

SQL INJECTION DETECTION USING PATTERN

MATCHING ALGORITHM FOR LIBRARY

SYSTEM

MAR MAR THAN

M.I.Sc. SEPTEMBER 2022

SQL INJECTION DETECTION USING PATTERN

MATCHING ALGORITHM FOR LIBRARY

SYSTEM

BY

MAR MAR THAN

D.C.Sc.

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Master of Information Science

(M.I.Sc.)

University of Computer Studies, Yangon

SEPTEMBER 2022

Statement of Originality

I hereby certify that the work embodied in this thesis is the result of original

research and has not been submitted for a higher degree to any other University or

Institution.

…..…………………………… .…………........…………………………

Date Mar Mar Than

i

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere gratitude to everyone

who assisted me in various ways when I was completing my research and writing this

thesis. There are many things required, including my hard work and the assistance of

many others, to finish this thesis.

First of all, I would like to express very special thanks to Prof. Dr. Mie Mie

Khin, Rector, the University of Computer Studies, Yangon, for allowing me to develop

this thesis and giving me general guidance during the period of my study.

My heartfelt thanks and respect go to Prof. Dr. Thandar Win, Principal and

Pro-rector of the University of Computer Studies (Myeik), for her invaluable and

administrative support.

I would like to express my deep gratitude to my supervisor, Prof. Dr. Tin Thein

Thwel, Head of Faculty of Information Science, University of Computer Studies,

Yangon, for providing me with incredibly valuable guidance and advice throughout my

thesis. In addition, I would like to express my sincere gratitude to my supervisor for

giving much of her time. I admire her courage, her positive outlook, her ability to offer

advice. I am very lucky to be working under her supervision.

I would like to express my respectful gratitude to all my teachers for their

encouragement and suggestion. To the reading committee teachers, especially Daw

Aye Aye Khine, Associate Professor and Head of English Department, University of

Computer Studies, Yangon, I would like to thank her for valuable supports and editing

my thesis from the language point of view.

I also thank Daw Nwe Zin Oo, Lecturer and Head of my department, the

Information Technology and Supporting Maintenance Department, University of

Computer Studies (Myeik), for her co-operation and encouragement.

Moreover, I would like to extend my thanks to all my teachers who taught me

throughout the master’s degree course and my friends for their cooperation.

Last but not least, I am very much indebted to my parents, all of my colleagues,

and friends for always believing in me, for their endless love and support. They are

always supportive of me during my study period.

ii

ABSTRACT

 Security concerned vulnerabilities are frequently detected and exploited in

modern library system. Intruders obtain unrestricted access to the information stored in

the library system by exploiting security vulnerabilities. It becomes a greater challenge

for a library due to network acceptance and security vulnerability. Traditional library

system is unable to detect malicious users from SQL injection attacks. Pattern matching

algorithm has grown in prominence alongside the emergence of security awareness. In

this work, an effective library system is proposed to detect SQL injection attacks by

using static pattern matching algorithm. The proposed system makes use of an effective

pattern matching algorithm and validation with the static pattern lists whether the

authenticated user or not for the library system. It can update a new anomaly pattern to

the existing static pattern list whether any form of new anomaly occurs. Moreover, the

matching percentage of the attacks can be calculated after detection. The matching

algorithm is modified to check how many percentages based on the defined threshold

and it is applied to evaluate the accuracy of the system when SQL Infections are

attacked. The evaluation is performed using the Bayes Classifier. The proposed system

provides the output result with the possible percentage of SQL injection attacks entering

the library system.

iii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS i

ABSTRACT ii

TABLE OF CONTENTS iii

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF EQUATION viii

CHAPTER 1 INTRODUCTION

1.1 Motivation of the Thesis 1

1.2 Objectives of the System 2

1.3 Organization of the Thesis 2

CHAPTER 2 RELATED WORK

2.1 SQL Injection Detection Using Machine Learning 4

 2.2 SQL Injection Detection Using Pattern Matching 5

2.3 Chapter Summary 6

CHAPTER 3 SQL INJECTION AND ATTACK TYPES

 3.1 Impacts of SQL Injection 7

 3.2 Types of SQL Injection Attack 8

CHAPTER 4 PATTERN MATCHING BASED LIBRARY

SYSTEM ARCHITECTURE

 4.1 Proposed Library System 11

 4.2 Naive Bayes Classifier 18

 4.3 Admin Login 18

 4.4 User Login 20

 4.5 Experiment and Result Discussion 32

 4.5.1 Alternate Encoding 32

 4.5.2 Inference Attack 34

 4.5.3 Logically Incorrect Attack 36

iv

 4.5.4 Piggy-Backed Attack 38

 4.5.5 Stored Procedure Attack 39

 4.5.6 Tautology Attack 41

 4.5.7 Union Attack 42

 4.5.8 Attack Categories Evaluation 44

CHAPTER 5 CONCLUSION

 5.1 Advantages of the System 51

 5.2 Limitation of the System 52

 5.3 Further Extension 52

LIST OF PUBLICATIONS 53

REFERENCES 54

v

LIST OF FIGURES

FIGURE PAGES

Figure 2.1 The Parsing Approach 3

Figure 2.2 The Machine Learning Approach 4

Figure 4.1 ER Diagram of the Proposed System 12

Figure 4.2 Flow Chart of Proposed Library System 17

Figure 4.3 Admin Login Page of the System 19

Figure 4.4 Correct Admin Login Page of the System 19

Figure 4.5 Incorrect Admin Login Page of the System 20

Figure 4.6 Dashboard Page of the System 20

Figure 4.7 Admin Profile Page of the System 21

Figure 4.8 Admin Password Change View of the System 21

Figure 4.9 User View from Admin Side of the System 22

Figure 4.10 Upload Book View from Admin Side of the System 22

Figure 4.11 Upload New Book to the System 23

Figure 4.12 Successful Upload New Book to the System 23

Figure 4.13 Update Number of Books in the System 24

Figure 4.14 Update Book Information in the System 24

Figure 4.15 Update Book Information by Admin 25

Figure 4.16 Alert Attack Information to Admin 25

Figure 4.17 Logout Page (Admin View) 25

Figure 4.18 Login Page of the System 26

Figure 4.19 Registration Page of the System 26

Figure 4.20 Successful Registration Page of the System 27

Figure 4.21 Find Book Page of the System 27

Figure 4.22 Result Page of the System 28

Figure 4.23 Finding Book Result of the System 29

Figure 4.24 Download Page of the System 29

Figure 4.25 User Profile Page 30

Figure 4.26 User Login Page 30

Figure 4.27 Incorrect User Login Page 31

Figure 4.28 User Validation Page 31

Figure 4.29 User Validation Alert Page 32

vi

Figure 4.30 Alternate Encoding Attack from User Input 33

Figure 4.31 Alternate Encoding Attack from Search Input Box 33

Figure 4.32 Alternate Encoding Attack Detection 34

Figure 4.33 Inference Attack from User Input 35

Figure 4.34 Inference Attack from Search Input Box 35

Figure 4.35 Inference Attack Detection 36

Figure 4.36 Logical Incorrect Attack from User Input 37

Figure 4.37 Logical Incorrect Attack from Search Input Box 37

Figure 4.38 Logical Incorrect Attack Detection 38

Figure 4.39 Piggy-Backed Attack from User Input 38

Figure 4.40 Piggy-Backed Attack from Search Input Box 39

Figure 4.41 Piggy-Backed Attack Detection 39

Figure 4.42 Stored Procedure Attack from User Input 40

Figure 4.43 Stored Procedure Attack from Search Input Box 40

Figure 4.44 Stored Procedure Attack Detection 41

Figure 4.45 Tautology Attack from User Input 41

Figure 4.46 Tautology Attack from Search Input Box 42

Figure 4.47 Tautology Attack Detection 42

Figure 4.48 Union Attack from User Input 43

Figure 4.49 Union Attack from Search Input Box 43

Figure 4.50 Union Attack Detection 44

vii

LIST OF TABLES

TABLES PAGES

Table 4.1 Data Dictionary of the Proposed Library System 13

Table 4.2 Pattern Matching Procedure 14

Table 4.3 System Design Process 14

Table 4.4 Attack Types Evaluation 44

Table 4.5 Performance Evaluation 49

viii

LIST OF EQUATION

EQUATION PAGES

Eq 4.1 Naive Bayes Classifier 18

1

CHAPTER 1

INTRODUCTION

 With growth of Internet and web-based system, the human dependency on

websites and web applications has increased significantly in present days. Browsers

and general web concepts are more familiar to most people to use than any other

abstract computing interface. With the widespread use of web application, web-based

e-library system can easily provide information on literature and academic areas. Users

performing sensitive transactions online have paved a way for the attackers to spoof

and tamper the transaction data. SQL Injection is a type of web application security

vulnerability in which an attacker is able to submit a SQL command in order to extract

or update information in the library database that they are not authorized to access. One

of the most frequent web-based application vulnerabilities, SQL injection focuses on

the form of incoming SQL queries and allows users to access restricted data, get beyond

authentication, and execute unwanted data manipulation language. SQL Injection

Attacks can be identified and avoided using a variety of methods, including encryption,

extensible markup language (XML), pattern matching, parsing, and machine learning.

These techniques can address login, URL, and search vulnerabilities processes by

handling input type checking, pattern matching, and input encoding assaults.

 In this proposed system, the user generated SQL Queries are checked whether

they are SQL injected or not by applying static pattern matching algorithm. If any form

of new anomaly occurs, then a new anomaly pattern will be updated to the existing

static pattern list. On the basis of the corresponding scenario, this work serves as a

pattern matching based e-library system for experimenting with different SQL injection

attacks.

1.1 Motivation of the Thesis

 The Databases of the library system often contain confidential and personal

information. These databases and user personal information become target to the

attacks. Injection attack is a method that can inject any kind of malicious string or

anomaly string on the original string. There are numerous techniques to carry out SQL

injection attacks, including data modification, query manipulation, data extraction, etc.

Attackers can get unauthorized access to the application and steal sensitive

2

identification information by executing a modified SQL query. Pattern matching is a

technique that can be used to identify or detect any anomaly packet from a sequential

action. SQL Injection is a type of an injection attack that makes it possible to execute

malicious SQL statements to control a database server. An effective library system

against SQL injection attack is needed.

1.2 Objectives of the Thesis

 The main objectives of the thesis are:

• To identify or detect malicious SQL queries against a database of library

system which include the patterns from known SQL injection attacks.

• To update the existing static pattern database when any form of new

anomaly query occurs by adding after detection.

• To describe the percentage matching after checking the query with static

pattern database.

1.3 Organization of the Thesis

 The thesis is organized as five chapters. They are as follows.

Chapter 1 outlines the study areas and defines the aims of the study. The thesis

issues and motivations are presented.

Chapter 2 presents the related work of the study and recent literatures of the thesis.

Chapter 3 describes the overview of the SQL injection and different attack types.

Chapter 4 provides the proposed system design and process, detailed procedures

of the algorithms and highlights the experiment results with the different types of

SQL injection attacks.

Chapter 5 concludes the whole thesis work and the effectiveness of the thesis by

the result discussion, the scope and limitations of the research and finally points out

with future research directions.

3

CHAPTER 2

RELATED WORK

 With the wide deployment of web application, a variety of emerging

applications have been deployed at web-based system. To guarantee the safe and

efficient operations of the web-based system, especially the extensive e-library system,

it is important and challenging to detect SQL injection attacks, which can be expressed

as a number of specific SQL query that may cause attacks. The target of a SQL injection

attack is a web application that uses database services and is interactive. Such programs

accept user input fields and then utilize that information in SQL queries, which are often

used to query databases. In SQL injection, the malicious user delivers user input that

causes a database request that is different from what the normal user intended. In other

words, when user input is interpreted as a component of a larger SQL statement, the

resulting SQL statement differs from what was initially intended. There are two main

SQL injection detection approaches: parsing approach and machine learning approach.

Figure 2.1 The Parsing Approach

 Figure 2.1 shows the tree structure of the parsing approach. A data structure for

the parsed representation of a statement is called a parse tree. The sentence construction

Parsing Approach

Input Type
Checking

Log In

Pattern Matching

Log In URL Search

4

of a statement's language is necessary for parsing. The system can detect whether two

queries are identical by parsing two statements and comparing their parse trees.

Figure 2.2 The Machine Learning Approach

 Figure 2.2 shows the tree structure of the machine learning approach. By

comparing the website access log file with the knowledge-based of malicious attributes,

a machine learning technique is utilized to identify a SQL injection attack. Although

some approaches have achieved remarkable progress, they are with limited applications

since these approaches are dependent on attack types, e.g., signatures describing

anomalies. Moreover, they might fail to detect the anomalies pattern that may have to

inject malicious SQL statements into input fields at the system. To overcome these

limitations and adaptively detect anomalies from SQL injection attacks, an effective

library system is proposed to detect SQL injection attacks by using static pattern

matching algorithm. This chapter reviews the current literature upon which the

theoretical basis of this thesis is built.

2.1 SQL Injection Detection Using Machine Learning

 For many years, SQL injection has been a problem, and numerous tools and

methods have been created to address vulnerability. Some of the study perform SQL

injection detection using machine learning algorithm. The study in [6] constructed and

assessed the machine learning’s Naïve Bayes classifier for detecting SQLIAs. The

developed application accepts the training dataset from text files during the learning

Machine
Learning
Approach

Input Type
Checking

Login

Pattern
Matching

Login URL Search

Encoding
Input

Login URL

https://www.sciencedirect.com/topics/computer-science/detect-anomaly

5

phase and submits each piece of information to the learning algorithm of the classifier.

The feature vectors are created from the input data by tokenizing and separating it into

blanks, then the system learns those feature vectors using machine learning. In this

study, the role of the user, which is used for categorization using a Role Based Access

Control method, is also included in the feature vector. The dataset from text files is

adopted and each piece of information is trained with the learning algorithm during the

classification process. Classification is done using the generated feature vectors. They

showed that the proposed classifier detected the malicious query and achieved the

classification results with 93.3% accuracy.

 The study in [1] provided a novel method to identify injection attacks by

representing SQL queries as tokenized graphs and training a support vector machine

(SVM) with the centrality measures of the node. They analyzed several token graph

construction techniques and offered in different system designs that include both single

and multiple SVMs. The system can defend numerous web applications in a shared

hosting environment because it is made to operate at the database firewall layer. The

results of the experiments show that this technique can identify fraudulent SQL queries

with no performance impact.

2.2 SQL Injection Detection Using Pattern Matching

 M. A. Prabakar et al. [8] proposed a detection and prevention technique for

preventing SQL Injection Attack (SQLIA) using Aho–Corasick pattern matching

algorithm. They introduced the efficient approach which consists of two modules: static

and dynamic modules. In the static module, the incoming user query was examined

with the existing static pattern lists. In the dynamic module, when a new abnormality

of any type came to fruition, an alarm would be activated and a new anomaly pattern

would indeed be formed. The Static Pattern List would be updated with the new

abnormality pattern. The experimental results showed that the proposed algorithm

worked well against the SQL Injection Attack based on some sample of standard attack

patterns.

 N. Patel and N. Shekokar [14] developed a detection and prevention technique

for SQL Injection Attack using modified Aho–Corasick pattern matching algorithm.

The system checked the user generated SQL queries by applying static pattern matching

6

algorithm whether these are SQL injected or not by using SQLMAP tool and AIIDA-

SQL techniques.

 The proper research had been done to pinpoint the flaws, exploits, and defenses

against SQL injection attacks made use of these imperfections. The researchers

presented a neural network-based solution for high accuracy SQL injection detection in

[10]. The system acquired authentic user URL access log data from the Internet Service

Provider (ISP). The statistical research was conducted on normal data and SQL

injection data. Based on statistical findings, their experimental results showed that

accuracy was over 99 percent.

 A study by P. Javali and S. V. Chougule [4] applied Aho-Corasick pattern

matching algorithm to detect and prevent SQL injections on Bank Application. To keep

user information, they employed Apache Tomcat, and MySQL. The findings

demonstrate that the pattern matching technique successfully identifies and secures

websites from five different forms of attacks (tautologies, illegal or illogical requests,

union, piggy-backed, and alternate encodings).

 In order to distinguish between legitimate SQL queries and malicious SQL

queries, fingerprinting technique and Pattern Matching are integrated in in the study

[13] for a signature-based SQL injection attack detection framework. The system keeps

track of all SQL requests made to the database and evaluates them against a database

of signatures from previously reported SQL injection attacks. If the fingerprint

approach is unable to validate a query on its own, the Aho Corasick algorithm is used

to check for the presence of attack signatures in the requests. Their experimental results

show that the proposed system can detect a variety of SQL injection attempts with little

performance impact.

2.3 Chapter Summary

 This chapter presents the recent literatures and related work of the thesis. The

research work of SQL injection and detection using machine learning and pattern

matching algorithm are described.

7

CHAPTER 3

SQL INJECTION AND ATTACK TYPES

 A prominent attack method is SQL injection, which manipulates back-end

databases to retrieve data that was not intended to be displayed. When harmful code is

introduced as user input, it is processed by the system as a SQL query and then the

malicious code is triggered to run. It has the ability to access data and either erase it or

steal information (like user credentials) (to harm a business). An attacker who gains

access to data and assumes the identity of a database administrator can then utilize the

transferred credentials to get access to the entire system. SQL injection attack is divided

into three main arrangements. They are as follow.

[1] Classic In-band SQLI,

[2] Inferential Blind SQLI and

[3] SQLI Based on Out-of-Band

 The following is a thorough explanation of SQL injection attacks with

accompanying examples. The most prevalent and convenient SQL injection attack is

in-band SQL injection [2]. A specific kind of SQL Injection attack known as blind SQL

(Structured Query Language) injection requests the system true or false questions and

then determines the answer depending on the application's response [13]. Neither any

data is actually communicated over the web - based application during an inferential

SQLi attack, therefore the attacker cannot observe the attack's in-band results. When an

attacker is unable to execute the attack and acquire data through the exact same channel,

SQLI Based on Out-of-Band happens. The database server has the capacity to send

information to an attacker who can send DNS or HTTP requests [3].

3.1 Impacts of SQL Injection

 There are many distinct SQL injection vulnerabilities, attacks, and strategies

that emerge in diverse situations.

[1] Leakage of sensitive information

 Information leaks happen when private data is made available to

unauthorized persons as a result of a security lapse or a cybercrime. For

organizations, confidential information leaks are worrisome.

8

[2] Reputation decline

 Likewise, a reputation that is eroding over time refers to one that is

steadily getting less, poorer, or worse. It is a reputation that is deteriorating.

[3] Modification of sensitive information

 Data that has to be protected is considered sensitive information. The

loss of sensitive information, misuse, modification, or unauthorized access

to those data has a detrimental impact on an organization's or an individual's

welfare, privacy, assets, or security Loss of control of database server.

[4] Data Loss

An SQL injection allows intrusions on data-driven systems, typically

to steal sensitive data, by using malicious SQL commands.

[5] Denial of service

Attacks that cause a denial of service drastically reduce the level of

service that authorized users receive.

3.2 Types of SQL Injection Attack

[1] Tautology

 It is a kind of attack in which condition becomes always true. Example

of Tautology query attack:

SELECT * FROM employee WHERE name = ‘ ’ or 1=1 -- ’ AND password =

‘12345’;

[2] Piggy-Backed Queries

 Additional malicious queries are inserted into an original injected

query. Example of Piggy-backed query attack:

SELECT * FROM employee WHERE name = ‘guest’ and password = ‘1234’; DROP

TABLE employee; --;

[3] Union Query

9

 UNION keyword is used to get information by joining the injected

query with safe query. Example of Union query attack:

SELECT emp_id FROM employee WHERE name = ‘’ UNION

SELECT cardNo FROM creditCard WHERE accNo = 10032 -- AND password

= ‘ ’ ;

[4] Stored Procedure

 Built-in stored procedure is used with malicious SQL injection codes.

Example of stored procedure query attack:

CREATE PROCEDURE DBO @userName varchar2, @pass varchar2,

AS EXEC (“SELECT * FROM user WHERE id= ‘ “+@userName+”’ and

password= ‘ “+@pass+’”); GO

[5] Illegal/Logically incorrect query

 This attack lets an attacker to get information about the back-end

database of a Web application using error message. Example of Illegal / Logical

Incorrect query attack:

SELECT * FROM employee WHERE name = ‘ ’ UNION SELECT SUM(username)

from users -- ’ and password= ‘ ’ ;

[6] Alternate Encodings

 It is a kind of attack which is used to encode the attack strings to avoid

the filtering from the programmer (e.g., by using hexadecimal, ASCII and

Unicode character set). Example of alternate encoding query attack:

SELECT accounts FROM login WHERE username=" AND password=0;

exec ((char (0x73687574646j776e));

[7] Inference

 In-Blind injection, hackers obtain database information by submitting

a server’s true / false questions and the answers from this page gives leading

information that will be exploited further.Example of inference (blind) SQL

injection attack:

10

SELECT * FROM emp_name, emp_address, gender, from employee where 1=0;

drop employee;

11

CHAPTER 4

PATTERN MATCHING BASED LIBRARY SYSTEM

ARCHITECTURE

 Lack of awareness and knowledge of security challenges and solutions often

leads to ill-informed security decisions in traditional library system development. One

of the most popular web attack techniques used by attackers to steal sensitive data from

library systems is SQL Injection. It is a method of code injection that enables hackers

to insert malicious SQL statements into input fields, which the underlying SQL

database subsequently executes. Attackers can even insert malicious SQL queries using

web-based library URLs. Even though there has been a great deal of research on SQLIA

detection and prevention, SQL injection attacks are still frequent and cannot be totally

eradicated. In this study, an effective library system is proposed to detect six common

types of SQL injection attacks by using static pattern matching algorithm. The proposed

system makes use of an effective token mapping and validation with the static pattern

lists whether the authenticated user or not for the library system. It can update a new

anomaly pattern to the existing static pattern list whether any form of new anomaly

occurs. Moreover, the matching percentage of the attacks can be calculated after

detection. Naïve Bayes algorithm is applied to check how many percentages based on

the defined threshold and to evaluate the accuracy of the system when SQL Infections

are attacked.

4.1 The Proposed Library System

 In the proposed library system, static pattern matching algorithm is used to

identify and detect any anomaly queries by using static pattern analysis. Figure. 4.1

illustrates the ER(Entity-Relationship) diagram of the proposed system. The relational

database (DB) is used to keep the information of the admin, users, books and static

patterns. In addition, the data dictionary for the proposed ER design is shown in Table

4.1.

12

Figure 4.1. ER Diagram of the Proposed System

13

Table 4.1 Data Dictionary of the Proposed Library System

Table Attribute Type Required PK/FK
FK Reference

Table

admin
id

int PK

 username text Yes

 email text Yes

 password text Yes

 fullname text

 address text

 birth text

users
id

int PK

 username text Yes

 email text Yes

 password text Yes

 fullname text

 address text

 birth text

books
id

int PK

 bookname text Yes

 description text Yes

 categories text Yes

 author text Yes

 link text

 image text

knownpatterns knownpatterns text Yes

 category text

14

The step-by-step procedure of pattern matching algorithm is presented in Table 4.2.

Table 4.2. Pattern Matching Procedure

Input:

Output:

Step 1:

Step 2:

Step 3:

Step 4:

user input query

Pattern matched or not matched

User input SQL query is tokenized and sent to the Pattern Matching algorithm.

User query is compared with stored pattern in existing static database.

If it is equal to static pattern in back-end database, SQL injection attack is detected and

exist from the system.

If it is not equal, then detected query is accepted. After mapping, it is added into the

existing static database of library system to protect for the next SQL injections.

Table 4.3. System Design Process

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

User generated SQL query is sent to the proposed system.

Then the queries are preprocessing by tokenized.

The procedure of pattern matching algorithm is shown in Table 4.2.

If the user generated query does not match each pattern in DB patterns, such a user will be

validated with library users’ data to identify authenticate user.

Otherwise, if the pattern is match with one of the stored patterns in the anomaly pattern

list, this query is identified as entering the library system with a SQL injection attack.

The query is considered as malicious user and then reject the query.

Then, alert is sent to the admin about SQL injection attack, and then pattern mapping is

performed.

The anomaly pattern that are not in the static pattern list are inserted and updated to the

pattern list of the proposed library system to prevent further SQL injection attack.

The evaluation is performed using the Bayes Classifier.

The output result is showed, the percentage of what kind of SQL attack is injected to the

library system.

 As indicated in Table 4.3, the purpose of the proposed library system is to

examine incoming SQL queries and to identify injection attacks. Algorithm 4.1 shows

the detail procedure of the static pattern matching algorithm.

15

Algorithm 4.1. Static Pattern Matching Algorithm

1: Procedure SPMA (Query, SPL[])

 INPUT: Query User Generated Query

 SPL[] Static Pattern List with m Anomaly Pattern

2: For j=1 to m do

3: If (MA (Query, String Length (Query),

 SPL[j][0]) == Ø) then

 4: Anomalyscore =
Matchingvalue (Query, SPL[j])×100

String.Length(SPL[j])

5: If (Anomalyscore ≥ Thresholdvalue)

6: then

7: Return Alarm →Admin

8: Else

9: Return Query→ Accepted

10: End If

11: Else

12: Return Query→ Rejected

13: End If

14: End For

15: End Procedure

16

Algorithm 4.2 shows the matching algorithm which is applied in step 3 of the static

pattern matching algorithm.

Algorithm 4.2. Matching Algorithm

1: Procedure MA (Query, String Length (Query), SPL[j][0])

 INPUT: SPL[j][0] Known Pattern

 Query SQL Query Statement

 n Length of string, String Length (Query)

2: m Length of pattern, prevpattern pattern,

 pattern pattern. Split (" "),

 Query Query. Split (" ") matched 0,

 lenofmatched 0

3: For i=1 to n do

4: For j=1 to m do

5: If pattern[j] in Query[i] &&

 pattern[j] not in matched then

6: matched.append(pattern[j])

7: lenofmatched += len(pattern[j])

8: End if

9: return (lenofmatched/len(prevpattern)) * 100

10: End for

11: End for

12: End Procedure

 The flow chart of the proposed library system is show in Figure 4.2. The user

generated SQL query is firstly validated with malicious pattern list in DB. If there is no

match in the malicious pattern list, it will continue and test with the existing users from

user registration lists. If there is a match, set it as a authenticate user and allow the

library system to access data. If there is no match, identify that it is not the specified

user and map the incoming query. The core of the proposed system consists of the

following design process.

17

Figure 4.2. Flow Chart of Proposed Library System

If the matching percentage is greater than or equal to the threshold value, it is Yes.

Input is : OR 1=1

100 % matched pattern isOR 1=1

Detected Pattern is : OR 1=1

Pattern matched : 100.00 %

SQL Injection detected by 100 %

Alerting to admin! Attacker's ip address is 127.0.0.1 and Category is Tautology

Otherwise,

Input Query

Apply Static

Pattern Matching

in Library System

Pattern

Matching in DB?

Identify

Malicious User

Reject

Yes

Add to List

No

Yes

Send Alert

to Admin

Evaluation

(Bayes Classifier)

 Pattern Mapping

 Static Static Pattern List

Access to

Library system

Existing User?

New SQL Injection Pattern?

/Unknown User?

Identify

Authenticate Users

No

Output

Results

DB

18

Input is : 1 ORDER BY marmarthan - -+

INFO: 127.0.0.1 - - [22/Sep/2022 18:19:15] "POST /search HTTP/1.1" 200 -

INFO: 127.0.0.1 - - [22/Sep/2022 18:19:15] "←[36mGET /static/js/app.js

HTTP/1.1←[0m" 304 -

INFO: 127.0.0.1 - - [22/Sep/2022 18:19:15] "←[36mGET /static/css/style.css

HTTP/1.1←[0m" 304 -

4.2 Naive Bayes Classifier

 The Naive Bayes approach is employed in the proposed system to compute the

probability of a SQL injection attack in which user generated queries are made against

the pattern matching algorithm in a static database system. When calculating the

probability of a distinct attack based on numerous occurrences, Naive Bayes

outperforms the accuracy in circumstances when computing the probability of attack

occurred. Let A represent the static database where the SQL injection attack was

discovered. Let B be the emergence of the SQL injection attack.

 (4.1)

Where is the P(A|B) probability of event A occurring given that event B has occurred.

P (B|A) is the probability of event B occurring given that event a has occurred. P(A)

and P(B) are the probabilities of observing A and B independently of each other.

4.3 Admin Login Page

 Figure 4.3 depicts the admin login page of the proposed library system. An

admin can access an application by providing their username and password on the login

screen. This system will display a warning as shown in Figure 4.4 if the credentials of

the admin do not match. During successful validation, the admin will see the secure

portion of the application as shown in Figure 4.5.

19

Figure 4.3 Admin Login Page of the System

Figure 4.4 Correct Admin Login Page of the System

20

Figure 4.5 Incorrect Admin Login Page of the System

Figure 4.6 Dashboard Page of the System

 Figure 4.6 shows the dashboard page of the proposed library system. This

interface contains Admin profiles, upload Book Lists, number of users and Logout. This

position comes duties and responsibilities which are related to the digital use of library

items in all formats, as well as administration of the entire library system, including

development, publishing, and content authorship. The profile view of the admin

account is shown in Figure 4.7.

21

Figure 4.7 Admin Profile Page of the System

Figure 4.8 Admin Password Change View of the System

. If the admin wants to reset the password, he can change it in any time. The

password reset page of admin is shown in Figure 4.8. Admin can view the number of

users in the system. User view from admin side of the system is illustrated in Figure

4.9.

22

Figure 4.9 User View from Admin Side of the System

Figure 4.10 Upload Book View from Admin Side of the System

 Figure 4.10 shows the upload book view from admin side of the system. The

administrator can upload eBooks and add book details on the page for books. As show

in Figure 4.11, the Elementary Information Security book is inserted to the library as

an example. After upload the new book, the successful message will be displayed as

depicted in Figure 4.12.

23

Figure 4.11 Upload New Book to the System

Figure 4.12 Successful Upload New Book to the System

 The number of books in the library system would be updated after inserting the

new book to the system. The update number of book in the system is shown in Figure

4.13.

24

Figure 4.13 Update Number of Books in the System

 Figure 4.14 Update Book Information in the System

 As shown in Figure 4.14, the inserted “Elementary Information Security” book

can be seen in the total book lists. The admin can update and delete the information of

books in the system. Figure 4.15 shows the book information edited by admin.

25

Figure 4.15 Update Book Information by Admin

Figure 4.16 Alert Attack Information to Admin

The system alert attack information to admin as show in Figure 4.16.

Figure 4.17 Logout Page (Admin View)

26

4.4. User Login Page

 After admin has chosen to logout from the system, Logout page brings the Login

page to enter the system as the user view. It is illustrated in Figure 4.17 and 4.18.

Figure 4.18 Login Page of the System

Figure 4.19 Registration Page of the System

 User must first establish an account in order to begin the registration process.

The new user needs to register to use the library system. All mandatory fields on the

registration form must be completed properly. Asterisks (*) denote field, username and

password that are required. The email address that the user enters on this form must be

legitimate and their own. Figure 4.19 shows the registration page of the system.

27

Figure 4.20 Successful Registration Page of the System

 After registration process is performed completely, the successful registration

message will be displayed as shown in Figure 4.20. When a user is ready to look for a

book in the system, he/she can type the name of the book he/she wants to find into the

search bar. The search bar has the ability to direct the user's search inquiry to a particular

system activity. In this approach, the user can start a search from any activity that has

a search bar, and the system will launch the proper activity to conduct the search and

display the results. Figure 4.21 shows the find book page of the system.

Figure 4.21 Find Book Page of the System

28

Figure 4.22 Result Page of the System

 User can search by title, author, or keywords using the Search bar. One book at

a time or the entire system's content can be searched by the user. Enter a word or phrase

in the Search box at the top of the system homepage and press Search to conduct a

system-wide search. The books in the database are explored, and a result page will be

shown based on the number of items discovered. Only when the Facets feature is used

will older versions or editions of content in the system—as well as content that its

authors or publishers no longer deem to be current—be included in the search results.

By choosing a book from the list of titles on the Browse Titles page, users can do one

book at a time searches. User can simply click on the book’s cover image or hyperlink

to view the Table of Contents page. There is a download and more button in this book

located under the book’s title and details. User can perform one or more work to query

the book. User’s search results will be displayed on a separate page and sorted by

relevance. The results of the user finding book are displayed on Figure 4.22. When the

user chooses the specific book in result lists, the desired book can be viewed in the

following Figure 4.23.

29

Figure 4.23 Finding Book Result of the System

Figure 4.24 Download Page of the System

 When the user clicks the download button in finding book, the download page

of the system view can be seen as in Figure 4.24. Each user has a profile page, which

can be accessed by selecting Profile from the user menu in the top right as shown in

Figure 4.25. This page offers connections to additional pages where the user can

examine their posts, modify their profile information and preferences.

30

Figure 4.25 User Profile Page

Figure 4.26 User Login Page

 User Login Page is shown in Figure 4.26. Users must provide both a user name

and a password to login into the system. Although logins are made for public,

passwords need to be kept private. Only the user should be aware of their password.

Users should frequently change their passwords because the malicious users can hack

these passwords. When the user will type incorrect username or password, the alert

“Username or Password is wrong!” is displayed on page as shown in Figure 4.27.

31

Figure 4.27 Incorrect User Login Page

 Most probably, the network is spamming or the people are moving too quickly

to keep up with the malware. To remove the "I'm not a robot" CAPTCHA message,

consider about thoroughly inspecting the system network, slowing down user activity,

and using public DNS. User must check the “I’m not a robot” button as shown in the

Figure 4.28. If the user forgets or does not check this work, the verification message

will be displayed from the system. The view of verifying Captcha message is shown in

Figure 4.29.

Figure 4.28 User Validation Page

32

Figure 4.29 User Validation Alert Page

4.5 Experiment and Result Discussion

 The experimental setup consisted of a standard desktop computer with Intel(R)

Core (TM) i3-7100U CPU @ 2.40GHz and 2.4 GHz. Python 3.1 and VS code. This

section presents the evaluation of the proposed system to detect SQL injection attack

experiments, namely, Tautology, Union, Logically Incorrect, Piggy-Backed, Alternate

Encodings, Stored Procedure and Inference. Testing threshold values is 80. The number

of evaluation SQL patterns is 24648. These patterns are stored in static pattern list of

the library system and evaluated with the incoming user generated query. This section

explains how to inject SQL statements into vulnerable systems via user input.

 An SQL query is generated from the user's information (user name and password)

and submitted to the database for verification when a real user provides appropriate

information. The user is given access if their username and password are both authentic.

After verification, a legitimate user is given access and is permitted to display their

information; otherwise, an error message is produced.

4.5.1 Alternate Encoding

 This technique employed alternate methods of encoding attack strings in the

following statement. By employing alternative encoding in the SQL commands, this

33

technique trickles the database of the system. In a SQL statement, for instance, an

attacker may use hexadecimal, ASCII, or Unicode. Attackers will get beyond any

fundamental validation carried out by the system in this manner.

RLIKE (SELECT (CASE WHEN (4346=4347) THEN 0x61646d696e ELSE 0x28

END)) AND 'Txws'='

Figure 4.30 Alternate Encoding Attack from User Input

 The system verifies this user generated query with static pattern list of the

system. Firstly, the input username or password is incorrect message when it does not

match. This has already shown in Figure 4.29. An attacker needs to locate an input that

is vulnerable in the system in order to launch a SQL injection attack. When a system

has a vulnerability for SQL injection, it directly uses user input in the form of a SQL

query. Figure 4.30 shows the Alternate Encoding attack from user input and Figure 4.31

shows Alternate Encoding attack from search input box.

Figure 4.31 Alternate Encoding Attack from Search Input Box

34

 The proposed system is a fully-automated and general technique for detecting

and preventing all types of SQL injection. If the user generated query exactly matches

each pattern in DB patterns, the system can detect 100% to this pattern. Then, the

system sends alert message to the admin with attacker’s ip address and attack type is

“Alternate Encoding”. The detection process of Alternate Encoding attack is shown in

Figure 4.32.

Figure 4.32 Alternate Encoding Attack Detection

4.5.2 Inference Attack

 This form of injection targets well-secured databases that do not provide any

actionable feedback or informative error signals. Attacks are typically developed in the

form of true false statements. After identifying the weak point, the attacker uses query

to inject numerous conditions (that he wants to know whether they are true or not) and

carefully monitor the environment. The page continues to operate normally if the

statement is true. If false, the page behaves very differently from how it would usually.

Blind Injection is the name given to this kind of injection. The term "Time Attack"

refers to a different kind of inference attack. In this technique, an attacker creates a

conditional statement, injects it through the parameter that is weak, and gathers data

based on delays in the database's response.

AS INJECTX WHERE 1=1 AND 1=0#

35

Figure 4.33 Inference Attack from User Input

 . Figure 4.33 shows the Inference attack from user input and Figure 4.34 shows

Inference attack from search input box.

Figure 4.34 Inference Attack from Search Input Box

 The system verifies this user generated query with static pattern list of the

system. Firstly, the input username or password is incorrect message when it does not

match. This has already shown in Figure 4.27.

36

Figure 4.35 Inference Attack Detection

 The proposed system is a fully-automated and general technique for detecting

and preventing all types of SQL injection. If the user generated query exactly matches

each pattern in DB patterns, the system can detect 100% to this pattern. Then, the

system sends alert message to the admin with attacker’s ip address and attack type is

“Inference”. The detection process of Inference attack is shown in Figure 4.35.

4.5.3 Logically Incorrect Attack

 By inserting illegal or illogical requests, such as injectable parameters, data

types, database names, etc., an attacker may obtain knowledge. As an example, the

following SQL injection query is used to enter the system illegally.

SELECT avg (column_name) FROM table_name WHERE condition ;

37

 Figure 4.36 Logical Incorrect Attack from User Input

. Figure 4.37 Logical Incorrect Attack from Search Input Box

 Figure 4.36 shows the Logically Incorrect attack from user input and Figure

4.37 shows Logically Incorrect attack from search input box. If the user generated query

exactly matches each pattern in DB patterns, the system can detect 100% to this pattern.

Then, the system sends alert message to the admin with attacker’s ip address and attack

type is “Logically Incorrect”. The detection process of Logically Incorrect attack is

shown in Figure 4.38.

38

 Figure 4.38 Logical Incorrect Attack Detection

4.5.4 Piggy-Backed Attack

 A form of attack known as "piggy-backed queries" attacks a system by inserting

extra query statements into the original query using a query delimiter like ";". In this

approach, the initial query is the original one, while the following queries are injections.

This exploit is extremely serious since it allows the attacker to insert almost any kind

of SQL statement. The piggy-backed query attack is demonstrated by the SQL

statement in the following query.

IF (7423=7424) SELECT 7423 ELSE DROP FUNCTION xcjl--

Figure 4.39 Piggy-Backed Attack from User Input

39

Figure 4.40 The Piggy-backed Attack from Search Input Box

 Figure 4.39 shows the Piggy-backed attack from user input and Figure 4.40

shows Inference attack from search input box. If the user generated query exactly

matches each pattern in DB patterns, the system can detect 100% to this pattern. Then,

the system sends alert message to the admin with attacker’s ip address and attack type

is “Piggy-Backed”. The detection process of Piggy-Backed attack is shown in Figure

4.41

Figure 4.41 Piggy-Backed Attack Detection

4.5.5 Stored Procedure Attack

 With this method, the attacker concentrates on the database system's stored

procedures. Database engine can directly perform the execution of stored procedures.

It is an exploitable section of code. For allowed or unauthorized clients, the stored

process returns true or false results. For SQLIA, the attacker will include ";

SHUTDOWN; --" with the secret key or login. The stored procedure attack will be

generated by the SQL query mentioned in the following statement.

40

CREATE PROCEDURE DBO @userName varchar2, @pass varchar2, AS EXEC

(“SELECT *

FROM user WHERE id= ‘ “+@userName+”’ and password= ‘ “+@pass+’”); GO

Figure 4.42 Stored Procedure Attack from User Input

Figure 4.43 Stored Procedure Attack from Search Input Box

 Figure 4.42 shows the Stored Procedure attack from user input and Figure 4.43

shows Stored Procedure attack from search input box. If the user generated query

exactly matches each pattern in DB patterns, the system can detect 100% to this pattern.

Then, the system sends alert message to the admin with attacker’s ip address and attack

type is “Stored Procedure”. The detection process of Stored Procedure attack is shown

in Figure 4.44.

41

Figure 4.44 Stored Procedure Attack Detection

4.5.6 Tautology

 In order to make the SQL command evaluate as a true condition, such as (1=1)

or (1=0), tautology-based attacks work by injecting code into one or more conditional

SQL statement queries. This method is most frequently used to gain access to databases

by avoiding authentication via user input. The tautology SQLIA is demonstrated by the

SQL query in the following statement.

or 1=1--

Figure 4.45 Tautology Attack from User Input

42

Figure 4.46 Tautology Attack from Search Input Box

 Figure 4.45 shows the Tautology attack from user input and Figure 4.46 shows

Tautology attack from search input box. If the user generated query exactly matches

each pattern in DB patterns, the system can detect 100% to this pattern. Then, the

system sends alert message to the admin with attacker’s ip address and attack type is

“Tautology”. The detection process of Tautology attack is shown in Figure 4.47.

Figure 4.47 Tautology Attack Detection

4.5.7 Union Attack

 Statement injection attack is also known as union query injection. In this attack,

the attacker brings a new SQL statement to the previous one. As demonstrated in Figure

4.48, this attack can be carried out by entering a UNION query or a statement of the

kind "; SQL statement >" into the weak factor. The system responds to this attack by

43

returning a record that combines the outcomes of the initial query with those of the

injected query. The Union SQL injection is demonstrated by the following statement.

“Select * from users where id= “1’ union select \@@VERSION – 1”

Figure 4.48 Union Attack from User Input

Figure 4.49 Union Attack from Search Input Box

 Figure 4.48 shows the Union attack from user input and Figure 4.49 shows

Union attack from search input box. If the user generated query exactly matches each

pattern in DB patterns, the system can detect 100% to this pattern. Then, the system

sends alert message to the admin with attacker’s ip address and attack type is “Union”.

The detection process of Union attack is shown in Figure 4.50.

44

Figure 4.50 Union Attack Detection

4.5.8 Attack Categories Evaluation

 Table 4.4 illustrates the types of attacks and evaluation. It is assumed that if the

matching percentage is greater than or equal to the threshold value, the probability of

fully attacked is Yes. Otherwise, assuming is No.

Table 4.4. Attack Types Evaluation

Types of Attacks

Total

SQL Injection Attack

≥ threshold (Yes) <

threshold (No)

Tautology 90 81 9

Union 90 82 8

Logically incorrect 90 79 11

Piggy-Backed 90 80 10

Alternate Encodings 90 78 12

Inference 90 81 9

Stored Procedure 90 78 12

Total Tests 630 559 71

SQL Injection Attack

Types of Attacks (Yes) (No) Probability

Tautology 81 9 90/630

Union 82 8 90/630

Logically incorrect 79 11 90/630

Piggy-Backed 80 10 90/630

Alternate Encodings 81 9 90/630

Inference 78 12 90/630

Stored Procedure 5 1 90/630

 559/630 71/630

45

Likelihood of Yes given Tautology attack is

P (Tautology|Yes) = 81/559 = 0.144

P(Tautology) = 90/630 = 0.143

P(Yes) = 559/630 = 0.887

𝑃(𝑇𝑎𝑢𝑡𝑜𝑙𝑜𝑔𝑦|𝑌𝑒𝑠) =
𝑃(𝑇𝑎𝑢𝑡𝑜𝑙𝑜𝑔𝑦|𝑌𝑒𝑠) ∗ 𝑃(𝑌𝑒𝑠)

𝑃(𝑇𝑎𝑢𝑡𝑜𝑙𝑜𝑔𝑦)

𝑃(𝑌𝑒𝑠|𝑇𝑎𝑢𝑡𝑜𝑙𝑜𝑔𝑦) =
0.144 ∗ 0.887

0.143

𝑃(𝑌𝑒𝑠|𝑇𝑎𝑢𝑡𝑜𝑙𝑜𝑔𝑦) = 0.893

Likelihood of No given Tautology attack is

P (Tautology|No) = 9/71 = 0.126

P(Tautology) = 90/630 = 0.143

P(No) = 71/630 = 0.113

𝑃(𝑁𝑜|𝑇𝑎𝑢𝑡𝑜𝑙𝑜𝑔𝑦) =
𝑃(𝑇𝑎𝑢𝑡𝑜𝑙𝑜𝑔𝑦|𝑁𝑜) ∗ 𝑃(𝑁𝑜)

𝑃(𝑇𝑎𝑢𝑡𝑜𝑙𝑜𝑔𝑦)

𝑃(𝑁𝑜|𝑇𝑎𝑢𝑡𝑜𝑙𝑜𝑔𝑦) =
0.126 ∗ 0.113

0.143

𝑃(𝑁𝑜|𝑇𝑎𝑢𝑡𝑜𝑙𝑜𝑔𝑦) = 0.099

Likelihood of Yes given Union attack is

P (Union|Yes) = 82/559 = 0.146

P(Union) = 90/630 = 0.143

P(Yes) = 559/630 = 0.887

𝑃(𝑌𝑒𝑠|𝑈𝑛𝑖𝑜𝑛) =
𝑃(Union|𝑌𝑒𝑠) ∗ 𝑃(𝑌𝑒𝑠)

𝑃(𝑈𝑛𝑖𝑜𝑛)

𝑃(𝑌𝑒𝑠|𝑈𝑛𝑖𝑜𝑛) =
0.146 ∗ 0.887

0.143

𝑃(𝑌𝑒𝑠|Union) = 0.905

Likelihood of No given Union attack is

46

P (Union |No) = 8/71 = 0.113

P(Union) = 90/630 = 0.143

P(No) = 71/630 = 0.113

𝑃(𝑁𝑜|Union) =
𝑃(𝑈𝑛𝑖𝑜𝑛|𝑁𝑜) ∗ 𝑃(𝑁𝑜)

𝑃(𝑈𝑛𝑖𝑜𝑛)

𝑃(𝑁𝑜|Union) =
0.113 ∗ 0.113

0.143

𝑃(𝑁𝑜|Union) = 0.089

Likelihood of Yes given Logically incorrect attack is

P (Logically|Yes) = 79/559= 0.141

P (Logically) = 90/630 = 0.143

P(Yes) = 559/630 = 0.887

𝑃(𝑌𝑒𝑠|Logically) =
𝑃(𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦|𝑌𝑒𝑠) ∗ 𝑃(𝑌𝑒𝑠)

𝑃(𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦)

𝑃(𝑌𝑒𝑠|𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦) =
0.141 ∗ 0.887

0.143

𝑃(𝑌𝑒𝑠|𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦) = 0.875

Likelihood of No Logically incorrect attack is

 P (Logically|No) = 11/71 = 0.154

P (Logically) = 90/630 = 0.143

P(No) = 71/630 = 0.113

𝑃(𝑁𝑜|𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦) =
𝑃(𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦|𝑁𝑜) ∗ 𝑃(𝑁𝑜)

𝑃(𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦)

𝑃(𝑁𝑜|Logically) =
0.154 ∗ 0.113

0.143

𝑃(𝑁𝑜|Logically) = 0.121

47

Likelihood of Yes given Piggy-Backed attack is

 P (Piggy|Yes) = 80/559 = 0.143

P(Piggy) = 90/559= 0.143

P(Yes) = 559/630 = 0.887

𝑃(𝑌𝑒𝑠|𝑃𝑖𝑔𝑔𝑦) =
𝑃(𝑃𝑖𝑔𝑔𝑦|𝑌𝑒𝑠) ∗ 𝑃(𝑌𝑒𝑠)

𝑃(𝑃𝑖𝑔𝑔𝑦)

𝑃(𝑌𝑒𝑠|𝑃𝑖𝑔𝑔𝑦) =
0.143 ∗ 0.887

0.143

𝑃(𝑌𝑒𝑠|𝑃𝑖𝑔𝑔𝑦) = 0.887

Likelihood of No given Piggy-Backed is

P (𝑃𝑖𝑔𝑔𝑦|No) = 10/71 = 0.140

P (Piggy) = 90/630 = 0.143

P (No) = 71/630= 0.113

𝑃(𝑁𝑜|𝑃𝑖𝑔𝑔𝑦) =
𝑃(𝑃𝑖𝑔𝑔𝑦|𝑁𝑜) ∗ 𝑃(𝑁𝑜)

𝑃(𝑃𝑖𝑔𝑔𝑦)

𝑃(𝑁𝑜|𝑃𝑖𝑔𝑔𝑦) =
0.140 ∗ 0.113

0.143

𝑃(𝑁𝑜|𝑃𝑖𝑔𝑔𝑦) = 0.110

Likelihood of Yes given Alternate Encoding attack is

P (Alternate|Yes) = 78/559= 0.139

P (Alternate) = 90/630 = 0.143

P(Yes) = 559/630 = 0.887

𝑃(𝑌𝑒𝑠|𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒) =
𝑃(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒|𝑌𝑒𝑠) ∗ 𝑃(𝑌𝑒𝑠)

𝑃(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒)

𝑃(𝑌𝑒𝑠|𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒) =
0.139 ∗ 0.887

0.143

𝑃(𝑌𝑒𝑠|𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒) = 0.862

48

Likelihood of No given Alternate Encoding attack is

P (𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 |No) = 12/71 = 0.169

P (Alternate) = 90/630 = 0.143

P(No) = 71/630= 0.113

𝑃(𝑁𝑜|𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒) =
𝑃(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 |𝑁𝑜) ∗ 𝑃(𝑁𝑜)

𝑃(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒)

𝑃(𝑁𝑜|𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒) =
0.169 ∗ 0.113

0.143

𝑃(𝑁𝑜|𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒) = 0.133

Likelihood of Yes given Inference attack is

P (Inference|Yes) = 81/559= 0.144

P(Inference) = 90/630= 0.143

P(Yes) =559/630 = 0.887

𝑃(𝑌𝑒𝑠|𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒) =
𝑃(𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒|𝑌𝑒𝑠) ∗ 𝑃(𝑌𝑒𝑠)

𝑃(𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

𝑃(𝑌𝑒𝑠|𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒) =
0.144 ∗ 0.887

0.143

𝑃(𝑌𝑒𝑠|𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒) = 0.893

Likelihood of No given Inference is

P (Inference |No) = 9/71 = 0.143

P (Inference) = 90/630 = 0.143

P (𝑁𝑜) = 71/630 = 0.113

𝑃(𝑁𝑜|Inference) =
𝑃(𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒|𝑁𝑜) ∗ 𝑃(𝑁𝑜)

𝑃(𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

𝑃(𝑁𝑜|𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒) =
0.126 ∗ 0.113

0.143

𝑃(𝑁𝑜|𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒) = 0.099

49

Likelihood of Yes given Stored Procedure attack is

P (Stored Procedure|Yes) = 78/559 = 0.139

P(Stored Procedure) = 90/630 = 0.143

P(Yes) = 559/630 = 0.887

𝑃(𝑌𝑒𝑠|𝑆𝑡𝑜𝑟𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒) =
𝑃(𝑆𝑡𝑜𝑟𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 |𝑌𝑒𝑠) ∗ 𝑃(𝑌𝑒𝑠)

𝑃(𝑆𝑡𝑜𝑟𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒)

𝑃(𝑌𝑒𝑠|𝑆𝑡𝑜𝑟𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒) =
0.139 ∗ 0.887

0.143

𝑃(𝑌𝑒𝑠|𝑆𝑡𝑜𝑟𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒) = 0.862

Likelihood of No given Inference is

P (Stored Procedure |No) =12/71 = 0.169

P (Stored Procedure) = 90/630 = 0.143

P (𝑁𝑜) = 71/630 = 0.113

𝑃(𝑁𝑜|𝑆𝑡𝑜𝑟𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒) =
𝑃(𝑆𝑡𝑜𝑟𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒|𝑁𝑜) ∗ 𝑃(𝑁𝑜)

𝑃(𝑆𝑡𝑜𝑟𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒)

𝑃(𝑁𝑜|𝑆𝑡𝑜𝑟𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒) =
0.169 ∗ 0.113

0.143

𝑃(𝑁𝑜|𝑆𝑡𝑜𝑟𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒) = 0.133

Table 4.5. Performance Evaluation

Types of Attacks
Total Attacks Probability of Yes Probability of No

Tautology 90 0.893 0.099

Union 90 0.905 0.089

Logically incorrect 90 0.875 0.121

Piggy-Backed 90 0.887 0.110

Alternate Encodings 90 0.862 0.133

Inference 90 0.893 0.099

Stored Procedure 90 0.862 0.133

Total 630 6.177 0.784

50

 Table 4.5 show the performance evaluation of the proposed library system in

terms of accuracy.

𝑃(𝑌𝑒𝑠|𝐴𝑡𝑡𝑎𝑐𝑘𝑠) =
𝑃(𝐴𝑡𝑡𝑎𝑐𝑘𝑠 |𝑌𝑒𝑠) ∗ 𝑃(𝑌𝑒𝑠)

𝑃(𝐴𝑡𝑡𝑎𝑐𝑘𝑠)

 =
101.991 ∗ 6.177

630

Accuracy = 0.999%

 The experimental results show that the proposed system achieves above 100%

detection rate in the input injected SQL statements for seven common types of SQL

attack. The implementation of the proposed technique effectively detects and blocks all

types of SQL Injection attacks. Therefore, the proposed library system can identify and

detect SQL injections, according to the experimental results various injection attacks.

51

CHAPTER 5

CONCLUSION

 SQL injection attacks and web-based attacks are major issues in the security of

financial, health, and other critical data, and this problem only increases in importance

to protect the malicious queries. This paper proposes a library system that can detect

against 6 common types of SQL injection attacks when log-in authentication stage. In

addition, it can detect and blocks code SQL injection vulnerabilities effectively using

modified pattern matching technique. The experimental results provide that the

proposed algorithm handles malicious queries effectively matching and prevents

unauthenticated users for library system.

5.1 Advantages of the System

 One of the biggest threats to web-based library system is SQL Injection. All

user data stored in the database is exposed by SQL injection, making it possible for it

to be misused or sold on the black market. The drawbacks of previously implemented

SQL injection detection system is that they can only be able to detect those that they

have seen before or have been trained on. In contrast, the proposed system can be able

to tell whether the data being entered has been SQL injected or not by investigating

patterns in the input.

The advantages of the proposed system are as follows.

(i) This library system allows effective and high detection of SQL injection attacks.

(ii) The present detection technique makes sure that alleviate in confidential data

being deleted, lost or stolen.

(iii) The system can effectively identify unwanted access to systems or accounts,

leading to eventual compromise of specific devices or file servers.

(iv) It has the ability to recognize and reject SQL injection attacks that use malicious

code to trick the system database into revealing data.

(v) It reduces the probability of a high-risk compromise having an effect on the

library system's features of authentication and authorization, as well as the

confidentiality and integrity of the information.

52

5.2 Limitation of the System

The proposed system can detect and block code SQL injection vulnerabilities

effectively. However, the system has some limitations. As attack types increase, new

SQL injection methods and tools are continually being developed. Every potential SQL

injection query cannot be covered by the system's specialized signatures. White box

pen testing can be done with the proposed system. In contrast to black-box pen testing,

which may not be viable, white box pen testing can be performed successfully by

simulating a focused attack on a specific system using as many attack paths as possible.

Therefore, the proposed system can only update the existing static pattern list if a new

absolutely attack patterns has been attacked.

5.3 Further Extensions

In this thesis, the proposed system for the future work is considered to develop

the automatic SQL injection detection system to identify potential vulnerabilities.

Validating user inputs is a frequent initial step in mitigating SQL injection attacks. First,

decide which SQL statements are absolutely necessary, then create a whitelist of all

legitimate SQL statements, leaving invalid statements out of the query. This procedure

is often referred to as query redesign or input validation. Therefore, input validation

process will be considered in the future research work.

53

AUTHORS PUBLICATION

[1] Mar Mar Than, Nwe Zin Oo, Tin Thein Thwel, “SQL Injection Detection Using

Pattern Matching Algorithm for Library System”, Local Conference on Parallel

and Soft Computing (PSC), UCSY, Yangon, Myanmar, 2022.

54

REFERENCES

[1] Appiah B., Opoku-Mensah E. and Qin Z., "SQL injection attack detection

using fingerprints and pattern matching technique," In Proceeding of 8th IEEE

International Conference on Software Engineering and Service Science

(ICSESS), 2017, pp. 583-587, doi: 10.1109/ICSESS.2017.8342983.

[2] Blind SQL Injection.

https://owasp.org/www-community/attacks/Blind_SQL_Injection

[3] George, T. K., Jacob, K. P. and James, R. K., “Token based Detection and

Neural Network based Reconstruction framework against code injection

vulnerabilities”, International Journal of Information and Application, vol.41,

2018. Doi: 10.1016/j.jisa.2018.05.005

[4] Hasan, M., Balbahaith, Z., Tarique, M., “Detection of SQL Injection Attacks:

A Machine Learning Approach”, In Proceeding of IEEE International

Conference on Electrical and Computing Technologies and Applications

(ICECTA),2019.

[5] Javali, P., Chougule, S.V., “SQL Injection Detection and Prevention using

Pattern Matching Algorithm”, International Journal of Advanced Research in

Computer and Communication Engineering Vol. 5, Issue 6, June 2016.

[6] Joshi A. and Geetha V., "SQL Injection detection using machine learning,"

2014 International Conference on Control, Instrumentation, Communication

and Computational Technologies (ICCICCT), 2014, pp. 1111-1115, doi:

10.1109/ICCICCT.2014.6993127.

[7] Kar, D., Panigrahi, S. and Sundararajan, S. “SQLiGoT: Detecting SQL

Injection Attacks using Graph of Tokens and SVM, Computers & Security,

2016. Doi: 10.1016/j.cose.2016.04.005.

[8] Lee, I., Jeong, S., Yeo, S. and Moon, J., “A novel method for SQL injection

attack detection based on removing SQL query attribute values”. International

Journal of Mathematical and Computer Modelling, Vol. 55, Issues 1–2,

January 2012, pp. 58-68.

[9] Patel, N., Shekokar, N., “Implementation of pattern matching algorithm to

defend SQLIA”, In Proceeding of International Conference on Advanced

Computing Technologies and Applications (ICACTA), 2015.

[10] Prabakar, M. A. Keyan, M. K. and Marimuthu, K., “An Efficient Technique

for Preventing Sql Injection Attack Using Pattern Matching Algorithm”. In

Proceeding of IEEE International Conference on Emerging Trends in

Computing, Communication and Nanotechnology (ICECCN 2013), pp.503-

506.

[11] SQLi.https://www.acunetix.com/blog/articles/sqli-part-4-in-band-sqliclassic-

sqli/

https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://www.acunetix.com/blog/articles/sqli-part-4-in-band-sqliclassic-%20sqli/
https://www.acunetix.com/blog/articles/sqli-part-4-in-band-sqliclassic-%20sqli/

55

[12] SQLi.https://www.acunetix.com/blog/articles/sqli-part-6-out-of-band-sqli/

[13] Tang, P., Qiu, W., Huang, Z., ““Detection of SQL Injection Based on

Artificial Neural Network”, Journal Knowledge-Based Systems,

vol.190,2020. Doi: 10.1016/j.knosys.2020.105528.

[14] Zhang, K., “A Machine Learning based Approach to Identify SQL Injection

Vulnerabilities”. In Proceeding of 34th IEEE/ACM International Conference

on Automated Software Engineering (ASE), pp. 1286-1288, pp.75-91,2019.

