applying all the necessary recovery

actions described in Section 3.2. The DB buffer is lost, as is the current database, the

only view of the database to contain the most recent state of processing. Assuming

that the on-line copy of the database is intact, there are the materialized database and

the temporary log file from which to start recovery. We have not discussed the

contents of the log files for the reason that the type and number of log data to be

written during normal processing are dependent upon the state of the materialized

database after a crash. This state, in turn, depends upon which method of page

allocation and propagation is used.

In the case of direct page allocation and ~ATOMIC propagation, each write

operation affects the materialized database. The decision to write pages is made by the

buffer manager according to buffer capacity at points in time that appear arbitrary.

Hence the state of the materialized database after a crash is unpredictable: When

recent modifications are reflected in the materialized database, it is not possible

(without further provisions) to know which pages were modified by complete

transactions (whose con- tents must be reconstructed by partial REDO) and which

pages were modified by incomplete transactions (whose contents must be returned to

their previous state by global UNDO). Further possibilities for providing against this

situation are briefly discussed in Section 3.2.1.

 In the case of indirect page allocation and ATOMIC propagation, we know

much more about the state of the materialized database after crash. ATOMIC

propagation is indivisible by any type of failure, and therefore we find the

materialized database to be exactly in the state produced by the most recent successful

propagation. This state may still be inconsistent in that not all updates of complete

transactions are visible, and some effects of incomplete transactions are. However,

ATOMIC propagation ensures that a set of related pages is propagated in a safe

manner by restricting propagation to points in time when the current database fulfills

certain consistency constraints. When these constraints are satisfied, the updates can

be mapped to the materialized database all at once. Since the current database is

consistent in terms of the access path management level--where propagation occurs--

this also ensures that all internal pointers, tree structures, tables, etc. are correct. Later

on, it also discusses the schemes that allow for transaction-consistent propagation.

26

The state of the materialized database after a crash can be summarized as

follows:

-ATOMIC Propagation. Nothing is known about the state of the materialized

database; it must be characterized as "chaotic." ATOMIC Propagation. The

materialized database is in the state produced by the most recent propagation. Since

this is bound by certain consistency constraints, the materialized database will be

consistent (but not necessarily up-to-date) at least up to the third level of the mapping

hierarchy.

In the case of ~ATOMIC propagation, one cannot expect to read valid images

for all pages from the materialized database after a crash; it is inconsistent on the

propagation level, and all abstractions on higher levels will fail. In the case of

ATOMIC propagation, the materialized database is consistent at least on Level 3, thus

allowing for the execution of operations on Level 4 (DML statements).

3.4.2 Types of Log Information to Support Recovery Actions

The temporary log file must contain all the information required to transform

the materialized database "as found" into the most recent transaction-consistent state

(see Section 1). As we have shown, the materialized database can be in more or less

defined states, may or may not fulfill consistency constraints, etc. Hence the number

of log data will be determined by what is contained in the materialized database at the

beginning of restart. We can be fairly certain of the contents of the materialized

database in the case of ATOMIC propagation, but the result of "~ATOMIC schemes

have been shown to be unpredictable. There are, however, additional measures to

somewhat reduce the degree of uncertainty resulting from ATOMIC propagation, as

discussed in the following section.

3.4.2.1 Dependencies between Buffer Manager and Recovery Component

There are different dependencies between Buffer Management and UNDO

Recovery actions and Buffer Management and REDO Recovery actions.

3.4.2.1.1 Buffer Management and UNDO Recovery Actions

During the normal mode of operation, modified pages are written to disk by

some replacement algorithm man- aging the database buffer. Ideally, this happens at

points in time determined solely by buffer occupation and, from a consistency

27

perspective, seems to be arbitrary. In general, even dirty data, that is, pages modified

by incomplete transactions, may be written to the physical database. Hence the

UNDO operations described earlier will have to recover the contents of both the

materialized database and the external storage me- dia. The only way to avoid this

requires that the buffer manager be modified to prevent it from writing or propagating

dirty pages under all circumstances. In this case, UNDO could be considerably

simplified:

If no dirty pages are propagated, global UNDO becomes virtually unnecessary

that is, if there are no dirty data in the materialized database. • If no dirty pages are

written, transaction UNDO can be limited to main storage (buffer) operations.

The major disadvantage of this idea is that very large database buffers would

be required (e.g., for long batch update transactions), making it generally

incompatible with existing systems. However, the two different methods of handling

modified pages introduced with this idea have important implications with UNDO

recovery.

STEAL modified pages may be written and/or propagated at any time. STEAL

modified pages are kept in buffer at least until the end of the transaction (EOT).

The definition of STEAL can be based on either writing or propagating, which

is not discriminated in ATOMIC schemes. In the case of ATOMIC propagation

variants of STEAL are conceivable, and each would have a different impact on

UNDO recovery actions; in the case of STEAL, no logging is required for UNDO

purposes.

3.4.2.1.2 Buffer Management and REDO Recovery Actions

As soon as a transaction commits, all of its results must survive any

subsequent failure (durability). Committed updates that have not been propagated to

the materialized database would definitely be lost in case of a system crash, and so

there must be enough redundant information in the log file to reconstruct these results

during restart (partial REDO). It is conceivable, however to avoid this kind of

recovery by the following technique. During Phase 1 of EOT processing all pages

modified by this transaction are propagated to the materialized database; that is, their

writing and propagation are enforced. Then we can be sure that either the transaction

is complete, which means that all of its results are safely recorded (no partial REDO),

or in case of a crash, some updates are not yet written, which means that the

transaction is not successful and must be rolled back (UNDO recovery actions). Thus,

28

it has another criterion concerning buffer handling, which is related to the necessity of

REDO recovery during restart:

FORCE: All modified pages are written and propagated during EOT

processing. FORCE: No propagation is triggered during EOT processing.

The implications with regard to the gathering of log data are quite

straightforward in the case of FORCE: No logging is required for partial REDO.

While FORCE avoids partial REDO, there must still be some REDO log information

for global REDO to provide against loss of the on-line copy of the database.

29

CHAPTER 4

SYSTEM DESIGN AND IMPLEMENTATION

Since business organizations are very dependent on data. Transaction

Processing System (TPS) is used to handle data accuracy and data loss prevention. In

TPS, there are three main functions: data loss prevention, data locking and deadlock

detection and resolution. Since most of the business organizations - concerned on the

accuracy of data, TPS keeps the data accuracy - prevent data loss during transactions.

Data consistency is mainly relied on secure transactions to show reliability to its

customers. This transaction processing system is based on seed block recovery

information and prevents data loss during transaction period. During the transactions,

due to various errors, the transaction is interrupted and the connection with the other

breaks down.

When system breaks down, it stops the regular routines of the business and

stopping its operation for a certain amount of time. To recover incomplete transaction,

to prevent data loss, to minimize disruption the well-designed backup and recovery

procedure is put into use. This system is proposing a very efficient algorithm for data

backup. In this system, this algorithm is called as Seed Block Algorithm (SBA). In

Seed Block Algorithm, there are two types of objectives which we are trying to

achieve, these are as: First one is from any distinct location user collecting

information when network connectivity is absent. The process flow of the proposed

system is shown in Figure 4.1.

30

Figure 4.1 The System Flow Diagram

Start

Login

Generate Seed Block (User-
ID, Random number)

Load file

XOR (loaded file, Seed Block)

Encrypt Backup file with RSA
and saved in Data Backup

Data Backup

Server

Login

Decrypt backup file

Load encrypted backup file

XOR (Seed Block,
backup file)

Recover original file

End

31

4.1 Proposed Data Recovery Technique - Seed Block Algorithm

(SBA)

1. BEGIN

2. Set a random number in the main storage and unique client id for every client

3. Whenever the client id is being register in the main storage, then client id and

random number is getting EXORed with each other to generate seed block for

the particular client.

4. Whenever client creates the file in cloud first time, it is stored at the main

storage.

5. When it is stored in main storage (blob), the main file of client is being

EXORed with the Seed Block of the particular client.

6. It is also encrypted using public key RSA

7. That output file is stored at the backup storage (blob) in the form of file’

(pronounced as File dash).

8. During Retrieval, check if data present in main storage If present then EXOR

with seed block and retrieve data If not present, retrieve data from backup

storage.

9. During Retrieval from backup storage, the private key of the user will used to

decrypt file’

10. The user will get the original file by Exoring on decrypted file’ with the seed

block of the corresponding client to produce the original file and return the

resulted file in case of crash.

11. END

32

4.2 Benefits of Remote Backup Services

The following issues must be covered in Remote Backup services:

• Data Integrity: Server’s whole structure along with all complete states

tells us about Data integrity of server. At the time of transmission and

reception, data which resist to any kind of change in it. Such type of data is

verifies using Data Integrity. Validity of Data on Remote server is also

checked by Data integrity.

• Data security: The Remote servers have primary priority to provide

total security to data of user. And either intentionally or non-intentionally,

only particular user should have access to that data or not any other users.

• Data Confidentiality: In certain times, the system has to kept user’s

data files to be secret as if number of users are simultaneously accessing the

cloud, when other users accessing files on the cloud should unable to see

particular data file that belongs to only that particular user. This is also known

as Data Confidentiality characteristic.

• Genuine Characteristic: Trustworthiness is the important characteristic

of the Remote cloud. Remote cloud should possess that because every user are

having their private also confidential data on cloud. Therefore,

Trustworthiness characteristic should be present in remote also in cloud

backup.

• Cost efficiency: The cost of processing of data recovery should be

efficient so that large number of companies along with users can take benefit

of back-up and recovery service. There are many large numbers of methods

that have focused on these issues. The fore said issues occur at the time of

recovery also in back-up of domain of cloud computing is discussed.

4.3 Example Operation of System

Step-1 Start

Step-2 Assume there are five clients in the system

 Let clientid for client1 = cid01

 clientid for client2 = cid02

33

 clientid for client3 = cid03

 clientid for client4 = cid04

 clientid for client5 = cid05

 Random number = 12345

Step-3 ClientID for client2 XOR random number

cid02⊕ 12345 = 09910510002 ⊕ 12345

 = 9910502347

(Seed block for client2)

Step-4 Client2 creates file in cloud

(E.g., ‘myat’ = 6d796174)

 Change text to hexadecimal with converter

Step-5 Client2’s file XOR with Client2’s seed block

 6d796174 ⊕ 9910502347 = 997d294230

(Result stores in main storage)

Step-6 Encrypt by public key RSA (Using Online RSA Encryption,

Decryption And key Generator Tool)

Step-7 Encrypted file stored at backup server.

Step-8 When the wanted file is retrieved, result in Step-5 XOR

with Client2’s seed block.

 997d294230 ⊕ 9910502347 = 6d796174

 (Result show as hexadecimal, change to text again)

Step-9 If not present, we retrieve data from back up storage. Using

private key with RSA calculation, Client2 will get decrypted

file.

Step-10 To get original file, decrypted file XOR with Client2’s seed

block.

Step-11 Stop

ASCII code for c, i, d

c=099

i=105

d=100

34

RSA Calculation

 Let p = 3

 q = 5

 r = p * q = 3*5 = 15

Encryption key, e = 11 (Public key, greater than p & q)

Decryption key, d =? (Private key)

 d * e = 1 modulo (p-1) * (q-1)

 d * 11 = 1 modulo 2 * 4

d * 11 = 1 modulo 8

If d = 1 => 1 * 11 = 1 modulo 8

 Divide 8 into 11, and the answer is 1 with remainder 3(1≠ 3)

If d = 2 => 2 * 11 = 1 modulo 8

 Divide 8 into 22, and the answer is 2 with remainder 6(1≠ 6)

If d = 3 => 3 * 11 = 1 modulo 8

 Divide 8 into 33, and the answer is 4 with remainder 1(1 = 1)

Therefore, d = 3.

Let Plaintext, P = 13 (integer)

Cipher text, C = Pe modulo r

 = 1311 modulo 15

 = 1,792,160,394,037 modulo 15

 = 7

P = Cd modulo r

 = 73 modulo 15

 = 343 modulo 15

 = 13

4.4 RSA Encryption Algorithm

RSA Encryption Algorithm is the most commonly used public key encryption

algorithm. It can be used both for encryption and for digital signatures. The security

of RSA is generally considered equivalent to factoring, although this has not been

proved.

35

RSA computation occurs with integers modulo n = p * q, for two large secret

primes p, q. To encrypt a message m, it is exponentiated with a small public exponent

e. For decryption, the recipient of the cipher text

c = me (mod n)

computes the multiplicative reverse

d = e-1 (mod (p-1)*(q-1))

(We require that e is selected suitably for it to exist) and obtains cd = me * d = m (mod

n). The private key consists of n, p, q, e, d (where p and q can be omitted); the public

key contains only n and e. The problem for the attacker is that computing the reverse

d of e is assumed to be no easier than factorizing n.

The key size should be greater than 1024 bits for a reasonable level of

security. Keys of size, say, 2048 bits should allow security for decades.

4.5 Experimental Results

The proposed system is simulated using C# (asp.net) language on Microsoft

Visual Studio IDE and Microsoft SQL Server is used as Database Engine of the

System. The files are stored in servers until before deleted and this system make

uploading and recovering your files quick and easy. Users can store in servers for

many different file types and sizes.

Figure4.2 Testing (Microsoft Office Word with Different File Sizes)

Calcultio
n

Student3
CV Form

New
Flow Flow myatpho

oCVForm

Size(KB) 16 38 43 130 611

RecoverySize(KB) 16 38 43 130 611

Time(ms) 2596.6698 3457.2341 2145.3636 4103.7865 3340.7562

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Re
co

ve
ry

 T
im

e
(m

s)

Testing Word Files

36

Figure 4.2 shows testing time and file sizes of documents between main server

and backup server. In Figure 4.3, the result time and file sizes of Microsoft Office

Power Point will be shown.

Figure 4.3 Testing (Microsoft Office Power Point with Different File Sizes)

The test of time and main file sizes and recovery files sizes of Portable

Document Format and Microsoft Office Excel are shown in Figure 4.4 and Figure 4.5.

Figure 4.4 Testing (Portable Document Format with Different File Sizes)

Performa
nce

English
Langaua

ge

First
Seminar

Second_
Seminar

Third
Slide

Size(KB) 100 125 450 1335 3111

RecoverySize(KB) 100 125 450 1335 3111

Time(sec) 3506.2812 4920.7969 3717.3725 2551.4752 2874.7917

0
1000
2000
3000
4000
5000
6000

R
ec

ov
er

y
T

im
e

(m
s)

Testing Power Point Slide

face ww Relate1 Relate2 Analysis
Ref2

Size(KB) 7 66 167 352 459

RecoverySize (KB) 7 66 167 352 459

Time(ms) 2634.9347 2845.9876 3207.6462 3506.2812 3714.3725

0
500

1000
1500
2000
2500
3000
3500
4000

R
ec

ov
er

y
T

im
e

(m
s)

Testing PDF File

37

Figure 4.5 Testing (Microsoft Office Excel with different file sizes)

4.6 Implementation of the System

 This section describes the user interface of the system implementation. This

system implemented on network connection from one PC as Main Server to another

PC as Backup Server. So, users should connect two devices firstly. When connection

is ready, users can do transaction processes to load files and recover files from their

backup files. This system will start with the main page as shown in Figure 4.6.

Figure 4.6 Main Page of System

Students
'GPA

E-
Teacher

TeacherI
nofo Book1 Book11

File Size(KB) 450 225 1050 389 2000

RecoverySize(KB) 450 225 1050 389 2000

Time(ms) 3895.5807 3895.5807 3895.5807 2630.6376 4563.7003

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

R
ec

ov
er

y
T

im
e

(m
s)

Testing Excel File

38

But this system can only be used by registered user to maintain the data security and

privacy. So, the new user must be registered / sign up first. Then, the registered user

can be entered the system via log in page. The signup page and log in page of the

system are shown in Figure 4.7 and Figure 4.8.

Figure 4.7 The Login Page

Figure 4.8 The SignUp Page

39

Figure 4.9 Generate Seed Block File

Figure 4.10 ‘User List’ Page

The users or organizations are related with generating seed blocks which are

kept in secretly. About developing seed blocks and the list of the users are shown in

Figure 4.9 and Figure 4.10.

40

Figure 4.11 The Uploading File

The next step after the login is uploading the file in Figure 4.11. After

uploading the file, the system generates the seed automatically for particular file using

Seed Block algorithm and stores that file in the system’s server. If user wants to

retrieve the file, the system makes searches in main server firstly and downloads from

the main server. After file upload successful ‘acknowledge message’ will be shown.

After the end of uploading stage, file will be encrypted by RSA function in

Figure 4.12 and in Figure 4.13, the recovery stage of the system will be shown.

Figure 4.12 Encryption File

41

Figure 4.13 Recovery Backup File

During the operation of encryption and decryption, the original files and

backup files will be presented in the main server. Although, files get deleted, the

backup server can be generated as shown in Figure 4.14 and Figure 4.15.

Figure 4.14 Files in Main Server

42

Figure 4.15 Files in Back Up Server

43

CHAPTER 5

CONCLUSION

Nowadays, a large amount of data is stored in the many ways and becoming

very important to all the organization. Because it is the age of technology, almost all

organizations are based on transaction processing. So, data backup and recovery are

very urgent for data reliability and data availability. Seed Block Algorithm (SBA) is

robust in assisting the users to collect information from any remote location in the loss

of network connection and if file deletion has been occurred due to any reason, this

system can also recover files. The SBA also focuses on the security issue for the back-

up files stored at remote server, without using any of the existing encryption

techniques. The SBA will take minimum time for processing recovery so that the

issue corresponds to time can be solved.

5.1 Benefits of the System

The proposed system consists of the data recovery section which will be

proceeded the failure file request transaction to become a successfully completed

transaction. Therefore, this system is reliable for the data loss recovery during file

request transaction processing; the original database and data backup are parallel

stored. The system can also prove zero data loss according to the experiment results

and the data can be retrieved when it decrypts with seed block of the particular users.

So, this system has privacy and recovery time does not enormously increase as data

increase.

5.2 Limitations and Further Extensions of the System

There are some limitations in this system. This system based on distributed

storage system. So, it is dependent on having a network connection. If you are on a

slow network, you may have issues accessing your storage. In the event you won’t be

able to access your file. This system can upload and recovery files with the following

extensions: .pdf, .docx, .txt, .xlsx and.pptx. You can test recovery on another file

types (e.g., image files). This system is not possible to restore files residing on users

who are not in network connection. The software discussed above is a great effort to

44

bring more effectiveness to the whole system of recovery of files on backup server.

There is a scope for modification an up gradation in the future.

45

AUTHOR’S PUBLICATIONS

[1] Myat Phoo Nge, Yu Wai Hlaing, “University Data Recovery System Using

Seed Block Algorithm”, The Proceedings of the Conference on Parallel & Soft

Computing (PSC 2022), University of Computer Studies, Yangon, Myanmar,

2022.

46

REFERENCES

[1] Amman, P., et. al., "Recovery from Malicious Transactions", IEEE

Transactions on Knowledge and Data Engineering, Vol. 15, 2015.

[2] B.W.Lampson and H.E.Sturgis., ”Crash recovery in a distributed data

storage system”, Technical report, Xerox Palo Alto Research Center, April

2016.

[3] C.U., Orji., J.A. and Solworth. “Doubly distorted mirrors”, ACMSIGMOD
internal conference on Management of data, Vol.22, NO.2, 2013.

[4] Engr. FaizullahMahar, “Role of Information Technology in Transaction
Processing System”, Department of Electrical Engineering and Computer
Science/IT, Balochistan University of Engineering and Technology,
Khuzdar, Balochistan, Pakistan, 2015.

[5] Ghazi Alkhatib and Ronny S. Labban, “Transaction Management in
Distributed Database Systems: the Case of Oracle’s Two-Phase Commit”,
Senior Lecturer of MIS, Qatar College of Technology, Doha, Qatar and
Computer & Communications Engineer; Consolidated Contractors
International Company Athens, Greece; Alkhatib@qu.edu.sa and
r.s.labban@ieee.org.

[6] J.M.Kent., “Performance and Implementation Issues in Database Crash
Recovery”, PhD thesis, Princeton University, 2015.

[7] Mahantesh N. Birje, Praveen S. Challagidad, “Remote backup and
recovery review: concepts, technology, challenges and security”,
International Journal of Cloud Computing, InderScience Publishers, vol. 6,
issue 1, 2017.

[8] Malinowski, E. an Chakravarthy, S. (2017), Fragmentation techniques for
distributing object-oriented database, in D.W. Embley& R.C Goldstein,
eds, ‘Conceptual Modeling – ER ‘97’, Vol . 1331 of lecture notes in
computer science, springer, PP, 347-360.

[9] Mr. G. S. Narke, “A smart data backup technique for cloud computing
using seed block algorithm strategy”, Comp. Dept. BVCOERI Nasik,
India, International Research Journal of Engineering and Technology
(IRJET) 2015.

[10] Ruchira. H. Titare, Prof. PravinKulurkar, “Remote Data Back-up and
Privacy Preserving Data Distribution: A Review”, International Journal of
Computer Science and Mobile Applications, Vol. 2, Issue. 11, November
2014.

[11] R.A.Lorie. “Physical integrity in a large segmented database”, ACM

Transactions on Database Systems, Vol.2, NO.1, 2017.

47

mailto:Alkhatib@qu.edu.sa
mailto:r.s.labban@ieee.org

[12] Tripathy, S. and B. Panda, “Post-Intrusion Recovery Using Data
Dependency Approach”, Proceedings of the 2021 IEEE Workshop on
Information Assurance and Security, pp. 156-160.

[13] Vladimir Zwass,“Foundations of Information System”, Fairleigh

Dickinson University, McGraw-Hill Companies, Inc., International

Editions 1998.

[14] Yongkun WANG, Kazuo GODA, and Masaru Kitsuregawa, “A

Performance Study of Non-In-Place Update Based Transaction”, Institute

of Industrial Science, the University of Tokyo, 2009.

[15] Vladimir Zwass,“Foundations of Information System”, Fairleigh

Dickinson University, McGraw-Hill Companies, Inc., International

Editions 1998.

48

