
OBJECT DETECTION AND DISTANCE

ESTIMATION USING YOLO ARCHITECTURE

MAY THU AUNG

M.C.Tech. DECEMBER 2022

OBJECT DETECTION AND DISTANCE

ESTIMATION USING YOLO ARCHITECTURE

BY

MAY THU AUNG

M.C.Tech. DECEMBER 2022

OBJECT DETECTION AND DISTANCE

ESTIMATION USING YOLO ARCHITECTURE

BY

MAY THU AUNG

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Master of Computer Technology

(M.C.Tech.)

UNIVERSITY OF COMPUTER STUDIES, YANGON

DECEMBER 2022

i

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to those who helped me with various

aspects of conducting research and writing this thesis. Many things are needed to

complete this thesis like suggestions from the teachers and supporting, appreciating of

my family and friends.

First and foremost, I would like to express my deepest gratitude and my sincere

thanks to Dr. Mie Mie Khin, Rector, University of Computer Studies, Yangon, for her

kind permission to submit this thesis.

My sincere thanks and regards go to Dr. Htar Htar Lwin, Pro-rector, Head of

Faculty of Computer Systems and Technologies, University of Computer Studies,

Yangon, for her kind management throughout the completion of this thesis.

Specially thanks and regards go to Dr. Yadanar Thein, Pro-rector, University

of Computer Studies, Yangon, for her kind suggestions throughout the completion of

this thesis.

I would like to express my deeply thanks to Dr. Amy Tun, Professor, Course

Coordinator of Master’s (CT), Faculty of Computer Systems and Technologies,

University of Computer Studies, Yangon, for her painstaking suggestion and

encouragement throughout the development of the thesis.

My sincere thanks and regards go to my supervisor, Dr. Khaing Khaing Wai,

Professor, Head of Department of Information Technology Support and Maintenance,

University of Computer Studies, Yangon, for her support, guidance, supervision,

patience and encouragement during the period of study towards completion of this

thesis.

I also wish to express my deepest gratitude to Daw Mya Hnin Mon, Associate

Professor, Department of English, University of Computer Studies, Yangon, for her

editing this thesis from the language point of view.

Moreover, I would like to extend my thanks to all my teachers who taught me

throughout the master’s degree course and my friends for their cooperation.

I especially thank to my parents, all of my colleagues, and friends for their

encouragement and help during my thesis.

ii

ABSTRACT

 Detecting various classes of objects and measuring the distance between

camera and objects are implemented in this system. The input of the system is an image

or video which are captured by the camera. YOLOv5 architecture is used to detect the

objects of input image and calculated the distance between camera and detected objects.

If the object is detected, the result will be shown with distance meter values. The major

objective of this system is to find the instances of each object in digital photos or real-

time videos predictions. In this system, the focal length value is employed to calculate

the distance between the camera and the object. The focal length is calculated using the

triangle formula utilizing the bounding box’s width and height parameters. YOLOv5

object detector provided the height and width values of bounding box. Object detection

is also useful in video surveillance and image retrieval systems. In the future, this

system can be upgraded as a part of the autonomous vehicles to move automatically in

real environment.

iii

TABLE OF CONTENTS

 PAGES

ACKNOWLEDGEMENTS i

ABSTRACT ii

TABLE OF CONTENTS iii

LIST OF FIGURES v

LIST OF EQUATIONS vii

CHAPTER 1 INTRODUCTION 1

 1.1 Objectives of the Thesis 2

 1.2 Motivation of the System 2

 1.3 Organization of the Thesis 2

 1.4 Chapter Summary 2

CHAPTER 2 BACKGROUND THEORY 3

 2.1 Convolutional Neural Network (CNN) 3

 2.1.1 Working of CNN 3

 2.2 You Only Look Once (YOLO) 11

 2.2.1 Concept of YOLO Algorithm 11

 2.2.2 Specifying Label Vector and Predict Object 12

 2.3 Performances of YOLO Versions 13

 2.4 Structure of YOLOv5 Architecture 15

 2.4.1 Backbone: Focus structure and CSP network 15

 2.4.2 Neck: Additional Block (SPP block) 17

 2.4.3 Neck: Feature Aggregation (PANet) 19

 2.4.4 Head: Output using GIoU-Loss 22

 2.5 YOLOv5 Activation Function 22

 2.6 YOLOv5 Loss Function 23

 2.6.1 Balance Losses 23

 2.6.2 Eliminate Grid Sensitivity 24

 2.8 Calculate mAP Values for YOLOv5 25

 2.8.1 Intersection over Union (IOU) 25

iv

 2.8.2 Precision and Recall 26

 2.8.3 Precision Recall Curve 26

 2.8.4 Average Precision (AP) 27

 2.9 Chapter Summary 27

CHAPTER 3 THE PROPOSED METHODOLOGY 28

 3.1 Overview of The Proposed System 28

 3.2 COCO Dataset 28

 3.3 Object Detection Using YOLOv5 Architecture 29

 3.4 Distance Estimation 31

 3.5 Running Environment (PyTorch) 32

 3.6 Chapter Summary 33

CHAPTER 4 IMPLEMENTATION AND

EXPERIMENTAL RESULTS

34

 4.1 Implementation of The System 34

 4.2 Experimental Results of The System 35

 4.3 Performance Evaluation for The System 39

 4.4 Chapter Summary 42

CHAPTER 5 CONCLUSION 43

 5.1 Advantages 43

 5.2 Limitation 43

 5.3 Related Works 44

 5.4 Further Extension 44

REFERENCES 45

LIST OF PUBLICATIONS 47

v

LIST OF FIGURES

FIGURE PAGES

Figure 2.1 Comparing the Piece of Image by Section 4

Figure 2.2 Resulting Three Features or Filters 4

Figure 2.3 Multiply Corresponding Pixel Values 4

Figure 2.4 Adding and Diving by Total Number of Pixels 5

Figure 2.5 Create Map and Put an Amount of Filter 5

Figure 2.6 Perform Filtering in another Location 5

Figure 2.7 Convolution Layer Output 6

Figure 2.8 Convolution Layer Output For Each Filter 6

Figure 2.9 ReLU Layer 6

Figure 2.10 Sample Values of ReLU Layer 7

Figure 2.11 Remove Negative Values from Example Image 7

Figure 2.12 Output for One Feature 7

Figure 2.13 Output for All Features 8

Figure 2.14 Calculating the Maximum Value in Each Window 8

Figure 2.15 Moving Window across the Entire Image 9

Figure 2.16 Output After Passing Through Pooling Layer 9

Figure 2.17 Stacking Up the Convolution, ReLU and Pooling

Layers

9

Figure 2.18 Reduce Image From 4×4 to 2×2 Matrix Using Double

Stacking Layers

10

Figure 2.19 Final Result of Classification 10

Figure 2.20 YOLO Model With 7x7 Grid Cell Was Applied on

Input Image

12

Figure 2.21 Specifying Label Vector y for 3x3 Grid Cells and

Predict Object for 3 Classes

13

Figure 2.22 Darknet19 Architecture 14

Figure 2.23 Process of Input Processing in an Original Dense

Block

16

Figure 2.24 Process of Input Processing in a CSP Dense Block 16

Figure 2.25 Dense Block Connection and Spatial Pyramid Pooling

Based YOLOv2 Architecture

17

Figure 2.26 Classical SPP Block 18

vi

Figure 2.27 New SPP Block Adapted to YOLO 19

Figure 2.28 Original FPN Architecture 19

Figure 2.29 Modified FPN Architecture Used in YOLOv3 20

Figure 2.30 PANet Architecture Including FPN Backbone 20

Figure 2.31 PANet Architecture Including Bottom-up Path

Augmentation

21

Figure 2.32 PANet Architecture Including (a) FPN Backbone, (b)

Bottom-up Path Augmentation, (c) Adaptive Feature

Pooling

21

Figure 2.33 PAN Used ROI Align for Adaptive Pooling and Fully

Connected Layers for Fusing Features from All Stages

22

Figure 2.34 SiLU Function Graph 23

Figure 2.35 Sigmoid Function Graph 23

Figure 2.36 Grid Sensitivity of YOLOv5 Model 24

Figure 2.37 Intersection over Union (IOU) 25

Figure 2.38 Precision Recall Curve Sample 26

Figure 3.1 Overview of The Proposed System 28

Figure 3.2 Architecture of YOLOv5 Model 30

Figure 4.1 Flowchart of the System 34

Figure 4.2 Run Window Command Prompt as Administrator 35

Figure 4.3 Detect and Save Detected Image File 36

Figure 4.4 Detected Image Result 1 36

Figure 4.5 Detected Image Result 2 37

Figure 4.6 Detected Video Result (a) 37

Figure 4.6 Detected Video Result (b) 38

Figure 4.6 Detected Video Result (c) 38

Figure 4.7 Precision Values of Test Set 1 39

Figure 4.8 Precision Values of Test Set 2 39

Figure 4.9 Precision Values of All Test Set 40

Figure 4.10 Precision Recall Curve of The Test Set 1 40

Figure 4.11 Precision Recall Curve of The Test Set 2 41

Figure 4.12 Precision Recall Curve of The All Test Set 41

vii

LIST OF EQUATIONS

EQUATION PAGES

Equation 2.1 11

Equation 2.2 23

Equation 2.3 23

Equation 2.4 24

Equation 2.5 24

Equation 2.6 24

Equation 2.7 24

Equation 2.8 26

Equation 2.9 26

Equation 3.1 31

Equation 3.2 31

1

CHAPTER 1

INTRODUCTION

 AI based computer vision tasks are currently popular to improve smart city

technology. Computer vision is an incorporative field that allows not only systems but

also computers to derive capable information from videos, images, and other types of

visual inputs. AI based computer vision helps computers can think, recognize and

realize the real environment. In place of optic nerves, retinas and visual cortex, it

mimics the human eye and is used to train models to carry out a variety of tasks using

cameras, algorithms, and data.

 One of the computer vision tasks that detects things of a specific type within

an image is object detection. One-stage methods and two-stage methods are the two

primary categories under which it can be divided. One-stage techniques like YOLO,

SSD, and RetinaNet focus on inference speed. Two-stage approaches prioritize accurate

detection, and Faster R-CNN, Mask R-CNN, and Cascade R-CNN are three examples

of such models. The MSCOCO dataset is the most well-liked one. Usually, a Mean

Average Precision metric is used to evaluate models.

 The YOLO method, which stands for "You Only Look Once," was developed

by researcher Joseph Redmon and colleagues in 2015. It is an object recognition system

that executes all the necessary phases to recognize an object using a single neural

network for the first time. Over the years, the YOLO algorithm has been improved

upon, including the original version, with many of the most ground-breaking concepts

coming from the computer vision research field.

 YOLOv5x, YOLOv5l, YOLOv5m, YOLOv5s and YOLOv5n are five

versions of YOLOv5 model. In this system, YOLOv5s is used for object detection,

image classification and calculate the distance between camera and object. By going

straight from image pixels to bounding box coordinates and class probabilities, it

reframes the object detection problem as a single regression problem. This integrated

model simultaneously forecasts various bounding boxes and class probabilities for

items covered by boxes.

 The camera provides the system with an image or video as input. The

YOLOv5 model will recognize the object classes in the input image or video and

calculate the distance between the camera and those recognized objects. Finally, the

output result with class labels and distance meters is saved in the OS path.

2

1.1 Objectives of the Thesis

 The following facts are described as the thesis's objective.

 To detect, classify and label the objects

 To find the distance of each object in digital photos or real-time videos

 To measure the distance between camera and detected objects

 To apply YOLOv5s architecture in OS as object detection and distance

estimation model

1.2 Motivation of the Thesis

 The motivation of the thesis is to detect various objects and measure the distance

between camera and detected objects using YOLOv5 model and it can be applied in

AI-based autonomous driving system. This system can be used in CCTV remote control

for social distancing to prevent Covid-19. It can be also implemented in the drones for

lane finding and landing.

1.3 Organization of the Thesis

 Five chapters make up this thesis. One-stage object detector, the thesis's subject,

its purpose, and its organization are all introduced in Chapter 1. The operation of CNN

and the YOLO (You Only Look Once) algorithm are discussed in Chapter 2 as the

system's underlying theory for object identification and distance estimation. The

proposed methodology is explained in Chapter 3. The system's software

implementation, system design and experiment findings are presented in Chapter 4.

Chapter 5 presents the conclusion, benefits, limitations, and future extension.

1.4 Chapter Summary

This chapter includes the about object detection and distance estimation which

are one of the computer vision task. This chapter introduce one-stage object detector

YOLO algorithm and YOLOv5s model which is used in this thesis as object detection

and distance estimation model. The objectives, motivation and organization of the

thesis are also described in this chapter.

3

CHAPTER 2

BACKGROUND THEORY

 Image Processing based object detection and distance measuring between

camera and object of an image using one-stage detector is implemented with YOLO

algorithm in this system.

 YOLO is a real-time neural network-based object detection system. This

algorithm is frequently used because of its efficiency and precision. In a number of

applications, it has been used to detect traffic lights, pedestrians, parking meters, and

animals. The YOLO technique uses convolutional neural networks (CNN) to detect

objects in real-time and only needs one forward propagation via a neural network. In

other words, the whole image is predicted using a single algorithm run. Multiple class

probabilities and bounding boxes are simultaneously predicted using the CNN.

2.1 Convolutional Neural Network (CNN)

 A sort of artificial feed-forward network called a Convolutional Neural

Network (CNN) draws its connectivity pattern from the way that the visual brain of

animals is organized. Specific regions of the visual field are responsive to a small subset

of visual cortex cells. The geographical correlations in the input data are used by CNN.

Each concurrent layer of the neural network connects a few input neurons. The area is

referred to as the "local receptive field". The primary emphasis of the receptive field is

local neurons. The hidden neuron analyzes the input data inside the specified field

without being aware of changes occurring outside the boundary.

2.1.1 Working of CNN

Convolutional Neural Networks are composed of the following layers:

 Convolutional Layer

 ReLU Layer

 Pooling Layer

 Fully Connected Layer

 Using CNN to extract small patches from an image, these pieces or patches

are known as filters. CNN compares the image section by section. By finding rough

matches in roughly the same position in two images, CNN outperforms whole-image

4

matching schemes in detecting similarity. Figure 2.1 shows the example of comparing

the piece of image by section.

Figure 2.1 Comparing the Piece of Image by Section

 After comparing a picture section by section, three features or filters are

acquired. The results are shown in Figure 2.2.

Figure 2.2 Resulting Three Features or Filters

 Then, multiply the corresponding pixel values after obtaining the three filters.

Figure 2.3 Multiply Corresponding Pixel Values

5

 Add and divide the total number of pixels after multiplying the corresponding

pixel values.

Figure 2.4 Adding and Diving by Total Number of Pixels

 Create a map with several filters to keep track of the features when the values

are obtained.

Figure 2.5 Create Map and Put an Amount of Filter

 Then repeat the process by moving it to a different location and filtering it again.

Figure 2.6 Perform Filtering in another Location

6

 Transfer the features to each other location in the image to see well correspond

to that area. The final result is shown in Figure 2.7.

Figure 2.7 Convolution Layer Output

 Repeat the convolution process with each additional filter as the next step.

Figure 2.8 Convolution Layer Output for Each Filter

 To prevent the values from accumulating up to zero, remove all negative values

from the filtered pictures in the ReLU layer and replace them with zeros. A node is only

activated by Rectified Linear Unit (ReLU) transform functions if the input value is over

a specific threshold. Although the information climbs above a threshold, both the data

and the output are zero. It and the dependent variable are related linearly.

Figure 2.9 ReLU Layer

7

 Consider any simple function with the value shown in the preceding example.

As a result, the function only works if the dependent variable has that value. The values

obtained, for example, are as follows.

Figure 2.10 Sample Values of ReLU Layer

 Remove the negative layers from Figure 2.7's convolution layer output.

Figure 2.11 Remove Negative Values from Example Image

 Then, the output for one feature is shown in Figure 2.12.

Figure 2.12 Output for One Feature

8

 Removing the negative values for all features are done. The output is shown in

Figure 2.13.

Figure 2.13 Output for All Features

 Reduce the size of the image stack in the pooling layer. Pooling is performed

after passing by the activation layer. To put pooling into practice, the following four

stages are necessary:

 Choose a window size (commonly 2 or 3)

 A stride (often 2),

 And walk the window across the filtered photos.

 Finally, pick the maximum value from each window.

 Consider executing pooling in this example with a window size of 2 and a stride

of 2. The first Window's maximum or highest value for the first filtered image is 1.

Track that and then advance the Window by two steps.

Figure 2.14 Calculating the Maximum Value in Each Window

9

 Next, drag the Window over the entire picture.

Figure 2.15 Moving Window across the Entire Image

 The result of going through the pooling layer is shown in Figure 2.16.

Figure 2.16 Output of After Passing through Pooling Layer

 This produces a time-frame in one image with a 4×4 matrix from a 7×7 matrix

after passing the input through three layers, Convolution, ReLU, and Pooling, as shown

in Figure 2.17.

Figure 2.17 Stacking Up the Convolution, ReLU and Pooling Layers

10

 To reduce the image size, double stacking layers are required. The image is

reduced from 4×4 to smaller in the first pass. The second pass will then be reduced to

a 2×2 matrix, as illustrated in Figure 2.18.

Figure 2.18 Reduce Image From 4×4 to 2×2 Matrix Using Double Stacking Layers

 Every neuron in the network's final layer is connected to every other neuron in

the layers before and after, which is referred to as the network being fully

interconnected. This simulates higher-level reasoning, which takes into consideration

all feasible paths from the input to the outcome. Take the reduced image and insert it in

the single list after it has undergone two stages of convolution and pooling and been

turned into a single file or a vector. Figure 2.19 illustrates the classification process' end

outcome.

Figure 2.19 Final Result of Classification

11

2.2 You Only Look Once (YOLO)

 The system generates prediction vectors corresponding to each object present

in the input image after it has been passed through a single neural network of multiple

convolutional networks. The YOLO system computes all the features of the image and

produces predictions for all objects at once, as opposed to iterating the process of

classifying various parts on the image [7].

 The YOLO architecture comes in a number of variations. The YOLO

architecture is tied to one iteration. YOLOv5 architecture is used in this system to detect

objects and measure the distance between the camera and any detected objects in

images or videos.

2.2.1 Concept of YOLO Architecture

 The basic goal of YOLOv1 is to insert a grid cell with a default size of S×S

(7×7). If an object's center falls within a grid cell, that grid cell is responsible for

detecting the object. Thus, even the appearance of an object that was shown in a number

of cells is disregarded by all other cells. To accomplish object detection, each grid cell

projects B bounding boxes with their associated characteristics and confidence ratings

[19]. These confidence score reflects the presence or absence of an object in bounding

box. The confidence score is defined as:

Confidence score = p (Object) * IOUtruth&pred

Equation 2.1

with p (Object) is the probability that there is an object inside the cell and IOUtruth&pred

is intersection over union of prediction box and ground truth box. The p (Object) range

has only between 0 and 1. If there is no object in that cell, the confidence score will

nearly close to 0 or oppositely the score will be equal to IOUtruth&pred. That process is

shown in Figure 2.20.

12

Figure 2.20 YOLO Model With 7x7 Grid Cell Was Applied on Input Image

 Each bounding box also has a confidence score and a total of five other factors.

S × S grid cells make up the model's picture space. Each cell forecasts B bounding

boxes, which have five parameters and share C class forecast probability. S × S (5 * B

+ C) is the total YOLO output of the model parameters.

2.2.2 Specifying Label Vector and Predict Object

 The goal of the YOLO architecture is to locate an object using the bounding

box's coordinates in order to discover it by accurately anticipating its bounding box. As

a result, ground truth bounding box vectors correspond to vector label y and anticipated

bounding box vectors to output vector y. Given that the purple cell in Figure 2.21 does

not contain any objects, the confidence score of the bounding boxes in that cell is equal

to 0, hence all other parameters will be disregarded.

13

Figure 2.21 Specifying Label Vector y for 3x3 Grid Cells and Predict Object for 3

Classes

 In order to clear up all bounding boxes that are empty or contain the same object

as other bounding boxes, YOLO lastly uses Non-Maximum Suppression (NMS). NMS

removes any overlap bounding boxes with intersection over union (IOU) values higher

than the threshold value by selecting a threshold value.

 The model evaluates the likelihood that an object will be found within each of

the multiple grids it creates from the entering image. This is carried out for each of the

image's grids. The program then collects adjacent high-value probability grids into a

single object. Non-Max Suppression is a method for eliminating low-value forecasts

(NMS).

2.3 Performances of YOLO Versions

 YOLOv1 evaluates the likelihood that an object will be found within each of

the multiple grids it creates from the entering image. This is carried out for each of the

image's grids. Next, the algorithm creates a single item out of all nearby high-value

probability grids. Low-value forecasts can be removed using Non-Max Suppression

(NMS).

 The YOLOv2 was the first version to use anchor boxes. Objects that need to be

detected are placed at idealized locations in an image, which is represented by anchor

boxes. Ratio of intersection over union (IoU) between the expected bounding box and

the predetermined anchor box. The IoU value is used as a threshold to decide whether

or not there is a good enough chance that an object has been identified to justify making

a forecast. Anchor box calculations are not done at random. The training data is instead

14

analyzed and clustered using the YOLO technique (dimension clusters). The YOLOv2

model is dynamically scaled throughout the training process to adjust to various aspect

ratios called multi-scale training. The COCO dataset and the ImageNet dataset were

used to train the YOLOv2 model to ensure its robustness. The model calculates the

detection and classification error as it analyses a picture with labels. While a label-less

image causes the model to just backpropagate the categorization mistake. The

WordTree is the name of this construction. Using a classification network architecture

known as Darknet19 shown in Figure 2.22, inference speeds of up to 200 FPS and mAP

of 75.3 were attained.

Figure 2.22 Darknet19 Architecture

 Without using fully connected or pooling layers, YOLOv3 included 75

convolutional layers, significantly reducing the model's size and weight. Using residual

models (from the ResNet model) for multiple feature learning using feature pyramid

networks (FPN) while keeping short inference times gave the best performances. A

feature extractor known as a feature pyramid network extracts several types, sizes, and

shapes of features from a single image. To enable the model to learn both local and

15

broad features, it concatenates all the features. The accuracy of the class predictions for

the YOLOv3 surpasses that of RetinaNet-50 and 101 thanks to the usage of logistic

classifiers and activations. The Darknet53 architecture serves as the backbone for the

YOLOv3 model.

 Data augmentation methods, bounding box regression loss, regularization,

normalization, spatial attention modules (SAM), non-max suppression (NMS), non-

linear activation functions, and skip-connections like weighted residual connections

(WRC) or cross-stage partial connections (CSP) are among the new features that were

added in YOLOv4 [18].

2.4 Structure of YOLOv5 Architecture

 YOLOv5 has fast detection speed, high accuracy, and is widely used in real-

time object detection. The architecture of the YOLOv5 has three parts;

 Backbone: Focus structure and CSP network

 Neck: SPP block and PANet

 Head: Output using GIoU-loss

2.4.1 Backbone: Focus structure and CSP network

 The vanishing gradient problem is solved by the deep network YOLO, which

uses residual and dense blocks to allow information to travel to the deepest layers. CSP-

Darknet53 serves as the foundation of YOLOv5. DenseNet and Darknet53 architectures

are combined to create CSPNet, sometimes known as CSP-Darknet53. By truncating

the gradient flow, CSPNet keeps the benefit of DenseNet's feature reuse properties and

aids in decreasing the excessive amount of duplicate gradient information [4].

 The CSP-core Darknet53's design, known as DenseNet, utilizes the prior input

and concatenates it with the current input before proceeding into the dense layer (CSP

stands for Cross Stage Partial). In order to address vanishing gradient issues, DenseNet

was created to connect layers in a very deep neural network (as ResNet) [4].

Each step of the DenseNet architecture includes a dense block and a transition

layer. There are k dense layers that made up each dense block. The transition layer is

where the input goes after passing through the dense block to change size (downsample

or upsample), perform convolution, and perform pooling. The input for the following

layer (i + 1)th will be formed by concatenating the output of the ith dense layer with its

16

own input. For instance, at the first dense layer, the input x0 has generated the output x1

after being passed forward through convolutional layers. The output x1 is then

concatenated with its own input x0, and the result of this concatenation becomes the

input of the second dense layer. Figure 2.23 depicts the DenseNet architecture method

[10].

Figure 2.23 Process of Input Processing in an Original Dense Block

 Cross Stage Partial (CSP) is built on the same theory as the aforementioned

DenseNet, with the exception that the input will be divided into 2 portions rather than

using the full-size input feature map of the foundation layers. As shown in Figure 2.24,

some of the data will proceed normally through the dense block while other portions

will be transferred directly to the next stage without being processed. As a result, several

dense layers will continuously learn copied gradient information [10].

Figure 2.24 Process of Input Processing in a CSP Dense Block

 Convolutional neural network Darknet53 serves as the YOLOv5 object

identification model's structural foundation. The remaining blocks were swapped out

for the dense blocks using the concepts from Darknet53 architecture. CSP promotes the

network to reuse features, decreases the amount of network parameters, and preserves

fine-grained features to enable more effective forwarding to deeper layers. The

Darknet53 backbone network's final convolutional block, which can extract the richer

semantic characteristics, is upgraded to be a dense block because an excessive increase

17

in densely connected convolutional layers could slow down detection performance as

shown in Figure 2.25.

Figure 2.25 Dense Block Connection and Spatial Pyramid Pooling Based YOLOv2

Architecture

2.4.2 Neck: Additional Block (SPP block)

 The output feature maps of the CSP-Darknet53 backbone were delivered to a

second block (Spatial Pyramid Pooling block) in order to broaden the receptive field

and extract the most crucial features before sending to the feature aggregation

architecture in the neck.

 Fully linked layers are a common feature of CNN-based models, and these

layers only take input images with certain dimensions. In addition to producing a fixed-

size output regardless of the size of the input, SPP also assists in the extraction of key

features by combining multiple scales of itself. The input feature maps have been copied

to n versions (n = 3 in this example), as indicated in Figure 2.26, and each version

underwent max pooling with kernels of various sizes. By carrying out these operations,

the SPP block simultaneously extracts n various sorts of significant features.

18

Figure 2.26 Classical SPP Block

 Due to the removal of completely linked layers, which enables the input of

images in various dimensions, the YOLO algorithm has evolved into an FCN-based

(fully convolution network) model. Additionally, using the S × S grid cell drawn on the

image, YOLO must generate predictions and localizations about the positions of the

enclosing boxes. Therefore, it may not always be preferable to convert two-dimensional

feature maps into a fixed-size one-dimensional vector.

 For those reasons, SPP block shown in Figure 2.27 has been altered to maintain

the output spatial dimension. A 1 × 1 convolution is employed between the backbone

and the new SPP block to reduce the amount of input feature maps supplied to the SPP

block (from 1024 to 512). The new SPP block was placed next to the backbone. The

input feature maps are then copied and pooled in various scales using the same

methodology as the original SPP block, with the exception that padding is employed to

maintain a constant size for the output feature maps, leaving 3 feature maps with the

dimensions sizefmap × sizefmap × 512.

 The new SPP block concatenates these 3 feature maps pooled with the sizes of

𝑠𝑖𝑧𝑒𝑓𝑚𝑎𝑝 × 𝑠𝑖𝑧𝑒𝑓𝑚𝑎𝑝 × 512 and 30 including the input feature maps to avoid loss of

significant features in the case that 3-scale max-pooling is insufficient. This is in

contrast to the classical SPP block where the feature maps were converted to a one-

dimensional vector after conducting multi-scale max-pooling. As a result, the input

retained the spatial dimension in addition to extracting the key aspects that facilitated

training.

19

Figure 2.27 New SPP Block Adapted to YOLO

2.4.3 Neck: Feature Aggregation (PANet)

 The input picture features are converted into semantical features after being

forwarded over the backbone (or learned features). Particularly, as the input image is

processed through lower-level layers, the complexity of semantic features will increase

while downsampling causes feature maps' spatial resolution to decline significantly.

Due to this, fine-grained characteristics and spatial information are lost. The neck of

YOLOv5 uses the Feature Pyramid Network (FPN) architecture to preserve these fine-

grained features.

 Figures 2.28 and 2.29 illustrate the top-down method that the FPN architecture

implemented to transmit semantical information (from the high-level layer) and

concatenate them to fine-grained features (from the low-level layer in the backbone)

for predicting small objects in the large-scale detector [5].

Figure 2.28 Original FPN Architecture

20

Figure 2.29 Modified FPN Architecture Used in YOLOv3

 Due to the top-down flow in the FPN architecture, Path Aggregation Network

(PAN) is a more sophisticated variant of FPN. Therefore, in the lateral backbone

depicted in Figure 2.30, only the large-scale detector from low-level layers in FPN is

able to concurrently receive the semantic data from high-level layers and fine-grained

information from low-level layers.

Figure 2.30 PANet Architecture Including FPN Backbone

 Recent developments in FPN's small-scale detector limit the application of

object detection to semantic features. The idea of concatenating semantic features and

fine-grained features at high-level layers was taken into consideration to enhance the

performance for the small and medium-scale detector.

 There are many layers, possibly over 100, in the deep neural network's

backbone. As a result, the fine-grained features in FPN must travel a lengthy distance

to get from low-level to high-level layers. In addition to the top-down augmentation

method utilized in FPN and depicted in Figure 2.31, a bottom-up augmentation path is

proposed for PAN architecture.

21

Figure 2.31 PANet Architecture Including Bottom-up Path Augmentation

 The direct connection of fine-grained features from lower-level layers to the top

ones was thus made possible. This shortcut has fewer than ten layers, which facilitates

easy information flow. Figure 2.32 depicts the PAN architecture's overall process.

Figure 2.32 PANet Architecture Including (a) FPN Backbone, (b) Bottom-up Path

Augmentation, (c) Adaptive Feature Pooling

 With layers that yield feature maps with the same spatial sizes at each stage, the

bottom-up augmentation path can be seen as a copy of the FPN top-down path. These

feature maps are coupled to the lateral architecture via the element-wise addition

operation, as opposed to the concatenation operation used in the modified PAN

architecture for YOLOv5. This improves the information flow as neither the bottom-up

augmentation path features nor the FPN features are lacking. This process is illustrated

in Figure 2.33 [18].

22

Figure 2.33 PAN Used ROI Align for Adaptive Pooling and Fully Connected Layers for

Fusing Features from All Stages

2.4.4 Head: Output using GIoU-Loss

 Three output branches in the head anticipate the bounding boxes and groups of

objects in various sizes. An S × S grid is used to be divided into the input image.

YOLOv5 predicts B boundary boxes for each grid cell. Each bounding box has three

categories of parameters: object confidence C, prediction probabilities P of N classes,

and location (x, y, w, h) corresponding to (central coordinate (x, y), width, and height)

of a bounding box. Thus, the bounding box position loss, object confidence loss, and

class probability loss make up the loss function. The GIoU loss suggested in the

literature is the bounding box position loss used here. The cross-entropy loss function

computes the object confidence loss and the class probability loss [12].

2.5 YOLOv5 Activation Function

 YOLOv5 activation functions include SiLU and Sigmoid activation functions.

Sigmoid Linear Unit, or SiLU, is also known as the swish activation function.

Convolutional operations have been employed with it in the buried layers. Convolution

procedures in the output layer have been combined with the Sigmoid activation

function. Figures 2.34 and 2.35 show graphs of the activation functions used in

YOLOv5.

23

Figure 2.34 SiLU Function Graph

Figure 2.35 Sigmoid Function Graph

2.6 YOLOv5 Loss Function

 YOLOv5 returns three outputs. They are the classes of the detected objects, their

bounding boxes and the objectness scores. Therefore, it uses Binary Cross Entropy

(BCE) to compute the classes’ loss and the objectness loss. To compute the location

loss used Complete Intersection over Union (CIoU) loss. The final loss formula is given

by the following equation.

𝐿𝑜𝑠𝑠 = 𝜆1𝐿𝑐𝑙𝑠 + 𝜆2𝐿𝑜𝑏𝑗 + 𝜆3𝐿𝑙𝑜𝑐

Equation 2.2

2.6.1 Balance Losses

 Different weights are applied to the objectness losses of the three prediction

layers (P3, P4, and P5). The balancing weights are, correspondingly, [4.0, 1.0, 0.4].

𝐿𝑜𝑏𝑗 = 4.0. 𝐿𝑜𝑏𝑗
𝑠𝑚𝑎𝑙𝑙 + 1.0. 𝐿𝑜𝑏𝑗

𝑚𝑒𝑑𝑖𝑢𝑚 + 0.4. 𝐿𝑜𝑏𝑗
𝑙𝑎𝑟𝑔𝑒

Equation 2.3

24

2.6.2 Eliminate Grid Sensitivity

 To detect bounding boxes on image corners due to the equations used to

estimate the bounding boxes, increase the range of the center point offset from (0-1) to

(-0.5, 1.5). As a result, the height and width scaling ratios were decreased when training

instabilities, and the offset may be easily set to 1 or 0 (coordinates can be in the edge

of the image). The method used by YOLOv5 to determine the projected target

information is [14]

Figure 2.36 Grid Sensitivity of YOLOv5 Model

𝑏𝑥 = (2. 𝜎(𝑡𝑥) − 0.5) + 𝑐𝑥

Equation 2.4

𝑏𝑦 = (2. 𝜎(𝑡𝑦) − 0.5) + 𝑐𝑦

Equation 2.5

𝑏𝑤 = 𝑝𝑤. (2. 𝜎(𝑡𝑤))
2

Equation 2.6

𝑏ℎ = 𝑝ℎ. (2. 𝜎(𝑡ℎ))
2

Equation 2.7

where, bx = x-axis of final predicted bounding box,

 by = y-axis of final predicted bounding box,

 cx = x-axis of corner image,

 cy = y-axis of corner image,

 pw = predefined anchor box’s width,

 ph = predefined anchor box’s height,

 tx = x-axis of bounding box,

25

 ty = y-axis of bounding box,

 tw = bounding box’s width,

 th = bounding box’s height,

 bw = final predicted bounding box’s width,

 bh = final predicted bounding box’s height and

 𝜎 = sigmoid function

2.8 Calculate mAP Values for YOLOv5

 YOLOv5 employs mAP numbers rather than accuracy to determine

performance rate. Object detection models like YOLO use the assessment metric

known as Mean Average Precision (mAP). IOU, Precision, Recall, Precision Recall

Curve, and AP are needed to calculate mAP.

2.8.1 Intersection over Union (IOU)

 It is possible to tell whether the bounding box was accurately predicted using

intersection over Union (IOU). How much the bounding boxes overlap is shown by the

IOU. The ratio of overlap between the regions of two bounding boxes becomes 1.0 in

the case of a precise match, and it becomes 0.0 in the absence of any overlap.

Figure 2.37 Intersection over Union (IOU)

 It's important to specify how much bounding box overlap with respect to the

ground truth data should be regarded as successful recognition when evaluating object

detection models. IOUs are utilized for this, and the accuracy at IOU=50 is mAP50.

The detection is deemed successful if there is an overlap of greater than 50%. The

detection of the bounding box becomes more challenging and requires greater accuracy

for larger IOUs. As an illustration, mAP75 has a lower value than mAP50.

26

2.8.2 Precision and Recall

 Precision is a model's capacity to recognize only the pertinent objects. A model

with a precision of 1.0 produces no false positives. However, even if there are bounding

boxes that should be identified but aren't, the value will still be 1.0.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

Equation 2.8

where, TP = True positive and

 FP = False positive

 Recall is a model's capacity to locate every ground truth bounding box. A model

with a recall of 1.0 results in no undetected bounding boxes that should be detected.

The recall will still be 1.0, even if there is an "overdetection" and the incorrect bounding

box is discovered.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠

Equation 2.9

where, TP = true positive and

 FN = false negative

2.8.3 Precision Recall Curve

 Plotting Precision on the vertical axis and Recall on the horizontal axis results

in the Precision Recall Curve.

Figure 2.38 Precision Recall Curve Sample

27

 The detection of objects has a threshold. The chance of over-detecting objects

is decreased when the threshold is raised, while the risk of missed detections is

increased. For instance, if the threshold is set to 1, no item will be found, the Precision

is set to 1, and the Recall is set to 0. In contrast, an infinite number of objects will be

discovered, Precision will be 0.0, and Recall will be 1.0 if the threshold is set to 0.0. In

contrast, an infinite number of objects will be discovered, Precision will be 0.0, and

Recall will be 1.0 if the threshold is set to 0. Consequently, the machine learning model

is better the further up the curve to the right in the graph [19].

2.8.4 Average Precision (AP)

 The greater the Precision Recall Curve, when comparing the performance of

two machine learning models, the better the performance. The Average Precision (AP),

which reflects the area under the curve (AUC) Precision Recall Curve, is a more logical

way to assess models. The greater the area, the higher the AP, and the better the machine

learning model are, the steeper the curve is in the upper right corner [19].

2.9 Chapter Summary

 This chapter goes into detail on how the CNN algorithm functions, as well as

how the various YOLO iterations perform. Additionally, it explains the YOLOv5

model's grid sensitivity, balance losses, and loss function. This chapter also explains

how precision and recall are calculated. This chapter includes a description of Average

Precision (AP).

28

CHAPTER 3

THE PROPOSED METHODOLOGY

 In this chapter describes the proposed methodology of the system which can

identify the input objects and measure the distance from the camera to the objects using

YOLOv5 model.

3.1 Overview of The Proposed System

 Firstly, camera takes the image or video as the input of the system. YOLOv5

model will detect the object classes of the input image or video and calculate the

distance between camera and those detected objects. Finally, the output result is saved

in OS path with class labels and distance meters. The summary of the system diagram

is shown in Figure 3.1.

Figure 3.1 Overview of the Proposed System

3.2 COCO Dataset

 In this system, YOLOv5 is used for object detection and distance estimation.

The COCO dataset is the default dataset of the YOLOv5 architecture and 128 images

were used for testing and validation in this system. COCO means Common Objects in

Context is a large-scale image dataset containing 328000 images of objects. This

contains annotations to train machine learning models to recognize, label and describe

objects. The dataset has 80 classes and its image ratio is 640 x 480.

 COCO dataset consists of 80 classes. They are person, bicycle, car, motorcycle,

airplane, bus, train, truck, boat, traffic light, fire hydrant, stop sign, parking meter,

bench, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, backpack,

umbrella, handbag, tie, suitcase, frisbee, skis, snowboard, sports ball, kite, baseball bat,

baseball glove, skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork, knife,

spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut,

cake, chair, couch, potted plant, bed, dining table, toilet, tv, laptop, mouse, remote,

keyboard, cell phone, microwave, oven, toaster, sink, refrigerator, book, clock, vase,

scissors, teddy bear, hair drier and toothbrush.

Camera
YOLOv5s

model
Output

Result

29

 The COCO dataset offers the following annotations:

 Object detection – bounding box coordinates and complete segmentation

masks for 80 different item categories.

 Captioning – each image is described in natural language.

 Keypoints – the dataset includes more than 200,000 photos of more than

250,000 people that are annotated with important details like the right eye, nose,

and left hip.

 Stuff image segmentation – pixel maps of 91 different types of objects,

including amorphous background areas like the sky, grass, or walls.

 Panoptic – entire picture segmentation, identifying objects in the image in

accordance with 91 "stuff" categories (road, sky, water, etc.) and 80 categories

of "things" (cat, pen, fridge, etc).

 Dense pose – every tagged individual in the dataset is annotated with an

instance id and a mapping between pixels indicating that person's body and a

template 3D model. The dataset comprises more than 39,000 photos with more

than 56,000 humans in them.

3.3 Object Detection Using YOLOv5 Architecture

 In this system, object detection and distance estimates between the camera and

identified objects are done using YOLOv5s. One of the YOLOv5 models is the small

size object detection model (YOLOv5s). YOLOv5 is frequently used in real-time object

identification and has a quick detection speed and good accuracy. Figure 3.2 depicts the

YOLOv5 architecture.

 First, the focus structure is used to separate the input image into layers. It is used

to speed up forward and backward passes while decreasing the number of parameters,

FLOPS, and CUDA memory, with only small effects on mean Average Precision

(mAP). Backbone is a pre-trained network that uses repeated down-sampling with CSP-

Darknet53 to efficiently extract feature information from the input image [12]. This

aids in lowering the image's spatial resolution and raising its feature (channel)

resolution. The neck is in charge of aggregating the picture features retrieved by the

backbone using the bottom-up PANet and FPN's cascade structure [12]. It is employed

for accurate generalization to objects of various scales and sizes. The head model

30

performs the last stage actions, applying anchor boxes to feature maps and rendering

the finished product that includes classes, objectness scores, and bounding boxes [17].

Figure 3.2 Architecture of YOLOv5 Model

 An S × S grid is used to divide up the input image. YOLOv5s predicts B

boundary boxes for each grid cell. Each bounding box has three categories of

parameters: object confidence C, prediction probabilities P of N classes, and the center

31

coordinate (x, y), width, and height of the box. Thus, the bounding box position loss,

object confidence loss, and class probability loss make up the loss function. Bounding

box position loss is implemented using GIoU-loss. The cross-entropy loss function

computes the object confidence loss and the class probability loss [12].

𝐿𝑜𝑠𝑠 = λcoord ∑ ∑ Iij
obj

LGIoU −

B

j=0

S2

i=0

∑ ∑ Iij
obj

[Ĉj
i log(Cj

i) + (1 − Ĉj
i) log(1 − Cj

i)]

B

j=0

S2

i=0

− λnoobj ∑ ∑ Iij
noobj

[Ĉj
i log(Cj

i) + (1 − Ĉj
i) log(1 − Cj

i)]

B

j=0

S2

i=0

− ∑ ∑ Iij
obj

B

j=0

S2

i=0

∑ [P̂j
i log(Pj

i) + (1 − P̂j
i) log(1 − Pj

i)]

C∈classes

Equation 3.1

where Iij
obj

 is defined as 1 if object presents inside j-th predicted bounding box in i-th

cell, and 0 for otherwise. Iij
noobj

 is the opposite. λcoord and λnoobj are the loss weights

[12].

3.4 Distance Estimation

 At first, find the focal length of the camera to estimate the detected object

distance from bounding box’s width and height which are get from YOLOv5 object

detector using triangle formula.

𝐹𝑜𝑐𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ = √𝑤2 + ℎ2

Equation 3.2

where, w = bounding box’s width and

 h = bounding box’s height

 Then, insert into torch library to get the distance between camera and detected

objects layer by layer.

32

3.5 Running Environment (PyTorch)

 YOLOv5 is implemented in PyTorch which can give more flexibility to control

the encoded operations. Python and the Torch library are the foundation of PyTorch, an

open source machine learning (ML) framework. Torch is a Lua scripting language-

based open source machine learning library that is used to build deep neural networks.

One of the most popular platforms for deep learning research is this one. The following

are some of PyTorch's important features:

 Tensor computation - Similar to NumPy array which is an open source library

of Python that adds support for large, multidimensional arrays. Tensors are

generic n-dimensional arrays used for arbitrary numeric computation and are

accelerated by graphics processing units. These multidimensional structures can

be operated on and manipulated with application program interfaces (APIs).

 TorchScript - This is PyTorch's production environment, which allows users

to switch between modes with ease. TorchScript improves functionality, speed,

usability, and flexibility.

 Dynamic graph computation - By using this feature, users can alter network

behavior immediately, without having to wait for all the code to run.

 Automatic differentiation - Neural networks are built and trained using this

method. By using neural network backtracking, it quantitatively calculates the

derivative of a function.

 Python support - PyTorch may be used with well-known libraries and

packages like NumPy, SciPy, Numba, and Cython because it is based on the

Python programming language.

 Variable - The variable is enclosed outside the tensor to hold the gradient. It

represents a node in a computational graph.

 Parameter - Parameters are wrapped around a variable. They're used when a

parameter needs to be used as a tensor, which isn't possible when using a

variable.

 Module - Modules represent neural networks and are the building blocks of

stateful computation. A module can contain other modules and parameters.

 Functions - These are the relationships between two variables. Functions don't

have memory to store any state or buffer and have no memory of their own [22].

https://www.techtarget.com/searchvirtualdesktop/definition/GPU-graphics-processing-unit
https://www.techtarget.com/searchapparchitecture/definition/application-program-interface-API
https://www.techtarget.com/whatis/definition/variable

33

3.6 Chapter Summary

 This chapter provides an overview of the proposed system as well as

information about the COCO dataset. This chapter includes the architecture of

YOLOv5s model which is used as object detection and calculate the distance between

camera and detected objects in this system and also involves the about of PyTorch

which is apply as a running environment in this system.

34

CHAPTER 4

IMPLEMENTATION AND EXPERIMENTAL RESULTS

 Software implementation is required to perform object detection and distance

estimation tasks. Intel Celeron N3060 processor running at 1.60 GHz; 4.00 GB of

RAM; 64-bit operating system is used.

4.1 Implementation of the System

The flowchart of the system is given in Figure 4.1.

Figure 4.1 Flowchart of the System

35

To perform object detection, the camera captures the image or video, focus

structure of the YOLOv5 model divides the input into the layers and then extracts the

feature information using CSP-Darknet53 in the backbone layer. In the neck layer,

aggregates the image features which are coming from the backbone layer using FPN

and bottom-up PANet. Then, apply anchor boxes on feature maps and combine the

outputs as the final result in the head layer. For calculate distance, uses the triangle

formula to get the focal length. The values of bounding box width (w) and height (h)

are get from YOLOv5s model. After that compute the distance meter between camera

and detected object using focal length value in Torch.tensor metrics. Then, the final

detected result will be with class labels and distance meters.

4.2 Experimental Results of the System

To detect image in OS, firstly, open the Window Command Prompt and need

to run as administrator.

Figure 4.2 Run Window Command Prompt as Administrator

36

 The following Figure 4.3 shown the testing image from the test file and the

result is shown in Figure 4.4.

 Figure 4.3 Detect and Save Detected Image File

 In Figure 4.4, four types of object classes are detected and the distance meter is

calculated. A bicycle, a bench, a person, and a potted plant have all been detected. The

placement of the camera affects distance estimation measurement. For example, one

bicycle's distance is 24.6m, while a person's distance is 40.5m.

Figure 4.4 Detected Image Result 1

37

 Five classes of objects are found in Figure 4.5. Person, chair, laptop, cup, and

dining table are among them. The largest person distance, as seen in figure 4.5, is 33.8

m.

Figure 4.5 Detected Image Result 2

 Figure 4.6 (a), (b) and (c) are the sample detected results of the video. Car and

truck are detected in result (a) and (b). In the result (a), the truck's closest distance is

12.3 meters, whereas the car's distance is 47.6 meters.

Figure 4.6 Detected Video Result (a)

38

 The truck's closest distance is 7.7 meters, whereas the car's distance is 48.3

meters in the result (b).

Figure 4.6 Detected Video Result (b)

 In Figure (c), a car, a truck, and an umbrella are detected. The distances between a car,

an umbrella, and a truck are 58.3 meters, 21.6 meters, and 27.0 meters, respectively.

Figure 4.6 Detected Video Result (c)

39

4.3 Performance Evaluation for the System

 Determine the precision values of the test set to learn about its performance. 800

images are used to calculate the system's precision recall values for the test set. The

precision values of the test set are displayed in the figures below. A test set of 10 object

classes was generated in order to better understand the precision values but only 9 object

classes are shown in the report of Figure 4.7 and 4.8. When the confidence score is

0.915 for test set 1, the precision values for all classes will be 1 in Figure 4.7. Because

there are no such objects in test set 1, the precision values for person, car, bus, train,

truck, and traffic Light in test 1 are 0.000. The motorcycle's precision value is 0.028,

the airplane's is 0.022, and the boat's is 0.035.

Figure 4.7 Precision Values of Test Set 1

 In Figure 4.8, the precision values for all classes are 1 and the confidence score

is 0.696 for the test set 2. Figure 4.10 depicts the detail precision values for each object

in the test set 2.

Figure 4.8 Precision Values of Test Set 2

40

 When all precision values from all classes are added together, the result is

illustrated in Figure 4.9. Figure 4.9 shows that when the confidence value is 0.962, all

classes are 1.

Figure 4.9 Precision Values of All Test Set

 Precision Recall curves for the test sets are shown in Figure 4.10, 4.11 and 4.12

respectively.

Figure 4.10 Precision Recall Curve of the Test Set 1

41

 Figure 4.11 shows that the precision recall values of bicycle, airplane, truck,

and boat are all 0.000, while the other five classes are 0.030, 0.161, 0.019, 0.378, and

0.028, respectively.

Figure 4.11 Precision Recall Curve of the Test Set 2

 However, when all precision values from all classes are added together, the

result is not clear and will be shown in Figure 4.12.

Figure 4.12 Precision Recall Curve of All Test Set

42

4.4 Chapter Summary

 This chapter describes the system's flowchart and experimental results when

two or more classes are detected in an image or video. For the test sets, it also includes

precision values and precision recall curves.

43

CHAPTER 5

CONCLUSION

 In summary, AI based computer vision tasks are become popular in nowadays.

Object detection is one of the famous computer vision task to apply in various

applications such as healthcare, security surveillance and self-driving cars. Distance

estimation is combined together with object detection so that to improve driving system

of AI based autonomous vehicles and remote controls. YOLOv5s is most suitable for

real-time detecting objects and measure the distance between camera and its detected

objects because of its higher performance and accuracy.

 The object detector YOLOv5 is used to calculate the distance between the

camera and the detected objects. Backbone, Neck, and Head are the three layers of

YOLOv5. The backbone layer extracts feature information using CSP-Darknet53, and

the neck layer aggregates the image features extracted by CSP-Darknet53 using FPN

and bottom-up PANet. Then, on feature maps, apply anchor boxes and render the final

output. To calculate the distance meter of detected objects between cameras, use focal

length values obtained from the triangle formula and combine them with the width and

height of the bounding box obtained from the object detector and then sort into the

torch. Tensor metric.

5.1 Advantages

 This system is only base on the single camera of the device. Therefore, it can

easily be used in operation system and no need to install other external devices such as

Light Detection and Ranging (LiDAR) sensor or other cameras. This system can be

detected various classes of objects.

5.2 Limitation

 Distance meter values can vary according to the focal length because distance

calculating formula is based on the device camera’s focal length. The more cameras

lens are better distance meter values are more accurate.

44

5.3 Related Works

In the paper [2] uses the YOLOv3 to predict the absolute distance of objects

using only information from a monocular camera and design the two ways of measuring

the distance, class-agnostic and class-aware. Class-agnostic creates smaller prediction

vectors than class-aware and achieves better results. In this paper, KITTI dataset is used

and show the distance range within [0, 150] m. Uses cameras instead of LIDARs to

present the possibility for distance estimation in the paper [21]. This paper is based on

the YOLOv3 deep neural network and principles of stereoscopy. In this paper, uses two

slightly moved cameras to get two pictures which goes through algorithm for

stereoscopy-based measurement and estimate distance to detected objects. In the paper

[1] uses the YOLOv5 model to measure the distance between objects for processing

real-time images with OpenCV in order to restrict the distance between several people

in the same space and also add Euclidean distance calculation method in DeepSORT

and OpenCV to minimize occlusion. Detecting the distance between people and using

the open-source COCO dataset for learning in this paper.

5.4 Further Extension

 The system functions can be added distance accuracy correction. When the

distance is too close, a warning message will be issued. Another extension is not only

can add emoticons but also vehicle speed per hour and target object speed per hour. If

one of the speed per hour of the vehicle and the speed of the target exceeds the upper

limit, an early warning will be given.

45

REFERENCES

[1] A study on object distance measurement using OpenCV-based YOLOv5,

International Journal of Advanced Culture Technology, Vol.9 No.3 298-304

(2021), DOI.

[2] Dist-YOLO: Fast Object Detection with Distance Estimation, Appl. Sci. 2022,

12, 1354.https://doi.org/10.3390/app12031354 by Marek Vajgl, Petr Hurtik and

Tomáš Nejezchleba

[3] Gochoo, M. (2020). ReseachGate. Search date 03.12.2020. researchgate.net:

https://www.researchgate.net/figure/a-Feature-pyramid-network-FPN-b-

YOLO3-c Proposed-concatenated-feature-pyramid_fig2_335538302

[4] Huang, G., Liu, Z., & Maaten, L. v. (2018). Densely Connected Convolutional

Networks. arXiv. Seach date 28.11.2020. https://arxiv.org/pdf/1608.06993.pdf

[5] Hui, J. (2020). YOLOv4. Medium. Seach date 27.11.2020. https://jonathan-

hui.medium.com/yolov4-c9901eaa8e61

[6] Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path Aggregation Network for

Instance Segmentation. arXiv. Seach date 03.12.2020.

https://arxiv.org/pdf/1803.01534.pdf.

[7] Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger. arXiv.

Seach date 17.11.2020. https://arxiv.org/pdf/1612.08242.pdf

[8] Solawetz, J. (2020). Breaking Down YOLOv4. Roboflow. Seach date

27.11.2020. https://blog.roboflow.com/a-thorough-breakdown-of-yolov4/

[9] V Thatte, A. (2020). Evolution of YOLO — YOLO version 1. Medium. Seach

date 14.11.2020. https://towardsdatascience.com/evolution-of-yolo-yolo-

version-1-afb8af302bd2

https://www.researchgate.net/figure/a-Feature-pyramid-network-FPN-b-YOLO3-c%20Proposed-concatenated-feature-pyramid_fig2_335538302
https://www.researchgate.net/figure/a-Feature-pyramid-network-FPN-b-YOLO3-c%20Proposed-concatenated-feature-pyramid_fig2_335538302
https://arxiv.org/pdf/1608.06993.pdf
https://jonathan-hui.medium.com/yolov4-c9901eaa8e61
https://jonathan-hui.medium.com/yolov4-c9901eaa8e61
https://arxiv.org/pdf/1803.01534.pdf
https://arxiv.org/pdf/1612.08242.pdf
https://blog.roboflow.com/a-thorough-breakdown-of-yolov4/

46

[10] Wang, C.-Y., Mark Liao, H.-Y., Yeh, I.-H., Wu, Y.-H., Chen, P.-Y., & Hsieh,

J.-W. (2019). CSPNET: A new backbone that can enhance learning capability

of CNN. arXiv. Seach date 30.11.2020. https://arxiv.org/pdf/1911.11929.pdf

[11] YOLO Multi-Camera Object Detection and Distance Estimation, DOI:

10.1109/ZINC50678.2020.9161805 by Bojan Strbac, Marko Gostovic, Zeljko

Lukac and Dragan Samardzija

[12] Zero-Shot Pipeline Detection for Sub-Bottom Profiler Data Based on Imaging

Principles

[13] https://blog.superannotate.com/introduction-to-computer-vision/

[14] https://docs.ultralytics.com/tutorials/architecture-summary/

[15] https://github.com/o920130130/YangSongbo/pulls

[16] https://github.com/rafaelpadilla/Object-Detection-Metrics

[17] https://iq.opengenus.org/yolov5/

[18] https://machinelearningknowledge.ai/a-brief-history-of-yolo-object-detection-

models/

[19] https://medium.com/axinc-ai/map-evaluation-metric-of-object-detection-

model-dd20e2dc2472

[20] https://paperwithcode.com/task/object-detection

[21] https://www.javatpoint.com/working-of-convolutional-neural-network-

tensorflow

[22] https://www.techtarget.com/searchenterpriseai/definition/PyTorch

https://arxiv.org/pdf/1911.11929.pdf
https://blog.superannotate.com/introduction-to-computer-vision/
https://github.com/o920130130/YangSongbo/pulls
https://github.com/rafaelpadilla/Object-Detection-Metrics
https://machinelearningknowledge.ai/a-brief-history-of-yolo-object-detection-models/
https://machinelearningknowledge.ai/a-brief-history-of-yolo-object-detection-models/
https://paperwithcode.com/task/object-detection
https://www.javatpoint.com/working-of-convolutional-neural-network-tensorflow
https://www.javatpoint.com/working-of-convolutional-neural-network-tensorflow
https://www.techtarget.com/searchenterpriseai/definition/PyTorch

47

LIST OF PUBLICATIONS

[1] May Thu Aung, Khaing Khaing Wai, “Object Detection Along With Distance

Estimation Using YOLOv5 Model”, University of Computer Studies, Yangon,

Myanmar, 2022.

