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Abstract 
 

Community structure is one of the main structural features of networks and 

detecting overlapped community structure is an important field in social network 

analysis. There are many methods for finding non-overlapping communities in this 

research area. The existing studies about overlapping do not sufficiently address the 

problems of the relationship between objects in overlapping regions and the roles of 

these objects during the formation and growth of communities. In recent years, local 

community detection algorithms which detect overlapped community structure have 

been developed. Local expansion methodologies that detect local community structure 

are techniques to find a community through the seed. Therefore, recent algorithms have 

emphasized on the locating seed rather than random seed selection. However, although 

the most existing algorithms could identify superior seed, their expansion strategies did 

not become effective and efficient strategies. Moreover, algorithms suffer unstable 

community structure because the influences of parameter for controlling community’s 

resolution of fitness evaluation functions where used in community expansion process. 

In this research, therefore, the algorithm is modelled on local expansion strategy and 

designs the extended jaccrad similarity to find seed. In addition, this research 

formulates the optimized parameter evaluation formula to avoid the parameter 

influences. This work, firstly, identifies the seed or core node by using extended jaccard 

similarity and form initial community via seed. Then local community is detected by 

expanding the initial community with fitness function based on proposed optimized 

parameter evaluation and finally overlapped nodes are identified by merging detected 

local communities. In this dissertation, the algorithm is implemented by using small 

datasets from network data repository site and large networks from Stanford large 

network datasets collection. In addition to real networks, overlapping artificial 

benchmarks are also selected to generate the experiment networks. On both real and 

artificial, the performance results of proposed algorithm are compared with state of the 

art algorithms by using various performance evaluation metrics. In particular, the 

proposed algorithm is proven that it has better accuracy on both real and benchmarks 

and saves running time as an efficient algorithm. 
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CHAPTER (1) 

INTRODUCTION 

 

The societies and natures are made up of a various diversity of different scale 

complex systems. These complex systems vary from the Internet to World Wide Web, 

from stock markets to other economic systems and from power grid to various 

communication systems. In simple systems, interactions between components are often 

determined solely by physical distance. However, in complex systems, the interactions 

between components are often more complicated and may be influenced by a range of 

factors, including similarity, shared connections, and other factors that can lead to 

highly correlated one-to-one interactions. These interactions between components in a 

complex system play a crucial role in determining the function and behavior of the 

system as a whole. To comprehend the behavior and function of complex systems, 

therefore, it is necessary to study the pattern of interactions among their components, 

which is the subject matter of network science. It is the study of complex systems in 

the form of networks using theories and computer science techniques, mathematics and 

physics techniques [1]. The network graphs can help as a powerful mathematical tool 

to study and represent complex systems. For example, in the scientific literature, articles 

can be represented as nodes in a network, and the relationships between articles can be 

represented as edges based on the citations between them; the World Wide Web can be 

represented as a network of linked web pages, with hyperlinks between pages 

represented as edges in the network; the Internet itself can be represented as a network 

of routers connected by physical links.  

In particular, the widespread adoption of the internet and computer science has 

led to a significant increase in the number of people who use social networks. Social 

network is a type of "virtual society" that connects individuals in the real world and 

facilitates communication, information sharing, and social activities. As a result, social 

network analysis has become an increasingly important field of research in recent years. 

The development of graph theory provides a useful framework for studying social 

networks, as social networks can be represented as graphs. In this framework, each 

vertex (or node) in the graph represents an entity in the social network, such as a user, 

a piece of information, or a group. Meanwhile, each edge in the graph represents the 

relationship between entities, such as friendships, information dissemination, or group 
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membership [2]. A sample diagram of social network is illustrated in figure 1.1. The 

social network structures have been studied extensively under the notions of sub graphs, 

network modules, and communities. In social networks and other real networks, the 

most commonly found features are community structures. Communities or modules are 

often considered to be the building block of real-world networks, as they can play a 

crucial role in determining the functionality and behavior of the system as a whole. 

Clustering technology has been playing a key role in various real applications 

including rotating machinery, image processing [3], biology [4], market segmentation 

[5], and web mining. Clustering techniques and community detection methods both aim 

to identify groups of objects within a dataset that share similar characteristics or patterns 

of connectivity. In the context of complex networks, groups of nodes that are more 

densely connected to each other than to nodes outside the group. That groups are 

defined as modules or communities, and can be thought of as clusters of nodes that have 

a high degree of interconnectivity. The traditional clustering algorithms aim to assign 

each object to a single cluster, such that each cluster is mutually exclusive and there is 

no overlap between them. If a network consists of several distinct sub-groups that are 

only sparsely connected to each other, traditional clustering methods may be able to 

identify these sub-groups as separate clusters. However, in many real-world networks, 

the boundaries between communities are not well-defined and may be fuzzy or 

overlapping. In these cases, traditional clustering methods may not be sufficient to 

identify the underlying community structure. 

 

 Figure 1.1 Social network 

Researchers have developed various methods to discover communities from the 

SN such as Lancichinetti and Fortunato [6], Leskovec, Lang and Mahoney [7]. 

Moreover Walktrap [8] uses random walks to identify densely connected regions of a 
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graph, which correspond to communities.  Other traditional methods use a bottom-up 

approach that starts with individual nodes and progressively groups them together based 

on some criterion, such as similarity or connectivity. One popular method that used this 

approach is the FastGreedy algorithm [9], which is based on maximizing an objective 

function, such as modularity, to identify communities. Other fast algorithm, infomap 

[10] is a graph clustering algorithm capable of achieving high-quality communities.  

However, many of the studies within community detection have been on 

identifying disjoint or none overlapping communities. This type of detection suggests 

that the network can be partitioned into densely connected regions in which nodes have 

more connections to each other than to the rest of the network. But, it has been well 

understood that people tend to have multiple community memberships because they 

have different interests, hobbies, or social circles. For example, someone may be part 

of a sports team, a book club, and a professional organization, each of which represents 

a different community; On the Internet, individuals can also simultaneously subscribe 

to or participate in an arbitrary number of groups, forums. This also appears in other 

complex networks such as biological networks, where a node might have multiple 

functions. Therefore, overlapped community detection algorithms have been 

investigated. These algorithms aim to detect a cover, which is defined as a set of clusters 

in which each node belongs to at least one cluster. The authors, Kelley et al. [11] and 

Reid et al. [12], showed that many real-world social networks have a significant degree 

of overlap among individuals in the network. For this reason, there is an increasing 

interest in algorithms for detecting overlapping communities within networks.  

The researchers modeled overlapping community detection algorithms by using 

various strategies to cluster objects or partition a graph. In this dissertation, local 

expansion strategy is used to detect overlapped objects and communities by clustering 

objects. Most research have been done for identifying overlapped structures according 

to this strategy. To uncover both overlapping and hierarchical community structure in 

complex networks, a pioneering attempt was made by Lancichinetti et al. [13] , Shen et 

al., 2009 EAGLE (agglomerative hierarchical clustering based on maximal clique) [14] 

and Wang Min et al. [15]. These algorithms couldn’t find community structures in 

complex networks and random seed selection. Therefore, proposed an algorithm with 

lower time complexity for a large scale complex network in 2014 [16].  Belfin [17] 

designed a model to locate suitable superior seed set by using blended strategy. 

However, there are still remaining problems of tuning parameters.  



  

4 
 

In this research, the system is designed to identify overlapping objects based on 

local community expansion strategy. This system uses extended jaccard similarity to 

find seed or core nodes and fitness quality evaluation function to extend communities. 

The less accurate community structures are occurred due random seed selection of local 

expansion strategy. Moreover, unstable communities are accepted for various 

parameters which yield different implementation results because significantly depends 

on parameter setting. Therefore, this research proposes extended jaccard index or 

similarity to locate good seeds and propose a formula that controls resolution 

parameters of fitness function in extending communities to avoid different implantation 

results.  

This system firstly chooses the seed among nodes of the whole network based 

on extended jaccard similarity. The initial community is formed with neighbor nodes 

around seed. For extending initial community, then, the neighbor nodes are added to 

the initial community according to their greater fitness value based on fitness quality 

evaluation function. Then local communities which communities forming with each 

seed surrounding neighbors are obtained. Finally, overlapping nodes and communities 

are detected by merging local communities. This system is compared to other 

overlapped community detection algorithms to verify for better accuracy and saving 

execution time on different datasets from mostly Stanford network dataset collection. 

In addition, overlapping LFR artificial benchmarks [18] proposed by Lancichinetti and 

Fortunato are also selected to generate networks in this experiment. The proposed 

algorithm well performs on not only real world network datasets but also benchmark 

datasets. This work is implemented using Apache Netbean 12.5 on java platform with 

RAM 8GB, CPU @ 2.50GHz. 

1.1 Problem Statements 

The graph partitioning and community detection problems involve partitioning 

a network into groups or clusters, but they differ in their objectives and assumptions. 

Graph partitioning typically involves dividing a graph into a predetermined number of 

disjoint subsets or clusters. Unlike graph partitioning, in community detection, the 

number of communities or clusters is not usually predetermined or given as part of the 

input. The most community detection algorithms and clustering methods need prior 

knowledge such as thresholds. In these situations, unsuitable threshold value causes 
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decreasing accuracy of community structures. The local expansion methods are 

effective strategies for detecting overlapping communities within networks. In general, 

these methods starts with a set of seed nodes, which are selected randomly and seed 

nodes are then iteratively expanded into communities by adding new nodes that meet 

certain criteria.  As the problem statements, 

1) These randomness can bring computational efficiency but leads to low quality 

community structures. 

2) The principled methods to choose the seeds are few and far between.  

3) When they exist, they are usually computationally expensive (e.g. using 

maximal cliques as seeds [19]). 

4) In that cases, not only community structures but also overlapped vertices are 

detected wrongly if chosen seeds are not appropriate. 

5) What’s more, methods the local expansion algorithms used require parameter 

setting in quality evaluation functions to decide if vertices should be added or 

not to the clusters. 

6) Those functions rely on their parameters significantly. 

7) Therefore, multiple implementations are done by tuning parameters and 

different implementation results are occurred. 

8) That problem fails to provide efficiency in reasonable execution time and causes 

stability deficiencies in overlapping community detection. 

Nevertheless, even many approaches are proposed by researchers to select suitable seed 

nodes, still have weakness in applied approaches for extending community. 

1.2 Motivation of Research 

In recent decade, Graph mining is a fundamental research area in artificial 

intelligence and community detection has been trending as a hot topic in graph mining 

area. Community detection techniques group vertices into communities and it is also 

known as clustering that can be thought of as a way to group nodes in a graph based on 

their similarity, and it can help reveal underlying patterns and structures in the graph. 

This revealed knowledge can be applied to provide further tasks such as node profile 

construction or link prediction. For example, detecting influencers or groups of specific 

product lover in commercial sectors, can advertise targeted users. In addition, 

discovering researcher communities can refer future potential collaborator in scholarly 
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networks, or recommend relevant papers or research topics to targeted users. In the 

healthcare sector, community detection can be used to infer possible protein-protein 

binding relationships. Therefore, community detection tasks a wide range of practical 

applications across different domains, and it can be a powerful tool for uncovering 

hidden patterns and relationships within complex networks.  

The real situation of real world network like social network is that each object 

may belong to more than one community. As regards overlapping communities, objects 

having different roles in forming a community. Finding out the overlapping 

communities in social networks is an indispensable task. Some methods that adopt both 

global and local information to detect community structure have been studied. The 

global methods become computationally infeasible for very large networks or lack of 

integrity because it requires the typology information of entire network (i.e. there are 

too many nodes and edges in the network) and making it difficult to apply them to the 

entire network. Moreover, algorithms required global knowledge of the network are 

very high the time complexity and space consuming when analyzing large scale 

networks.  

The local community refers to the community that includes a particular starting 

node, and the nodes within the local community are closely interconnected, while their 

connections to nodes outside the local community are infrequent. At times, may only 

be interested in the local community to which the given starting node belongs. For 

instance, in the co-purchasing product network, may only focus on the community that 

includes the given product. After obtaining the local community C that encompasses 

product A and frequently co-purchased products, other products in C can be 

recommended to customers who have purchased A. In addition, Influencers or core 

members in a social network are individuals who are highly connected to other 

members such as followers or friends in online social networks. Thus, they have 

significant impact and able to spread information quickly. These core members are 

important for community detection systems like target advertising system. For this 

reason, identifying good seeds is also an important task for not only local expansion 

algorithms but also other community detection algorithms. However, the selection of 

initial node generally affects accuracy of local discovery methods. 

As the network structure in practical applications becomes increasingly 

complex, detecting community structures more accurately and effectively remains a 

significant challenge that deserves further investigation. 
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1.3 Objectives of Research 

The aim of this research is to provide the more effective algorithm than other 

overlapped algorithms on same datasets and also address the problem of developing 

high quality community detection algorithms that scale with large graph datasets. The 

main objectives are: 

 To introduce efficient and effective overlapped community detection algorithm 

in application area of real world. 

 To do the system well for large networks by local expansion strategy that 

requires only local information 

 To avoid inaccurate local community structures because random seed selection 

 To detect suitable seed or core nodes by proposed similarity metric  

 To avoid stable deficiency of community structures and detected overlapped 

elements due to resolution controlling parameters. 

 To explore the stable community structures by optimized fitness evaluation 

function 

 To improve the efficiency of proposed overlapped detection algorithm with 

appropriate running time. 

1.4 Contributions of Research 

The following are the contributions: 

 Propose an effective local expansion approach for uncovering 

overlapped structures. 

 Propose seeding method which extended jaccard similarity in 

identifying core members 

 Optimize f fitness function to overcome the problem of resolution 

controlling parameters when expanding the community 

 Propose a formula to control resolution parameter of fitness function f 

 Provide the system which detects overlapped community structures in 

least execution time 
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1.5 Organization of Research 

 This dissertation is organized with six chapters including introduction. The 

introduction describes that community detection becomes increasingly interested 

research filed and includes problem statements, motivation, objectives and 

contributions of this research. The remaining chapters are organized as follows: 

Chapter 2 provides a comprehensive review of the most frequently published 

research papers by researchers in the last decade. This chapter divides into sections to 

explain clustering algorithms. Firstly traditional clustering algorithms and community 

detection algorithms according to the other literatures are described. The next presents 

overlapped community detection algorithms.  

As background theory, chapter 3 first introduces the definitions of community, 

community detection, graph types, application research areas, and challenges facing 

community detection research area. The overlapped community detection 

methodologies, local expansion strategies, community quality evaluation functions and 

similarity metrics between nodes are presented in this chapter. 

Chapter 4 follows the proposed system architecture and design. It also provides 

the proposed system, algorithm and methodology.  

Chapter 5 describes performance results of this system and proves better 

accuracy and less execution times by comparing with other overlapped detection 

algorithms in where system implementation. In this implementation, performance of 

the system is measured by various evaluation metrics on different datasets. 

As summary, it describes overall of this dissertation in detail and discusses 

future researches in chapter 6. Then, it points out current limitations and suggest some 

ways of overcoming these limitations through future research. 
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CHAPTER (2) 

LITERATURE REVIEW 

 

In the last decades, several literatures devoted to the discovering the community 

structure from networks. This chapter will review traditional clustering techniques from 

literatures focused on detection of non-overlapped communities. The broadly 

classification of community detection methods to detect disjoint communities and 

overlapped communities are also discussed. The clustering techniques are reviewed in 

[20]. 

2.1 Non Overlapping Community Detection Techniques  

 

Figure 2.1 Example of partitional clustering 

2.1.1 Partitional Clustering 

 While statistics and data mining have been used in computer science to 

analyze and cluster data, the first studies on finding communities of similar objects in 

networks actually originated from social sciences. The most prominent of these old 

studies are k-means clustering; Partial clustering methods such as neural network 

clustering and multidimensional scaling are used. The figure of partitional clustering is 

shown in Figure 2.1. When the edges of the graph are weighted, these properties can be 

adapted to take these weights into account. Depending on what they represent, these 

weights can be used as distance measures. The mass consumption in ways of using 

traditional distance measurements such as K-Means algorithm proves effective in 

physical networks, especially in the map. But, when the edges have no weight in a graph 

like graph consisting friend’s relationships, it is inconvenient method to define an 

appropriate distance and the number of cluster must be predefined to find the clusters. 
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Therefore, applying traditional distance-measurements are inconvenient ways for social 

networks analysis. The processing steps of K- Mean algorithm are: Initially 

communities’ size (number of community) is given. In first step, centroid must be 

specified and the proposed community number on the network keep their numbers as 

far as possible from the centers of the communities. Each node in the network is 

assigned to the nearest center. Secondly, the centroids are updated by computing the 

center of mass or centroids of all the nodes within each cluster. After the centroids have 

been updated, the algorithm repeats the assignment step, where each node is assigned 

to the nearest centroid. This process of updating the centroids and re-assigning nodes 

to clusters is repeated iteratively until the locations of the centroids remain 

unchanged.The solution may not be optimal and local optimum depends on the initial 

choice of centroids. 

2.1.2 Hierarchical Clustering 

Hierarchical clustering is a widely used technique for community detection in 

social networks. Here is a general description of how hierarchical clustering works for 

a graph with N vertices and similarity matrix A: [21] 

1) Assign all N vertices to distinct community number so this would result in N 

communities for all N vertices. 

2)  Locate the two communities that are closest to each other, and then merge them 

into a single community. 

3)  Re compute the distance or similarities between the new and all other 

communities. 

4) Repeat steps 3-4 until all vertices are in the same community. 

5) The resulting hierarchical tree, called dendrogram, can be cut at a certain level 

to obtain a desired number of clusters. 

Hierarchical clustering methods can be classified into two main categories: divisive 

methods and agglomerative methods.  

2.1.2.1 Agglomerative Method 

 Agglomerative clustering is the most commonly used type of hierarchical 

clustering, where the algorithm starts by considering each data point as a separate 



  

11 
 

cluster, and iteratively merges the closest pairs of clusters based on some similarity 

measure. The result is dendrogram, a tree-based representation of the objects. The 

process of hierarchical clustering is performed in a "bottom-up" manner. That is, the 

dendrogram starts with each object being its own cluster (leaf), and then progressively 

merges clusters together to form larger clusters (nodes) until all objects are grouped 

together in one big cluster (root).  

2.1.2.2 Divisive Method 

The divisive method is an inverse of agglomerative clustering, which is also 

known as DIANA (Divise Analysis) , works in a "top-down" manner, where the 

clustering process starts with a single big cluster that contains all objects, and then the 

cluster is recursively divided into smaller clusters until each object is in its own cluster. 

In both the divisive and the agglomerative methods, the final result of merging process 

generates a dendrogram which represents the merging sequence of communities. To 

obtain a partition of network, cut the dendrogram at any level. In this network partition, 

all partition components are viewed as the final communities. See in Figure 2.2. 

  The hierarchical clustering methods face challenges in choosing the appropriate 

measurement to determine which communities should be merged in agglomerative or 

separated in divisive. These two different choices lead to different hierarchical methods 

to detect community structures. In [22], Girvan and Newman used a measurement based 

on edge betweenness in a divisive method. They work by using information about edge 

betweenness to detect community peripheries not emphasize on strong connected core 

of communities. To solve the expensive computational cost of edge betweenness in 

divisive methods, furthermore, the edge-clustering coefficient as the measurement was 

proposed by Radicchi et al. That paper introduced a divisive algorithm based on local 

quantities, which they called the "fast greedy algorithm". Fortunato et al. also 

introduced the use of information centrality as a measure for agglomerative hierarchical 

clustering methods. That work consists in finding and removing iteratively the edge 

with the highest information centrality. The next weakness is that they did not know 

where to cut the dendogram tree produced by hierarchical clustering methods. It needs 

to choose the appropriate location where to cut this dendogram. To address this issue, 

need a metric to measure quality of goodness of a network partition. When Newman 

and Girvan study their different methodologies based on edge betweenness, proposed 
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modularity [23] which is a well-known measurement. The appearance of modularity 

has been a driving force in the development of community detection methods. The 

development of modularity-based methods has led to a rich variety of optimization 

techniques for identifying community structures.   

 

Figure 2.2 Hierarchical clustering [21] 

2.1.3 Modularity Optimization  

 Optimization techniques are widely used in clustering to find the best possible 

partition or clustering of data. The quality of a clustering is often measured using a 

quality function or objective function that quantifies how well the clustering captures 

the underlying structure of the data. The goal of optimization is to find the clustering 

that maximizes or minimizes this objective function. 

The modularity function is one of the most popular quality functions used in 

community detection or clustering of networks. The modularity function assesses the 

effectiveness of dividing the network into communities by measuring its quality. 

Therefore the modularity measure difference between the original network structures 

and randomized version of the original graph. By comparing the actual network 

structure to its randomization, modularity reveals how non-random the group structure 

is. 

By revising the referenced null model with different constraints, the modularity 

has been extended to different type of networks such as weighted networks [8], directed 

networks, bipartite networks and multiplex networks. With the modularity, the 

community structure of a network can be identified by finding the optimal partition that 

maximizes the modularity. The process of finding the optimal partition involves 
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exploring the space of all possible partitions of the network. This optimal partition 

represents the grouping of nodes into communities. Modularity maximization is NP-

hard. Therefore one can realistically hope to find only suitable approximations of the 

modularity maxima and several distinct approaches has been proposed. Indeed, after it 

was introduced, it appeared to capture the fundamental nature of the problem and 

provide the solution's key. However, The problem  such high modularity due to 

randomness fluctuation of random network generated by configuration model and 

resolution limit problems further affect the practical performance of modularity. 

2.1.4 Graph Partition 

Graph Partitioning is a typical process in computer science. The graph 

partitioning approach separates the network into groups of equal size while attempting 

to minimize the number of links between them. Many graph partitioning methods, 

including the Kernighan Lin algorithm and the spectral bisection method, are based on 

iteratively dividing a graph into two separate groups. The Kernighan Lin algorithm is a 

heuristic algorithm that starts with an initial partition of the graph into two subsets and 

then iteratively swaps nodes between the two subsets in a greedy manner to improve a 

given objective function. The spectral bisection method, on the other hand, uses the 

eigenvectors and eigenvalues of the Laplace matrix of the graph to partition the graph. 

The Kernighan Lin algorithm [24] is a specialized approach to spectral bisection, which 

is another graph partitioning algorithm that is based on the spectral properties of the 

Laplacian matrix of the graph. It tries to maximize the benefit function. The benefit of 

the function is the difference between sum of the weights of the edges within the sets 

and the sum of the weights of the edges between the sets.  

 Its primary drawback is that it requires the community sizes to be predetermined 

during the initial phase. It is inconvenient for real world datasets as the results heavily 

depends on the initial size and configurations. Later, [25] is extended that is not required 

to specify the number and sizes of communities. In that extended form, a single node 

moved to other communities at a time but it also has disadvantages such as timing and 

poor detection of communities. Therefore, one of the drawbacks of graph partitioning 

methods is that they usually require to choose the number of partitions. To address this 

issue, use modularity that is a goodness metric for evaluating the partition of the graph 
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at each step. However, this is computationally expensive and cannot be feasible for 

large graphs. 

2.1.5 Genetic Algorithms 

Genetic Algorithms are a type of optimization algorithm which mimics the 

science of genetic and natural selection. In real world, individuals’ crossover their genes 

in which their genetic information are hold, and produces new offsprings. In addition, 

sometimes, a gene of an offspring can be changed or mutated. If the offspring's mutated 

chromosomes and crossover have favorable genetic traits that allow them to adapt to 

their environment, they will survive. Individuals who cannot adapt the environment will 

become extinct. In genetic algorithms, better solutions can be constructed by leveraging 

the best partial solutions from previous iterations rather than exhaustively searching the 

entire solution space. This concept is referred to as the building block hypothesis. 

Genetic algorithms employ various techniques, such as crossover, selection, and 

mutation operators, to generate optimal solutions from an initial set of solutions. A 

fitness function is used to evaluate an individual's score, which measures how well the 

individual fits the solution or the environment. After the evaluation phase, offsprings 

with best fitness score survive for next generations. The following steps are process of 

Genetic Algorithm [26]: 

1) Initially, a predetermined number of chromosomes are created, which is also 

known as the population size. Every chromosome is assessed using a cost 

function, which is commonly referred to as the fitness function. 

2) The GA generates improved genetic sequences called chromosomes, which then 

replace weaker ones in order to maintain a healthy population. This process is 

known as selection. 

3) The process of crossover produces new chromosomes with genetic material that 

is a combination of two parent chromosomes. 

4)  If a given probability met then some of the chromosomes are impacted by a 

mutation. 

5) If a given probability met, then certain chromosomes are impacted by an 

inversion. 

6) Every newly created chromosome is evaluated and adjusted according to a 

fitness function. 
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7) Go to step 2 until reaches aimed fitness score. 

After applying the fitness function to each chromosome, the selection step 

involves choosing a predetermined number of chromosomes from the solution space, 

which will be utilized in the next iteration of the algorithm. 

The primary process of the genetic algorithm is crossover, in which two chromosomes 

are randomly selected from the solution space and determine one or multiple crossover 

points on each chromosome, depending on the type of crossover selected. In one-point 

crossover, a point is selected on each chromosome and the chromosomes are then 

divided into two pieces. The pieces with the same location and size on both 

chromosomes are swapped with each other, creating new offspring chromosomes.  In 

two-point crossover, chromosomes are divided into two sections by selecting two points 

along the chromosome. The middle sections of the chromosomes are then swapped with 

each other, creating new offspring chromosomes.  

In uniform crossover, certain genes of one parent's chromosome are swapped 

with the genes of the other parent's chromosome. These specific gene swaps are known 

as crossover bits. These crossover operation is shown in Figure 2.3.  

Mutation is a random process in which a selected chromosome undergoes 

changes in the values of its genes. The occurrence of mutation is determined by a 

predefined probability function. When this probability is met, one or more genes in the 

chromosome are randomly selected and their values are altered. This change can affect 

a single gene or multiple genes at once. In Fig. 2.4 and 2.5, a mutation and inversions 

example is shown. Inversion operator is not always used in real datasets. It does not 

change the genetic information, it changes the presentation of these genetic information. 
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Figure 2.3 Crossover in genetic algorithm 

 

Figure 2.4 Mutation in genetic algorithm 

 

Figure 2.5 Inversion in genetic algorithm [27] 

2.1.6 Spectral Clustering  

 This clustering method uses the spectral properties of a graph to identify 

clusters. The eigenvalue spectrum of various graph matrices, such as the Laplacian [28] 

and adjacency matrices, are analyzed to detect densely populated eigenvalues that are 

closely spaced, along with a few outlying eigenvalues that deviate significantly from 

the cluster.  The information of the large-complex network structure, like community 

structure can be found in the eigenvectors [29] corresponding to these outliers. Spectral 

clustering is a technique that involves representing graphs in a matrix space and using 

the entries of eigenvectors as coordinates. Each element of the eigenvectors represents 

the coordinates of a vertex in a k-dimensional Euclidean space, where k is the number 

of eigenvectors used. The standard partitional clustering techniques like k-means can 

group into clusters the resulting points. However, Spectral clustering is not always 

reliable because the distinction between the eigenvalues of the eigenvectors of related 

community when the network is very sparse and the bulk is not sharp. Eigenvectors that 

correspond to eigenvalues beyond the main bulk of values may be linked to nodes with 
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a high degree of connectivity, also known as hubs, instead of being related to the 

structure of groups. 

Similarly, Eigenvectors that are related to communities tend to have eigenvalues 

that fall within the main bulk of values. When selecting eigenvectors based on whether 

their related eigenvalues are inside or outside of this range, a diverse set of information 

can be obtained that includes both community structure and other features like hubs. 

Using those eigenvectors makes community detection more difficult, sometimes 

impossible for the spectral clustering procedure. Unfortunately, many of the networks 

corresponding to the studies encountered are very sparse networks and can lead to this 

type of anomalies. Standard matrices (Laplacian, adjacency matrix, modularity matrix, 

etc.) indeed fail in sparse networks built with spectral methods from planted partition 

models before the theoretical detection limit. 

2.1.7 Statical Inference based Methods  

To tackle the community detection problems, statistical inference provides a 

powerful set of tools and is a standard approach to fit a generative network model on 

the data. The stochastic block model (SBM) [30] is by far the most widely used 

generative model of graphs with communities. The typical SBM (Stochastic Block 

Model) generated the highest possible log likelihood (not normalized) for a specific 

partition of the network into q groups. Although the model mentioned does not consider 

the variations in the degree of nodes that exist in most actual networks, resulting in an 

inaccurate depiction of the group structure in many of these networks. As a solution, 

Karrer and Newman suggested the use of the degree-corrected stochastic block model 

(DCSBM) [31]. This model kept constant degrees of vertices on average with 

introduced of additional suitable parameters. The main constraint of this method is that 

it requires the specification of the number of groups, denoted by q, before analysis, and 

this value is often not known for real-world networks. The model selection is possible 

action and it’s the best if can choose the model that best compresses the data. The degree 

of compression can be approximated by considering the total quantity of information 

required to characterize not only the adapted model but also the information required 

to characterize the model itself, which increases as a function of the number of blocks 

q.  
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A nested hierarchy of stochastic block models consists of more refined model 

selection methods and an upper level of these hierarchy serves as prior information to 

a lower level. This study lowers the resolution boundary to log n, allowing for the 

identification of smaller blocks that were previously undetectable. Other methods have 

also been suggested to determine the number of groups. Other techniques to extract the 

number of groups have been proposed. 

2.1.8 Dynamic Algorithms 

This section describes the methods that apply processes running on the graph, 

emphasizing on spin-spin interactions, random walks.  

Spin models: The Potts model is one of the most popular models in statistical 

mechanics. It presents a spins system that can exist in different states. With this idea, 

Reichardt and Bornholdt developed a method to find communities that maps the graph 

onto a zero temperature q-Potts model with nearest-neighbor interactions. In another 

work, Son et al introduced a clustering technique based on the Ferromagnetic Random 

Field Ising Model (FRFIM) [32]. 

Random walk [33]: Random walks can also be used to detect communities. If a graph 

has a strong community structure, a random walker spends a long time within a 

community due to the highly dense interior edges and large number of paths it can 

follow. Zhou measured a distance between pairs of vertices by employing random walk. 

The distance dij between i and j from this measurement is the average number of edges 

that a random walker has to cross to reach j starting from i. Later, Latapy and Pons 

proposed a different distance measurement between vertices based on random walks. 

In this proposed measurement, the distance is calculated from the probabilities that the 

random walker moves from a vertex to another in a fixed number of steps. A graph 

clustering technique is designed by Hu et al and it is based on a signaling process 

between vertices, somewhat resembling diffusion.  

2.2 Overlapping Community Detection   

There is a class of clustering algorithms for graph clustering known as 

overlapping community detection algorithms that allow nodes belonging to more than 

one community. In recent years, many researchers have studied algorithms to detect 

overlapping structures in networks. The algorithms are categorized into four 

approaches: Clique Percolation, Link Partition, Local Expansion, and Label 
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Propagation. In addition, fuzzy detection and overlapped detection on dynamic 

networks have been studied by researchers.  

2.2.1 Clique Percolation Method 

The Clique Percolation Method (CPM) [34] is a popular algorithm for 

identifying overlapping communities in complex networks. It begins by creating the 

vertices of the k-clique graph and then constructing the edges of the graph (percolating 

when two vertices in the k-clique graph have strong connections). In the resulting graph, 

each connected component of the clique graph is considered a community.  

CFinder [35] is a system to identify overlapping groups of nodes in undirected 

graphs and can visualize this clusters (groups of nodes) by the system. It also allows 

navigation of the original graph and the communities found. The search algorithm, 

CFinder uses the Clique Percolation Method to find k-clique percolation clusters. A k-

clique is a complete subgraph composed of k nodes (e.g 3 clique means a sub graph 

composed of three connected nodes). So, the concept of "adjacent cliques" is adjacent 

cliques as two cliques that share exactly k-1 nodes, meaning they have k nodes in 

common. The parameter k represents the size of the cliques, and the authors suggest 

that a value between 4 and 6 would give the richest group structure. The higher the 

value of k, the smaller the size of the denser groups.  

Greedy Clique Expansion (GCE) [36] has been developed to find accurate 

overlapping communities and obtain good performance on synthetic data. It is used to 

obtain the community C with first identifying the seeds (core nodes) by finding the 

maximum cliques and then add nodes until the inserted nodes have less fitness. A 

method, ECPM (Extended Clique Percolation Method) [37] is modeled to tackle 

problem of not discovering complete network in CPM. ECPM, firstly, detects initial 

communities by identifying nodes that are densely connected to each other. The left-

out nodes, which are not included in any initial community, are then assigned belonging 

coefficients based on their connectivity with the nodes in the initial communities. This 

allows the algorithm to extend the communities by adding nodes with the highest 

belonging coefficients. Finally, ECPM merges the most similar communities using 

Jaccard Similarity. This ensures that the resulting communities are cohesive and well-

connected.  However, the majority of algorithms that rely on CPM have a high level of 

complexity as they attempt to identify numerous small cliques in order to define 

communities. 
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2.2.2 Link Partition 

Some link partition algorithms can detect overlapped community structures 

easily the whole network. The link partition method typically involves two steps. First, 

the link graph is constructed by treating the edges as nodes and the original nodes as 

edges. Then, a graph partition algorithm is used to divide the link graph into 

communities based on the connectivity between the edges. Alternatively, some link 

community similarity functions can be used directly for clustering without a graph 

partition algorithm. 

Link clustering techniques are proposed to identify overlapping communities 

by dividing the set of links rather than the set of nodes. The line graph is used to this 

end. The primary benefit of utilizing clustering on the line graph is that it generates an 

overlapping graph of the initial interaction graph, which permits nodes to exist within 

numerous communities simultaneously. Ahn et al. [38] designed LINK and its’ basic 

idea is to divide edges instead of nodes to uncover community structure. According to 

the given pair of edges on graph, the similarity can be computed based on the Jaccard 

Index and the edges are partitioned via hierarchical clustering of edge similarity. LINK 

first performs a hard partition on the set of edges in the network, and then the result is 

transformed into the right side of the corresponding community structure of nodes. A 

node in the original graph is called overlapping if edges connected to it are put in more 

than one edge communities.  

A simple and innovative technique [39] is suggested for networks with loose 

connections that cannot be resolved by CPM. Loosely connected networks yield 

inaccurate overlapping community structures in weak-tie membership. Therefore, 

LinkSCAN is a method that involves transforming an original graph into a link-space 

graph using link-space transformation. It detects overlapped groups by applying using 

link similarity in original graph and non-overlapping community detection algorithm 

in line graph. Then they enhanced the efficiency of LinkSCAN by sampling based on 

this framework. MEME link, link based clustering algorithm [40], is developed which 

optimizes the modularity density function. It uses a weighted graph and a similarity 

function to identify densely connected links among communities. In addition link-based 

algorithms, the researchers also studied line graph theory, ensemble learning, and 

particle swarm optimization. They found that the conventional algorithm using PSO 

has a weakness that causes the creation of unnecessary small-sized communities. 
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Therefore, an efficient algorithm LEPSO (LinE graph Particle Swarm Optimization) 

[41] is proposed to address these problem. 

2.2.3 Local Expansion 

The seed expansion method generates overlapping communities by selecting 

seeds and expanding the seed by using various fitness functions, then combines the 

intermediate communities into larger, global communities. The challenge with this 

approach is to identify suitable initial seeds. In this approach, each implementation 

varies greatly depending on the various fitness functions. 

Lancichinetti et al [42] introduced Order Statistics Local Optimization Method, 

called OSLOM. It attempts to identify groups within the network that are statistically 

significant and it especially was performed in for a random network without community 

structure.  The statistical significance of a community is determined by the likelihood 

of discovering a community that possesses similar characteristics. To detect 

communities, nodes are added or removed from the community while estimating its 

statistical significance. The maximum time complexity in the worst-case scenario is O 

(n^2), where n represents the number of nodes. 

Lee et al. [36] developed GCE, Greedy Clique Expansion and it first begins by 

taking maximal cliques as a seed set. They are then expanded by greedily maximizing 

a local fitness function. Finally a check is performed to eliminate the nearly-overlap 

cliques and communities. A Clique Coverage Heuristic (CCH) is used to remove 

nearly-overlap of cliques. Each clique with more than φ proportion of its nodes is 

removed if it belongs to at least two already accepted large cliques. Also, all seeds 

within a small distance of an already accepted community are discarded.  

In [43], a seed set expansion algorithm is presented to search overlap 

communities. Although the seed set expansion algorithm is one of the most elegant 

overlapping community detection algorithms, the algorithm is computationally 

expensive for detecting the community structure in the network community analysis 

using maximal cliques as seeds. This work is performed by local expansion and 

optimization based on growth natural community. Selection of seed kernel is based on 

the distance as the k-means and spectral clustering and seed selection functions can 

determine the good seed on a node in the network. In particular, this seed set expansion 

algorithm proposes a strategy involving many computing clusters using a weighted 
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kernel k-means algorithm on the graph. This algorithm consists of filtering, seeding, 

seed set expansion, and propagation phase. The communities’ quality measurements 

such as cut, conductance and normalized cut are applied to measure the cluster quality 

in those work. 

Cut. The "cuts" of cluster Ci are determined by calculating the total weight of the edges 

between Ci and its complement, V \ Ci. In other words, the cut (Ci) is equal to the sum 

of the links between Ci and V \ Ci.          

Conductance. The conductance of a cluster is defined to be the cut divided by the least 

number of edges incident on either set Ci or V \Ci. By definition, cond(Ci) = cond(V\Ci). 

Normalized cut. The normalized cut of a cluster is defined by the cut with volume 

normalization. Notice that ncut (Ci) is always lesser than or equal to cond (Ci). In 2016 

[44], a local community was identified by first detecting a minimal cluster using the 

density function, and then identifying nodes that are closely connected to the initial 

nodes.  To find a good seed, Overlapped Community Detection Node-Weighting was 

designed by Chen and Li [45]. The algorithm has three phases: seed selection, 

community expansion and community optimization. In seed selection phase, identifies 

the seed with the highest weight of each node by the total score of all edges connected 

to its neighbors. Then the seed is expanded by adding neighbor nodes by using node 

fitness function to form a local community. Finally, if two communities have a 

significant amount of overlapping vertices, they are merged together to form larger 

clusters in order to enhance the overall quality of the community. 

2.2.4 Label Propagation Method  

Label propagation method refers to labels being propagated between nodes. It 

assigns unique label to each vertex and propagates these labels through the whole graph. 

When updating labels; if a vertex receive multiple labels, connections between them 

are broken randomly. But label propagation algorithms can only uncover disjoint 

community. 

COPRA [46] is an iterative method based on the concept of multi-label 

propagation with computational complexity close to linear. It extends the label 

propagation algorithm (LPA) [47] with the ability for every node to have multiple 

labels. The following are the steps involved in COPRA: 
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(a) Initialization: assigns a unique label to each node in the network, Ci (0) = I and 

initialize its belonging coefficient as 1, (Cx, l). 

(b) Iterative label propagation: each node updates its label and corresponding 

belonging coefficient based on its neighboring nodes. 

(c) Community division: divide all nodes that share the same label into a 

community.  

COPRA algorithm inherits some shortcomings of the original label propagation 

algorithm and can find the unstable community structure. One of the many drawbacks 

of COPRA is mostly related to the number of fixed communities’ v where is a parameter 

of the algorithm. A BMLPA [48] method was proposed to avoid this problem, but the 

researchers did not provide an implementation, which made it difficult to compare with 

this method. Another weakness of the high-variance COPRA algorithm is its non-

deterministic nature, which makes interpreting the results challenging. The randomness 

in the algorithm mainly stems from two factors. The first factor is that the initial labels 

are assigned randomly. The second factor is part of the label propagation process, where 

if multiple labels have the same maximum belonging coefficient below the threshold, 

COPRA retains one of them randomly. 

To avoid detecting only disjoint community, SLPA [49] is developed and it can 

find overlapped communities because receives multiple label. The algorithm starts with 

each node in the network being assigned a unique label. Then, for each iteration of the 

algorithm, a random listener node is selected, and its neighbors send their labels to it. 

The listener node then chooses one of the received labels based on a listener rule and 

adds it to its set of labels. In last process, a threshold is utilized for post-processing to 

construct overlapping communities. Some LPA-based algorithms require setting 

parameters as prior knowledge and consequently, instability of community structure 

can be faced and less accuracy. In 2018, Label Propagation Algorithm with Neighbor 

Node Influence (LPANNI) [50] is developed to overcome that weakness. When 

propagate the label of it, use label update strategy that considers both the influence of 

neighbor nodes and the historical preferences of each node for certain labels. The label 

update strategy combines ideas from COPRA and DLPA which can detect overlap and 

reduce complexity, respectively. LPANNI calculates the node importance and order by 

ascending to find core node and then it detects overlapping community structures by 

adopting fixed label propagation sequence corresponding node importance.  
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2.2.5 Dynamic Networks 

The aforementioned community detection efforts are mainly focused on the 

community structure of a static network. Most real world social networks are 

fundamentally dynamic and rapidly growing interaction among the social media. 

Community structures evolve over time and network communities are also very 

dynamic. But, there has been little research on analyzing these dynamic communities. 

This is due to two main reasons. Firstly, it is still unclear how to identify the underlying 

communities in static networks. Secondly, it is difficult to obtain network data with 

timestamps. Recent methods also aimed at finding static dynamic communities are 

described. 

Anita Zakrzewska [51] presented a dynamic seed set expansion algorithm, 

which identifies communities within a network that may change over time. By 

incrementally updating the community as the underlying graph changes, the algorithm 

can maintain a local community and adapt to new information without having to 

recompute the entire community structure. That algorithm focuses on finding local 

community via given seed set and this dynamic algorithm produces high-quality 

communities that are similar to those found when using a standard static algorithm. 

An extension algorithm of SLPA, SLPA Dynamic (SLPAD) [52] was improved 

and it can handle dynamic networks. The basic idea behind SLPAD is to update the 

community structure of SLPA at each timestamp based on the edge changes that have 

occurred since the previous timestamp. Specifically, for each new edge, the algorithm 

updates the corresponding node's memory and recalculates the node's label by 

considering the labels of its neighbouring nodes. However, SLPAD only takes into 

account updates that involve changes to the edges in a network and not changes to the 

node [53]. In 2018, a detection strategy that uses agents to identify overlaps was 

modelled. This strategy examines the network and updates the communities 

accordingly in response to any changes in the network. In order to detect communities, 

iterative assignments technique is used for assigning each node to communities based 

on attribute similarity. One of the strengths of this approach is that it enables all types 

of community operations, such as birth, death, growth, contraction, merge, and split. 

OLCPM (OnLine Clique Percolation) [54] is a hybrid technique and it is designed on 

idea of both label propagation and clique percolation methods. That research presented 

online version of the CPM algorithm (called OCPM) that builds on the original CPM 



  

25 
 

to detect the core nodes of communities in real time and aims to analyse the network’s 

dynamic behaviour that may result from insertion or removal of nodes. As post-

processing based label propagation, OLCPM is defined in OCPM’s generated 

communities to discover the peripheral nodes. 

Most of the existing work that deals with the detection of dynamic communities 

focuses on snapshots of networks. This approach may not capture the mechanisms of 

community evolution and may be unable to accurately predict the evolution of 

communities. In cyberspace, the evolution of explicit communities provides us with 

valuable data to analyze the mechanisms of community evolution and design algorithms 

that can accurately estimate the evolution of these virtual communities. 

2.2.6 Fuzzy Detection 

Fuzzy detection approach evaluates the association strength between all pairs of 

nodes and communities. Ding et al. [55] expanded on the correlation-propagation 

clustering algorithm to identify overlapped communities and developed a method. This 

method uses representative exemplars to identify the clusters. First, the nodes are 

represented as data points in the Euclidean space using the commute time kernel, which 

is a function of the inverse Laplacian. The cosine distance is applied to measure 

similarity between nodes is then measured by the cosine distance. In SSDE (Sampled 

Spectral Distance Embedding) [56], the network is initially transformed into a d-

dimensional space using spectral clustering. Next, a Gaussian Mixture Model (GMM) 

trained using Expectation-Maximization algorithm. The number of communities is 

determined when log-likelihood increase of adding a cluster is not significantly higher 

than adding a cluster to random data around the same space.  

Non-negative Matrix Factorization (NMF) is a technique used in machine 

learning for extracting features and reducing dimensionality, which has also been 

applied to community detection. Zhang et al. [57] substituted the feature vector 

commonly employed in Non-negative Matrix Factorization (NMF) with the diffusion 

kernel, which is a mathematical function derived from the Laplacian of the network. 

Later Zarei et al. [58] showed that defining the matrix with the correlation matrix of 

Laplican columns gives the better results. Recently, Yang and Leskovec [59] developed 

BIGCLAM (Cluster Affiliation Model for Big Networks) based on the Non-negative 

Matrix Factorisation approach. McDavid et al. [60] introduced Model-based 
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Overlapping Seed Expansion (MOSES) and it is a fuzzy-based detection algorithm. 

MOSES constructs a modified OSBM (Overlapping Stochastic Block Modeling). 

Initially, the edges are chosen randomly and each edge represents an initial community. 

After that, by optimizing a global fitness function, they are greedily expanding 

communities. Finally it periodically removes the entire community to improve the 

fitness function. After the expansion of the edges, nodes are eliminated from the 

communities they belong to and added to different communities to improve the fitness 

function. The time complexity of MOSES is O (mn2). 

2.3 Related Works 

Lancichinetti et al. made significant efforts to uncover both the overlapping 

structure and hierarchical community structure of complex networks, paving the way 

for future research in this area [13]. They tried to uncover the overlapping communities 

in the network by considering the basic concept of the local optimization of a fitness 

function. The steps of LFM (Local Fitness Method) are as follows: 

1) As initialization, pick a node at random as the original member of initial 

community G0,  

2) The fitness of all neighbor nodes to G0 are computed according to the f fitness 

evaluation function. 

3) The neighbor with the largest fitness is added to community, yielding a local 

community G’; 

4)  Recalculate fitness of each node in G’. 

5) If a node leads to negative fitness, it is removed from G1, yield a new community 

G”. 

6) If step (5) is occurred, repeat from step (4), otherwise repeat from step (2). 

This process stops when all nodes in step (2) have positive fitness. Then the algorithm 

continues to select other node not including G1. 

 The process is repeated until all nodes in the network have been assigned to at 

least one community. The approach is able to identify the hierarchical relationship 

among these overlapping communities around a specific node. The parameter of fitness 

function is range [0.6-1.6] and they tested their algorithm by tuning the parameter 

within that range. A remaining problem is that it cannot be guaranteed that the hierarchy 
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of all overlapping communities in the network will be detected, due to the random 

selection of seed nodes. 

 Shen et al., 2009 [14] addressed the challenge of detecting overlapping and 

hierarchical community structures in a graph. They introduced a method called 

"EAGLE" (agglomerative hierarchical clustering based on maximal clique) that utilizes 

maximal cliques as fundamental components to identify the community structure of the 

graph. The presence of intersections among distinct maximal cliques enables the 

agglomerative hierarchical clustering process to identify the overlaps between 

communities and the hierarchical relationships among these overlapped communities. 

That work proposed a measurement EQ called modularity, to evaluate the quality of a 

cover of network. By directly optimizing the proposed measure, the algorithm can then 

find the overlapping community structure. What is more, optimizing the new 

measurement EQ on the original network to identify the overlapped structure is similar 

to optimizing the standard modularity on the maximal clique network. Therefore, any 

approach that relies on optimizing modularity can be applied directly to detect the 

overlapped community structure. 

 Wang Min et al. [15] improved LFM and EAGLE to solve problems of 

inefficiently and accurately detection at the same time of before algorithms. It was 

proposed by combining fitness function optimization and community similarity, which 

can uncover both overlapping and hierarchical community structure of complex 

networks. The basic idea is to use fitness function optimization at the bottom of 

hierarchy division to identify efficiently and accurately the underlying community 

structure which is with overlaps. However, still remain the problems of random seed 

selection and couldn’t find community structures for complex networks.  

 Therefore, for a large scale complex network,  proposed an algorithm with lower 

time complexity and higher classification accuracy for detecting overlapping 

community structure based on LFM algorithm in 2014 [16]. It applied the fitness 

function for the local optimization. The first step of this method is to choose maximum 

degree node and its some special adjacent nodes i.e. fitness function satisfies the 

condition. After considering as initial community these nodes, expand the initial 

community by repeatedly adding qualified nodes to it. Then remove those nodes whose 

node fitness are negative from the community. This algorithm set 1 as parameter value 

on different datasets. 
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 In 2017 [61], the result of traditional LFM algorithm is full of instability because 

of randomly selection of seed nodes. What’s more, the accuracy of LFM decreases 

apparently in network with fuzzing community structure. In order to solve the 

problems, LFMs which improved LFM algorithms is designed and also considered 

weighted information. It used random walk method to select seed nodes to avoid the 

instability of LFM. Then, with cosine similarity to calculate vertex similarity, weight 

information in network was fully used.  This work redefined fitness function based on 

similarity matrix. This algorithm is validated on LFR benchmarks and real networks 

with parameter setting 0.8 to 1.2. But it is found effectively performed on random 

benchmarks. However, these algorithms tested with various parameters and differs 

implementation results which depends on parameter setting. 

Havemann et al [62] greedily expands natural communities of seeds until the 

whole graph is covered by using a local fitness function. The analysis of communities' 

hierarchy is achieved by determining the levels of resolution at which communities 

develop, instead of relying on numerical values obtained through the implementation 

of various resolution levels. In this work, As nodes cannot remain isolated when the 

fitness function defined by Lancichinetti et al [13] is applied, the researchers modified 

the formula f (G, ∞) by increasing the numerator by 1. This analytical procedure is not 

only more accurate but also faster than its numerical alternatives such as GCE and LFM. 

The important resolution levels can be determined by finding intervals where large 

changes of the resolution don’t result to growth of communities. 

The local first discovery method, DEMON (Democratic Estimate of Modular 

Organization of a Network) [63] is a node-centric bottom-up overlapping community 

search algorithm. It exploits ego-network structures and overlapping label propagation 

to identify individual-level scale communities that consequently aggregate into group-

level ones. Another overlap detection algorithm [42], OSLOM (Order Statistics Local 

Optimization Method) is based on optimizing the fitness function by local search 

through adding or removing nodes from the cluster. Each cluster is defined as a single 

vertex and new vertices are joined if the corresponding clusters have common edges. 

The weights of the new edges are set proportional to the number of the edges between 

the original clusters. As summarize, firstly find clusters via local search to maximize 

the fitness function and iterate until convergence. Then group or split clusters based on 

their internal structure. Finally consider clusters as vertices and iteratively build a 
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hierarchical structure of clusters. It can work on small networks as well as large 

networks. However, the limitation of this method is occurrence of homeless nodes.  

A method of clique-based, K-clique percolation [64] is an overlapping 

community discovery algorithm that extracts discrete structures consisting of 

overlapping cliques from complex networks. Some aspects of k-clique percolation are 

computationally challenging in practice although this is conceptually simple and 

elegantly expressed using clique graphs. It is developed to address poorly performance 

on networks with the kind of spreading overlapping community structure that are 

mostly occurred in many real world social networks. The method considers several 

computational aspects about the problem of percolating structures in large complex 

networks. They are still fundamentally limited by the need for cliques to experiment 

with other cliques sharing certain nodes, but do not percolate. These clique based 

algorithms occurred NP hard problems and remained problems for large scale network 

with million nodes and edges. 

Therefore, Y. Jaewon developed BigClam [59] and it constructed on models of 

nodes’ affiliation to communities that maximize an objective function using non-

negative matrix factorization. Non-negative factor describes the degree of membership 

of that node to the community and each node-community pair is assigned a non-

negative factor. Then, the probability of an edge between two nodes is modeled as a 

function of shared community ties. The intuition behind this model is that when they 

share more communities, neighbors are more likely. BigClam set community c to -1 

the number of communities to detect; mc and xc to 5 and 100 respectively to find the 

minimum and maximum number of communities. These are the default values proposed 

by the researchers. However, this algorithm and algorithms such as link clustering and 

k-clique percolation required global information of whole network and it is difficult to 

attain this information for large scale networks. Therefore, local approaches have been 

increasingly interested in community detection research areas. 

In 2015 [36], Y.Xing et.al proposed a novel algorithm based on local approach. 

Many local community discovering algorithms begin with single vertex and uncover 

local community corresponding to the vertex by using an optimized function. Then 

local clusters or communities are integrated according to the integration criteria. But, 

the algorithms start from any node and cannot get the expected results. Because of this 

weakness, OCDLCE (Overlapping Community Detection algorithm by Local 

Community Expansion) was proposed. It starts with each edge of the network and sets 
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the pair of nodes connected to the link as the initial node set. It uses the M function as 

a standard to obtain local communities by adding nodes and extending the local 

community to obtain the final structure. The OCDLCE algorithm has three main steps:  

searching local community, community merging and refining community.  

Because of importance of stating node in local discovery approach, the 

researchers have explored seeding algorithms. Moradi et.al [65] proposed a novel 

seeding algorithm that is parameter free and utilizes only the local structure of the 

network to identify good core nodes (seeds) spreading over the entire network. In order 

to find that seeds, algorithm first calculates similarity indices from local link estimation 

techniques to assign a similarity score to each node, and then uses a biased graph 

coloring algorithm to enhance the seed selection. The proposed biased graph coloring 

algorithm enhance seed selection because it favors the nodes with high similarity 

scores. The implementation of this task on large-scale real-world networks 

demonstrates its ability to choose good seeds, which are then expanded into high-

quality overlapping communities that encompass the vast majority of nodes in the 

network. This is achieved through the use of a personalized PageRank-based 

community detection algorithm.  

R. V. Belfin [66] identified the most important nodes in the community using a 

parallel superior seed set selection (P4S: degree centrality, engine value centrality, local 

clustering coefficient and page rank centrality) algorithm. According to ExMax
τ   , the 

maximum expansion limit t, he identified superior seeds would be expanded by their 

neighborhood till it reaches the next seed. The distance matrix is applied to compute 

distance between seeds and the vertices that are not chosen in the first iteration will be 

taken and added to its neighbors’ community. In case of more than one neighbor, the 

node with the highest degree will insert its non-member node to its community. As the 

algorithm extends using the neighborhood, it will form the closely knit group around 

the seed nodes. The goodness of clusters is evaluated by inter cluster density, intra 

cluster density and clustering coefficient. The density ρ of graph can be evaluated to 

attain the cohesiveness of the edges in a graph. The density of the sub graph is induced 

by the cluster as the internal or inter-cluster density. The outer or inter-cluster density 

of clustering is defined as the proportion of inter-cluster edges to the maximum number 

of inter-cluster edges feasible. Moreover, these researchers also tested by applying other 

various centrality measures and using them to find overlapping communities. That 

model find the superior seed set by applying the local clustering coefficient, page rank 
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centrality, degree centrality and eigen vector centrality [67]. The algorithm makes 

costly due to the use of betweenness and closeness centrality. The system used set 

operators and a threshold value τ to limit the number of seeds. After determine seed set, 

the next steps are follows: 

(a) Find the distance between seeds by preparing distance matrix S (g) dist. 

(b) Define the expansion distance Exdist by estimating min(S (g) dist). 

(c) The Superior Seeds S (g) will be expanded according to the Exdist hops.  

(d) At that time, an initial local community will be formed and some unmapped 

nodes U (g) also will be comprised in the input network.  

(e) Determine a distance matrix U (g) dist to manipulate the distance between S 

(g) and U (g).  

(f) Added Each U (g) nodes to the closest seed by referring the U (g) dist.  

(g) Finally, added all nodes from the input graph G to various communities.  

Unfortunately, the use of shortest path algorithm in the seed expansion model makes 

the process expensive for graphs with large scale although convenient for graphs with 

a small number of edges. Moreover, many overlapping detection algorithms have the 

problems such as excessive overlap, predefined parameters and no guarantee of stability 

of multiple runs.  

Recently, appeared algorithms conceptualized on neighborhood similarity when 

expanding communities to identify local communities. Long Chen [68] proposed the 

method of calculating the node degree of membership in order to address the issue like 

parameters. . It detects overlapping communities with local optimal expansion cohesion 

idea. Firstly, the important node is considered on clustering coefficient and builds the 

initial core community consisting of the highest importance node and its neighbor 

nodes. Secondly, node attribution degree is used to expand the core community until 

the termination condition of the algorithm was satisfied. This node attribution degree is 

designed on jaccard similarity and traditional similarity ignores the direct edge between 

nodes in this method. To improve quality of community, they took into account both 

the internal and external links of the community. They evaluated the community's 

quality by calculating the ratio of the number of edges within the community to the total 

number of edges, including those inside and outside the community. However, it 
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verified on only small real world networks. Next, overlapped objects detection 

algorithm by clustering coefficient and common neighbor similarity addressed for large 

scale networks [69]. After that algorithm identify the initial communities, the expansion 

of the initial community is carried out by using a new weighted belonging degree. The 

selection of communities is based on the local clustering coefficient and the degree of 

similarity in common neighbors among their members. In this work, nodes are added 

to community if weighted belonging degree is greater than threshold. This evaluation 

concept is used for forming initial community and extending community.  

Instead of taking node for seed, [70] designed an idea which take k clique as 

core community. The underlying assumption of the proposed algorithm is that cliques 

serve as the core of communities, since cliques provide a representation of the local 

characteristics of a community. The algorithm enhances the search efficiency by 

selecting a single node with maximum density as the initial community, thereby 

avoiding the creation of a large number of near-duplicate community structures. The k 

clique-based methodology meets NP hard problem. Moreover, it is inconvenient for 

sparse networks and possible for densely connected networks. 

A. Choumane et.al [71] modeled a core expansion algorithm without computing 

modularity evaluation to detect communities. The whole procedure is completely 

independent from modularity and automatically detect the core of each possible 

community in the network. Then, iteratively expand each core by adding the nodes to 

form the final communities and used neighborhood overlapped measure in expansion 

process. 

Compared to global methods, local community detection methods can identify 

communities within complex networks without relying on integral structural 

information. But, existing methods for overlapping community detection may have 

quality and stability deficiencies. For performing effectively and efficiently in complex 

networks, therefore, a new local community detection algorithm is modeled, called 

InfoNode [72]. This algorithm is a local community detection method that uses internal 

force between nodes. In that research, firstly, try to identify core members (seeds) of 

communities by using local degree central nodes and Jaccard index. Thus the method 

ensures that the selected seeds are central nodes within communities. Secondly, the 

fitness function extends the pre-selection of the node with the maximum degree among 

the seeds at each time. Finally, make a process to expand the top k nodes with the best 
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performance from a pre-existing process, using a fitness function that considers the 

internal force between nodes. The objective of this method is to generate high-quality 

communities within the network. 

The force that exists between two nodes is known as the internal force. The 

fitness function based on internal force is used to group nodes together based on their 

likelihood of forming a community. The more strongly connected nodes are with each 

other, the more likely they are to be grouped together into a community by the fitness 

function. Parameter  ∞ is the same value of LFM and it is set to 0.8 to 1.2. However, 

that algorithm is for only disjoint communities.  

Another local community detection method, the Label Propagation Algorithm 

(LPA) is one of the most widely used methods for detecting both disjointed and 

overlapped communities in a network. It is noted that the LPA algorithm is simple and 

fast and has three phases: initialization, propagation and filtering phase. In initialization, 

basic LPA, initially each node is assigned a unique label also called an identifier. This 

label identifies the community to which this node belongs. Then calculate the node 

importance of all vertices of the graph. If communities overlap, a node in the network 

can belong to more than one community. Therefore, to detect overlapping communities 

using LPA, the algorithm allows a node to contain multiple community identifiers. 

Specifically, a set of pairs (c, b) is associated with each node x, where c is a community 

identifier and b is the confidence coefficient of its direct neighbor. This coefficient b 

represents the degree of belonging of node x to community c and the importance of a 

node that sends this label. As propagation, to update node label in iteration t, this 

process is based on its neighbors’ labels in iteration (t − 1) and the updated labels in the 

same iteration t. However, LPA has a major disadvantage in its instability, which is 

caused by the random update process used by the algorithm.  

Therefore, a new algorithm, called Node Importance based Label Propagation 

Algorithm (NI-LPA) [73] was proposed to sort the nodes in a fixed order to solve the 

LPA instability problem, avoid the random selection of the node to be processed first 

and allow the algorithm to converge to a stable result.  At propagation level of that 

algorithm, two cases are possible: 

 In the first case: if multiple nodes have assigned the same community label c to 

the node v with different determined coefficients, the algorithm will sum up 
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those coefficients to determine the overall degree of belonging of node v to 

community c.  

 Second case: if the node v does not contain the label c among the set of labels 

already established, then, the couple (c, NI(c)) is added to its set.  

After the propagation phase, each node contains a list of pairs (Label, Belonging 

coefficient) which represent the community labels assigned to the node and their 

corresponding degree of belonging coefficients. The algorithm filters out labels that are 

considered useless because their coefficients are very low compared to the other labels 

assigned to the same node. This filtering is done by deleting the pairs with belonging 

coefficients less than some threshold value. The specific threshold value chosen for this 

filtering process is 0.4, which is explained as the value below which a coefficient is 

considered of minor importance in this work. 

For both weighted and unweighted graphs, K. Berahmand [74] proposed a 

community detection algorithm that involves detecting and expanding core nodes by 

considering their membership in a node and utilizing the strong community definition 

for graphs with weights. A subgraph C is considered a strong community if each node 

in C has more edges within C than edges with any other subgraph. Based on this 

definition, a node is said to belong to a strong community C if it has more edges with 

the subset of nodes in C (∞) than with nodes in other communities (ꞵ). If ∞≥ꞵ, then 

∞≥∞+ꞵ≥ 0.5, which indicates that a node is considered a member of a strong 

community only when the proportion of edges it shares within the community 

compared to all its edges (the total of edges it shares within the community and with 

nodes in other communities) is higher than 0.5. 

For weighted graphs, ∞ represents the sum of a node's edge weights with other 

nodes within the community C, while represents the sum of a node's edge weights with 

nodes outside of community C. ∞+ꞵ represents the total strength of the node. Based on 

this membership-degree function, a node is added in the initial subset if the ratio of the 

total weight of its edges with the initial subset compared to the total weight of all its 

edges exceeds γ. It can be seen that in detecting communities, the more accurate the 

weights of edges detected based on the node similarity, the more precise the local 

algorithm will be. Furthermore, the algorithm can identify the role of nodes within the 

network, such as core or outlier nodes, which can provide valuable insights into the 

structure and function of the network.  
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Most community detection algorithms face scalability challenges when applied 

to large, complex networks containing millions of nodes. To solve this issue, an 

effective method called the OCLN (local expansion-based Overlapping Community 

detection algorithm using Local Neighborhood information) has been proposed [75] in 

2020. This method is different from most existing local-expansion methods and other 

methods (use all neighbors to get a community) like link community and label 

propagation in that it only considers key neighbors for community expansion. This 

reduces the number of nodes evaluated during expansion, making the method more 

efficient and scalable for large scale networks containing millions of nodes. OCLN is 

developed for overlapping-community detection in large-scale complex networks. In 

OCLN, the proposed expansion method iteratively expands a community until no 

neighbor can be added. A measure for evaluating the probability of a node belonging 

to a community (the belonging coefficient) is also proposed for removing misidentified 

nodes during the expansions. Instead of all nodes in the neighborhood, OCLN only uses 

some key neighbors in each expansion to achieve fast community expansion. This 

resolves the issue of the high cost of expanding process for existing local methods that 

are used to uncover overlapping communities. 

Many community detection approaches face the difficulties such as there is no 

one-size-fits-all solution that can provide high-quality communities with high ground 

truth correspondence in reasonable execution time for all types of networks. In 2021, 

The GREESE [76] algorithm generates communities that have a high modularity and 

greater accuracy in less computational time. It proposed a coupled-seed expansion 

method for uncovering overlapped communities.  This process consists of four phases: 

seeding, expanding, propagation and merging phase. Firstly, Specifically, construct a 

coupled-seed  s = {vi, vj }by choosing a node and its most similar neighbor  by C(vi, vj 

) = |neighbors(vi ) ∩ neighbors(vj )|. For expanding phase, this coupled-seed is expanded 

by using a fitness function that improves the quality of local communities’ 

identification. In the propagation phase, if no coupled seed is generated due to two 

nodes have no common neighbors, assign each of these nodes to the elementary group 

that contains the highest number of their neighbors. As final phase, communities that 

share more than half of their members are joined together and then communities that 

share at least one third of the nodes in the smallest community are also merged. This 

work specified the threshold value of fitness from 1 to 0.5 for expansion process. This 

threshold determines the neighbors to belong to the local community. 
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Recently, L. Yan et al proposed an effective algorithm, named Two Expansions 

of Seeds (TES) [77]. TES used the topological feature of network nodes to find the 

local maximum nodes as the seeds which are based on the gravitational degree. The 

greater the gravitational degree of the node, the greater its influence and the stronger its 

information transmission ability in the network is, which makes the community 

discovery robust. After the seeds are identified using the gravitational degree, the 

algorithm uses a greedy strategy based on a fitness function to expand the communities. 

To improve the accuracy of community discovery, TES also employs a community 

cleaning strategy that avoid negative fitness. After that, the gravitational degree is 

implied again to expand the communities for a second time. This ensures that all nodes 

in the network belong to at least one community. Once the communities are formed, 

the next step is to merge similar communities. This is done by calculating the distance 

between communities, which is a measure of how similar or dissimilar the communities 

are. Communities that are too similar are merged together to obtain a less redundant 

community structure. If the distance between communities C1 and C2 is greater than 

threshold of the distance parameter, communities C1 and C2 are merged into one 

community since they overlap excessively.  

In recent years, most researchers have applied on LFM’s fitness function to 

evaluate node’s quality in determining if a node should be belong to specific community 

However, the algorithms still face issues about instability of communities’ structure 

because of community’s size controlling parameter of LFM’s fitness evaluation 

function. Thus, researchers have designed models using their created various quality 

evaluation function with good seed selection techniques in this research area. But, 

although some algorithms proposed evaluation method to avoid parameter influences 

for adding nodes to the appropriate community, some can perform effectively on small 

networks and some can perform on only large scale network.  
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CHAPTER (3) 

METHODOLOGIES FOR OVERLAPPING COMMUNITY 

DETECTION 

 

 This chapter introduces definition of community detection, their challenges and 

applied areas. As the background theory, local expansion strategy which is an 

overlapping community detection methodology is described with example calculation 

and the similarity formulas to find the similarity between pairs of nodes are also 

described. 

3.1 Community 

 The most basic question for community discovery is “what is a community”.  

Generally, network communities are groups of nodes and these nodes within a group 

are more connected to each other than to the rest part of the network. In social networks, 

detecting communities is done by identify groups of nodes that are more similar to each 

other than to nodes outside the group. That is, it is expected that there will be more 

connections between nodes within a community than between nodes in different 

communities. When the nodes of a network can be arranged to form a group such that 

the nodes are said to have connected internally, then that network is said to have a 

community structure. Figure 3.1 illustrates a community structure. Community’s 

definition can be can be broadly classified into two categories based on the various 

perspectives of definition to a community: local and global. 

3.1.1 Local Definition 

Local definitions of a community are determined by the people who live in that 

community and their shared experiences, values, and traditions. Specifically, a group 

of nodes is referred to a community by providing some required properties of the group 

such as nodes’ similarity in terms of their attributes or behaviors. A community has also 

some constraints to the group such as such as the minimum number of connections that 

nodes within the group must have with each other, or the maximum number of 

connections they can have with nodes outside the group. Local definitions of a 

community can be further classified into two categories based on the links considered 

in the definition of community.  
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 Figure 3.1 A community 

The first category emphasizes the internal structure of a group of nodes, without 

considering their connections to the entire network. Generally, a community is a group 

of nodes that meets specific criteria and is not part of any other group that satisfies those 

same criteria. One way to define a community is by using the concept of a "clique", 

which is a subgraph in which every node is directly connected to every other node. 

Cliques have the highest possible link density of any subgraph, and so a community 

can be defined as a maximal clique. However, the requirement of a maximal clique is 

often too rigid to be a practical definition of a community, especially for larger 

networks. To combat this problem, Palla et al. suggested using clique percolation as a 

way to define communities. According to the n-clique-based definition of community, 

any two nodes within a community must be within a distance of no more than n, 

meaning there exists a path connecting them consisting of no more than n edges. 

However, this definition does not make any guarantees that a community’ diameter has 

no more than n edges because there may be nodes within the community that are not 

directly connected by an edge, but can still reach each other through a longer path that 

goes outside the community.  

The second category, strong and weak community definitions take into account 

both the internal edges of community and the edges between the community and the 

rest part of network. Strong community emphasizes the internal cohesion of the 

community, with each node being strongly connected to other nodes within the same 

community. In contrast, a weak community is characterized by the total degree of the 

nodes within the community being greater than the number of links that connect the 

community to the rest of the network. 

3.1.2 Global Definition 

Global definitions to community takes into account both the internal structure 

of a group of nodes and their connections to the rest of the network. One representative 
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definition is in terms of network partition, which involves dividing the network into 

non-overlapping groups of nodes or communities based on the strength of their 

connections. To evaluate the quality of a network partition, various measurements are 

used. Once optimal partition of the network can be found based on one of these 

measurements each component of the partition corresponds to a community. The 

modularity definition, proposed by Girvan and Newman, is one of the most well-known 

global definitions of community. They used the configuration model as a null model to 

generate reference networks that have similar degree distributions as the real network, 

but where the connections are randomized. They then compared the modularity score 

of the real network partition to the average modularity score of many randomized 

networks. By using modularity, it is possible to detect the community structure by 

optimizing the modularity to identify the best possible partition. The proposal of 

modularity has been a significant driver of research in community detection and has 

greatly propelled the development of this field. 

Reichardt and Bornholdt proposed an extended modularity based on the Potts 

model [78]. In addition, Rosvall and Bergstrom [79] proposed a different approach to 

community detection based on the concept of information theory. That approach uses 

the expected description length of a random walk on networks to identify community 

structure. Moreover, several probabilistic methods have been proposed to model the 

network data and detect communities.  

The global definitions are accepted more widely than local because it lies in that 

Global definitions of community in complex networks focus on studying the network 

structure as a whole and aim to identify salient structural regularities that correspond to 

communities [80]. 

3.2 Community Detection 

Community detection or identification of network structures is the process of 

partitioning a network or graph into clusters or communities where nodes within the 

same cluster are more closely interconnected with each other than they are with nodes 

in other clusters. A network or graph is a collection of nodes or vertices that are 

connected to each other by edges or links. Nodes represent individual entities in the 

network, while edges represent the relationships or connections between those entities. 

A graph can be either directed, meaning the edges have a direction or flow, or 
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undirected, meaning the edges have no direction. The degree of a node in a graph is the 

number of edges connected to that node. Graph mining, also known as complex network 

analysis or network science, refers to the process of analyzing the structure and 

properties of a graph or network to extract useful information from it.  This may involve 

exploring the graph to understand its topological properties, identifying important 

nodes or communities within the graph. Community detection or clustering is one 

subtopic within graph mining that involves identifying groups of nodes within the graph 

that are more closely connected to each other than to nodes in other groups.  

Mathematically, when considering a graph G(V;E) where V represents the set 

of nodes and E represents the set of edges, community detection approaches aim to 

partition the node set V of a graph G(V;E) into k disjoint communities or clusters, 

denoted by C = {c1; c2; -----; ck}, where each node belongs to exactly one community. 

In other words, the communities are non-overlapping and exhaustive, meaning that 

every node in the graph belongs to exactly one community. The size of each community 

is denoted by Ni, and the total number of nodes in the graph is (vi ϵ cj , 𝑁 = ∑ 𝑁𝑖
𝑘
𝑖=1  ). 

Figure 3.2 shows a basic visualization of the community structures present 

within a graph. At that figure, nodes and edges make up a graph, with the various colors 

representing different communities. It is clear from the visualization that there are five 

distinct communities, each with its own unique color. If examine each community, can 

observe that the nodes within each community are strongly interconnected, while there 

are only a small number of edges linking nodes across different communities. The goal 

of community detection is to partition the nodes in a graph into groups, or communities, 

such that the nodes within each community are more densely connected to each other 

than to nodes in other communities.  

 

Figure 3.2 Community structure (same community with same color) 
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This can be achieved through either disjoint community detection, where each 

node belongs to exactly one community, or overlapping community detection, where a 

node can belong to multiple communities. Besides the basic definitions of concepts 

presented earlier, Table1.1 provides a comprehensive glossary of terminology for graph 

representation and community notations used in this dissertation. 

Table 3.1 Glossary of terminology 

Terms Definitions 

G(V,E) Graph G with node set V and edge set E. 

C C = {c1; c2; -----; ck} is the discovered community partition  

cj  the jth community belong to C 

N Total number of node in graph 

vi Each node within a community 

 

3.3 Types of Community Structures 

Community structures can be disjoint or overlapping, but overlapping 

community structures are often observed in real-life networks.

 

 

 

 

 (c) Hierarchical communities 

Figure 3.3 Three types of community structure 

 (a) Disjoint communities  (b) Overlapping    communities 
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For example, a professor collaborates with researchers in different fields. Also one 

person can be a part of multiple groups at a time like group of family members, friends 

circle and clubs. In that cases, thus, nodes in a network have multiple roles or 

affiliations, and overlapping community detection can capture this complexity. 

Overlapping community detection is a challenging task, as it requires identifying 

groups of nodes that share multiple connections and have multiple roles or affiliations 

within the network. In addition to overlapping community structures, networks often 

exhibit a hierarchical organization, with communities embedded within other 

communities. These types of structures are shown in Figure 3.3.

3.4 Types of Graphs 

Graphs can be of various types, each with its own characteristics and challenges. 

In recent years, with the increasing availability of data and advancements in graph 

mining techniques, researchers have been working with more complex graphs derived 

from real-world scenarios. Particularly, the following section presents five primary 

categories of graphs that are commonly encountered in research studies and have strong 

ties to real-world situations. These categories include heterogeneous and multi-layer 

graphs, sparse graphs, dynamic graphs, large graphs, and attribute graphs. Social 

networks are a type of attribute graph where nodes represent individuals and edges 

represent social connections. However, there are other types of networks that exhibit 

similar characteristics, such as collaboration networks, where nodes represent 

researchers and edges represent collaborations, or transportation networks, where nodes 

represent cities or transportation hubs and edges represent transportation routes. 

3.4.1 Heterogeneous and Multi-layer Graph 

The researches related to community detection in heterogeneous and multi-layer 

graphs [81] is summarized collectively. Because they both share the feature of having 

multiple types of nodes or edges, while heterogeneous graphs and multi-layer graphs 

may have different characteristics. 

While a multi-layer graph is made up of several single-layer graphs, a single-

layer graph consists of only one type of node/edge. Multi-layer graphs can capture 

different aspects of a complex system or phenomenon, such as different time periods, 

locations, or contexts. Detecting communities across multiple layers can reveal 
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important patterns or trends that may not be apparent in individual layers. For example, 

in a social network, different layers may represent different types of interactions, such 

as friendship, collaboration, or communication. Community detection across these 

layers can help identify groups of people with similar interests or roles.  

In heterogeneous graphs, different types of nodes or edges may represent 

different entities or relationships, and detecting communities across these different 

types of nodes or edges can provide valuable insights. The researchers have introduced 

a graph structure known as "metapath" [82]. This structure represents a path that 

connects different types of nodes with distinct edges. It can be considered a universal 

structure that represents the semantics of a path. For example, a metapath in a 

collaboration graph can be “Organization-(affiliated with) → Author-(written by) → 

Paper-(publish at) → Venue” and where it includes four node types (“Author”, “Venue” 

“Organization” and “Paper”) and authors can collaborate with each other. Thus, there 

are also self-relationship in author node and four types of edges (“affiliated with”, 

“written by”, “publish at” and “co-author”). In this study, specifically, metapath 

selection has been combined with user-guided clustering, which involves using prior 

information about a small set of nodes and their communities. Community detection in 

such a graph can help identify groups of authors working in similar areas or venues, or 

highlight important papers or venues in a field.  

Figure 3.4 demonstrates the distinction between a heterogeneous graph and a 

multi-layer graph. In reality, a multi-layer graph can be viewed as a specific type of 

heterogeneous graph. 

 

Figure 3.4(a) Heterogeneous graph  (b) Multi-layer graph 
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3.4.2 Sparse Graph 

Sparse graphs are frequently encountered in graph mining as opposed to dense 

graphs. But, the distinction between dense and sparse graphs is not always clear-cut and 

depends on the specific application or problem being considered. A graph is considered 

dense if the number of edges is |E| = O (|V|²) and the maximum number of edges in a 

directed graph is |V| (|V| - 1)/2, whereas a graph is sparse if it has a number of edges 

that is |E| = O (|V|). Understanding sparse graph community detection is very important 

in many real-world scenarios because most large-scale networks, such as social 

networks, biological networks, and communication networks, are naturally sparse and 

incomplete. Traditional spectral clustering methods may not be the most effective 

approach. For this reason, one alternative approach that has been proposed is to use 

non-backtracking random walks on the graph to construct a refined matrix, which 

captures higher-order structural information and can help overcome the limitations of 

spectral clustering on Laplacian or original adjacency matrix.  

The researcher, Atieh [83] proposed a novel approach for community detection 

in sparse graphs by combining a perturbation strategy and link prediction. The basic 

idea of their approach is to make dense graph from the original sparse graph by 

completing partial open triangles, which are triplets of nodes that are connected by only 

two edges instead of three. The completion of open triangles is based on link prediction, 

which predicts the existence of missing edges in the graph. Through the application of 

this enhancement method, it is possible to obtain improved community partitions from 

denser graphs. 

3.4.3 Dynamic Graph 

Dynamic graphs, also known as temporal graphs or time-varying graphs, are a 

type of graph that captures the evolution of networks over time. In dynamic graphs, the 

structure of the graph can change over time due to the addition or removal of nodes and 

edges, or changes in the properties of the nodes and edges themselves. One important 

consequence of this dynamic nature is that the communities or clusters of nodes within 

the graph can also change over time. This is known as community evolution, and it is a 

fundamental aspect of many real-world networks, such as social networks, 
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communication networks, and transportation networks. Figure 3.5 illustrates a dynamic 

community detection framework. 

The DYNMOGA (Dynamic Multi-Objective Genetic Algorithm) model [84] is a 

genetic algorithm-based approach for detecting communities in dynamic graphs. It uses 

a multi-objective optimization approach that considers two objectives: accuracy and 

smoothness in the temporal graph at each timestamp. Additionally, it attempts to 

minimize the cost of transformation between two community partition results at 

consecutive timestamps. Then [85] proposes a prior & posterior stochastic block model 

(PPSBM) and combines a static model for individual graph snapshots with a temporal 

model to track the evolution of community memberships over time. To track the 

evolution of community memberships over time, the PPSBM uses an extended Kalman 

filter (EKF) [86], which is a recursive Bayesian estimation technique that updates the 

probability distribution over community memberships as new graph snapshots become 

available. The EKF utilizes the parameters learned from the previous snapshot to 

optimize the current community memberships, while also updating the parameters 

based on the current snapshot.  

Like PPSBM, the SBTM [87] model extends the original SBM by adding a 

temporal component, which models the evolution of community memberships over 

time. In the SBTM model, the evolution of the network is assumed to follow a hidden 

Markov model, where the state of the network at each time step is determined by the 

community memberships of the nodes at that time step, and the transition between states 

is influenced by the presence or absence of edges between nodes in adjacent time steps 

 

 

Figure 3.5 Temporal networks consisting of five time frames 
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3.4.4 Large Graph 

Large-scale graphs are becoming increasingly common in various fields. As the 

size of these graphs can be in the millions or even billions of nodes and edges, 

traditional community detection algorithms may not be scalable enough to handle such 

large-scale data. In order to handle community detection in large-scale graphs, 

researchers have developed a range of algorithms and techniques that are designed to 

be more efficient and scalable.  

 A local searching model [88] appears to be a graph clustering algorithm that 

uses random walks to detect communities within a given graph. The algorithm is 

designed to run in approximately linear time. To deal with the challenge of working 

with large graphs, the authors of the paper propose a novel approach that involves 

sparsifying the graph and removing unimportant edges while preserving the main graph 

structure. This reduces the computational complexity of the algorithm while still 

maintaining the overall connectivity of the graph. To efficiently prune the graph by 

retaining only the top ranked edges for each node, the local sparsification algorithm is 

designed. The edges are ranked according to the Jaccard similarity between the current 

node and the other endpoint node. Additionally, a threshold is established to ensure that 

the pruned graph remains connected. 

The GEM model [89] is a graph clustering algorithm that is designed 

specifically for large-scale social networks. The algorithm includes three main steps. 

The first step of the GEM model involves extracting the main skeleton from the original 

graph. In the second step, the GEM model applies a weighted k-means algorithm, along 

with an improved seeding strategy, to partition the filtered skeleton graph into 

communities. As the last step propagates the results of the skeleton graph clustering 

back to the entire graph. Specifically, the remaining nodes in the original graph are 

assigned to the communities generated in step two using a breadth first search (BFS) 

approach. This ensures that every node from the graph is allocated to a community, 

even if they were not included in the skeleton graph. 

3.5 Challenges 

There are various views of community in network analysis, each of which can 

be beneficial under different conditions. Here are some potential benefits of each view: 
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3.5.1 Cut Based View 

Cut-based view is a way of defining a community in a network or graph by 

identifying groups of nodes with minimal connections to nodes outside the group. The 

internal structure of the group is not taken into account. This means that a group can be 

defined as a community even if it has weak internal connections or is not tightly 

interconnected [90]. This approach is utilized in the graph partitioning algorithm 

developed by Kernighan and Lin. To use the Kernighan-Lin algorithm, the user must 

specify the number and size of the groups they want to form. It is to find a partition that 

minimizes the cost function, which is defined as the difference between the total weight 

of edges within a group and the total weight of edges between groups. As Challenges 

of this view 

 The internal connections within a group are not taken into account. 

 There is no means of prioritizing groups with densely connected internal nodes 

group. 

 The number of communities must be predetermined. 

3.5.2 Clustering View 

The goal of clustering is to maximize the internal similarity or density of objects 

within a cluster. The basic concept is to identify the groups of nodes in a network that 

are densely connected with each other and sparsely connected with nodes outside the 

group. Advantage of this approach is that the number of groups or clusters does not 

need to be predefined. The Newman-Girvan algorithm, also known as the Girvan-

Newman algorithm, is a popular method for community detection or clustering in 

complex networks. It is based on the idea of edge and iteratively remove edges with 

high betweenness. The challenges are:  

 A clear stopping criterion, such as Modularity, must be established. 

 The utilization of Modularity parameters transforms the problem into an 

optimization problem. 

 Determining an optimal clustering algorithm is challenging. 

3.5.3 Stochastic Block Model View 

Unlike the clustering view, the SBM does not aim to maximize internal density 

or minimize external links. Instead, it uses the concept of structural equivalence to 
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identify groups of nodes that connect to nodes in other communities in a similar way. 

Structural equivalence is a notion from social network analysis that refers to the 

similarity of the roles or positions of nodes in a network. The advantage of the SBM is 

that it can handle a wide range of network structures, including bipartite graphs, 

directed networks, and weighted networks. It can also be used to generate benchmark 

datasets for evaluating community detection algorithms. However, the SBM requires 

more complex calculations and optimization methods than other approaches. 

3.5.4 Dynamic Nature of Communities an Issue 

Most of the work in community detection has been focused on static networks. 

However, many real-world networks, such as social media networks, are dynamic and 

constantly evolving, with nodes and edges appearing and disappearing over time. In 

dynamic networks, the communities or clusters of nodes can also change over time, and 

a dynamic community can be represented by an ordered pair of (nodes, periods), where 

nodes represent the clusters of nodes during any given time period, and periods 

represent the time duration. As dynamic communities evolve over time, different 

scenarios arise during the detection of these communities. These are described below 

and illustrated in the Figure 3.6. 

 Growth: New nodes can be added to an existing community over time, leading to an 

increase in the size of the community. 

 Contraction: Some nodes can leave a community over time, leading to a decrease in 

the size of the community. 

 Merging: Different communities can merge over time, resulting in a larger 

community with a new set of nodes and edges. 

 Splitting: One community can split into two or more communities over time, resulting 

in smaller communities.  

 Birth: A new community can emerge that did not exist in earlier time intervals. 

 Death: A community can completely disappear at any time. 

 Resurgence: A community may remain dormant for a certain period and then 

reappear as if nothing happened. 

Challenges encountered in the research of dynamic communities include: 

1) Most of the existing community detection algorithms were designed for static 

networks and do not take into account the dynamic nature of communities. 
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Figure 3.6 Communities evolution in dynamic networks 

1) Defining dynamic communities is more complex than defining static 

communities because dynamic communities are not just nodes and edges that 

remain constant over time. 

2) To obtain better results, multiple snapshots of the community must be 

considered and evaluated. 

To address those challenges, one approach to dynamic community detection is to use 

traditional algorithms for static community detection in each graph, and then compare 

the communities across different time steps to identify changes in the community 

structure over time. In addition to challenges of the above view involved, overlapping 

community structure became an issue. 

3.5.5 Communities Overlap an Issue 

In the early days of community detection research, it was common to assume 

that communities in networks are disjoint. However, many real-world networks, 

including social networks, exhibit community structures that are not strictly disjoint. 

Instead, nodes can belong to multiple communities simultaneously, which is known as 

overlapping community structure. In real world, it's common for an individual to belong 
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to more than one community. Therefore, the consideration of the "Overlap" 

characteristic of communities cannot be neglected. 

 3.6 Application Areas  

Community detection is a cross-disciplinary field that has attracted researchers 

from various domains. As a result, there have been numerous studies on community 

detection, each with its own focus, assumptions, and limitations [91]. 

3.6.1 Ecommerce 

E-commerce platforms enable users to buy and sell goods and services, as well 

as transfer funds and data over a network. Depending on the type of transaction, e-

commerce can be divided into different categories such as B2B (business-to-business), 

B2C (business-to-consumer), and C2C (consumer-to-consumer). Social media 

platforms, on the other hand, enable users to connect with each other based on common 

interests and interact online. Users may form communities based on their interests and 

online behavior, creating a network of like-minded individuals. These communities can 

be leveraged for e-commerce purposes by detecting online groups and marketing 

products or services to them in a targeted and efficient manner. 

3.6.2 Criminology 

Community detection can be used to identify criminal user groups on social 

media platforms, including groups that are made up of both real person accounts and 

bot accounts. These groups may use social media to coordinate illegal activities, 

disseminate criminal or terrorist propaganda, and recruit new members. The authors 

[92] used community detection to identify communities within criminal networks, 

which can help law enforcement agencies to better understand the structure and 

dynamics of these networks. Pinheiro's study focused on identifying fraud events on 

telecommunication networks by using community detection to analyze customer 

behavior and detect outliers that may indicate fraudulent activity. This can help to 

prevent and investigate fraud in the telecommunications industry. Similarly, 

Waskiewicz's study used community detection to detect terrorist group activities on 

online social networks. By analyzing the connections between users and identifying 
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communities that exhibit suspicious behavior, this approach can help to identify and 

prevent terrorist activities online [93]. 

3.6.3 Public Health 

Community detection is used in the health domain for various purposes, 

including detecting disease outbreaks and identifying subgroups of patients with similar 

characteristics or conditions. Salathe and Jones studied the impact of community 

structure on the spread of infectious diseases. In cancer research, community detection 

has been used to identify different types of tumors and to group patients with similar 

tumor characteristics. 

Bechtel et al. [94] proposed a community-based approach for lung cancer 

detection, which used community detection to identify groups of patients with similar 

gene expression patterns and clinical features. Haq and Wang also used community 

detection to analyze genomic datasets for 12 different types of cancer. By identifying 

subgroups of patients with similar genetic profiles, they were able to predict survival 

rates and identify the distribution of tumor types across these communities.  

3.6.4 Politics 

Community detection can be used in political science to understand the power 

relations between individual persons and political parties. With the growth of social 

media platforms like Twitter, Facebook, Instagram, etc., there is a lot of information 

available related to different political parties and their communities. Researchers can 

use community detection to understand the thinking and preferences of different 

political communities, and how these communities are connected to each other. This 

can be particularly useful for political parties to understand the public sentiment, and 

to craft their messages and strategies accordingly. However, fake news can also spread 

rapidly on social media, and political parties may use these platforms to spread 

misinformation. The political community plays a vital role to recommend and connect 

to the people of our country.  

3.6.5 Smart Advertising and Targeted Marketing 

Community detection can be used by companies to analyze customer behavior 

and group them into different segments based on their preferences, interests, and 



  

52 

 

 

purchasing patterns. By doing so, companies can tailor their marketing strategies to 

specific customer groups. Additionally, community detection can help companies 

identify influencers within their customer base, who can then be targeted to spread the 

word about the company's products or services to their followers. 

3.6.6 Recommendation Systems 

By identifying communities of users who have similar preferences, 

recommendation systems can suggest items (e.g., books, movies, songs, products) that 

a user may be interested in. For example, if a user is part of a community of fans of a 

particular author, a recommendation system can suggest other books by the same author 

or books in the same genre. Similarly, if a user is part of a community of fans of a 

particular band, a recommendation system can suggest other songs or albums by the 

same band or by similar artists [95].  

3.6.7 Social Network Analysis 

Community detection is a useful tool for understanding the structure of complex 

networks, including social networks. Social Network Analysis (SNA) is a field that 

focuses on the study of social networks, their properties, and their impacts on 

individuals and society. Community detection is a key technique used in SNA to 

identify groups or clusters of nodes (individuals or entities) and identify subgroups 

within a larger community of users on social media platforms like Facebook, Twitter, 

or LinkedIn. These subgroups might be based on shared interests, demographic 

characteristics, or other factors, and can provide insights into how people interact 

online. 

3.7 Local Community Detection  

 Local community detection algorithms aim to identify a set of nodes within a 

larger network that are densely connected and contain the given query nodes. It can be 

seen as a personalized task because the focus is on a specific subset of nodes rather than 

the entire network. Global community detection algorithms aim to partition the entire 

network into disjoint communities, which can be a time-consuming process, especially 

for large networks. Although there are numerous algorithms designed for detecting 

global communities in networks, most research on community detection has 
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concentrated on local algorithms. In many real-world scenarios, the focus is on local 

communities rather than global ones. For example, social networking applications such 

as Facebook and WeChat suggest potential friends to a user by analyzing their local 

community. This is because individuals who belong to the same social circles as the 

user are more likely to have similar interests and preferences [9]. Therefore, local 

community detection algorithms are preferable to global community detection ones in 

such scenarios, as they can provide more targeted and personalized recommendations 

or interventions based on the properties of the local community. 

3.7.1 Local Expansion Approach 

Local expansion is another type of overlapping community detection algorithm 

which is based on nodes. The main idea of local expansion is to choose a seed 

community and then expand from it by using various fitness function. The following 

example explains local expansion approach by using fitness evaluation function based 

on inter degree and outer degree. In this strategy, the implementation results differ by 

relying on fitness function that researcher used. 

Example 

This example utilizes a random graph and describes the step by step process of 

local expansion approach on that random graph of Figure 3.7. 

Step1: Select Seeds 

For this step, choose the nodes {1}, {5}, and {8} randomly from the graph's 

nodes as the seed set. These nodes are shown in grey color for illustration. 

 

 

 

 

 

 

Figure 3.7 Example random graph 
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Step2: Expand the seed nodes  

In this step, each seed is expanded based on fitness function. Before expansion, 

suggest distinct local communities for each seed node. Thus, this example locates three 

local community structure for each seed. 

Expansion of seed {5} 

Node 5 is expanded by maximizing a local fitness function, win/ (win + wout), 

through the addition or removal of members. In applied fitness function, win is edges 

among members and win + wout is edges among the union of members and the neighbors. 

Members mean vertices selected to be members of a community. The neighbors refer 

to the adjacent vertices of the seed. In this case, 3, 4 and 6 are adjacent vertices of 5. 

Therefore, local structure of the following Figure 3.8 will be evaluated by using local 

fitness function to decide whether possible to add or remove members to explore a 

better community.  

 

 

 

 

 

Figure 3.8 Local structure including seed {5} 

At the beginning, a community have only one member in Figure 3.9 and there 

are no edges among the members, win=0 because the initiating member of local 

structure is node 5. The black edges contribute to wout, wout= 5. Fitness is 0/5=0.  

 

 

 

 

 

 

  

Figure 3.9 A community with a member 
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Upon the addition of vertex 4 to the local structure, the value of win becomes 1 

(as there is only one edge between vertex 5 and 4 within the local structure), while wout= 

5. The resulting fitness value is calculated as 1/5, which is equal to 0.2. As a result, the 

fitness value improves, and Figure 3.10 is shown by adding vertex 4 to the structure 

with certainty. The neighbors of the local structure are 3 and 6. 

 

 

  

 

 

 

 

Figure 3.10 A community with two members 

If vertex 3 is added to the local structure, and its neighbors are {6, 2, 1}, then 

the value of win = 3 and wout is 5. As a result, the resulting fitness value is 3/8, which is 

equal to 0.4. Since the fitness value increases, vertex 3 is added to the structure. 

Therefore, the members of this structure are {3, 4, 5} in Figure 3.11. 

 

 

 

 

 

 

Figure 3.11 A community with three members 

Subsequently, if vertex 6 is added to the structure and its neighbors are 1, 2, 7, 

and 8, the value of win becomes 5, while wout is 6. Thus, the resulting fitness value is 

calculated as 5/11, which is equal to 0.45. Consequently, the members of the 

community structure are {3, 4, 5, 6}. It is shown in Figure 3.12. 

 

 

9 

8 

7 

6 

5 

4 

3 

2 

1 

9 

8 

7 

6 

5 

4 

3 

2 

1 



  

56 

 

 

 

 

 

 

 

 

Figure 3.12 A community with four members 

When vertex 2 is added, the neighbors of local structure are 1, 7, 8. In that case, 

win= 6, wout=5, fitness is 6/11=0.55. Thus, vertex 2 is surely added to the structure in 

Figure 3.13 and the members are {2, 3, 4, 5, 6}.  

 

 

 

 

 

Figure 3.13 A community with five members 

For vertex 1, win=8, wout=3, fitness=8/11=0.7. Therefore, 1 is inserted to the 

community structure and members are {1, 2, 3, 4, 5, 6}. The neighbors are 7, 8 and all 

links related to the local structure are shown in Figure 3.14 with thick black lines. 

 

 

 

 

 

Figure 3.14 A community with six members 
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This strategy checks whether fitness value decreased or increased if withdrawal 

nodes from current local community structure. If removing node cannot decrease the 

quality value, that node should be removed from the community. Otherwise, that node 

is retained in the community.  

 

 

 

 

 

 Figure 3.15 A community with remaining members after remove vertex 6  

When try to remove vertex 6 from structure, local fitness is improved because 

win=6, wout=2, fitness= 6/8=0.75. Consequently, removing 6 is not decreased the fitness, 

thus vertex 6 is taken out from local structure according to Figure 3.15. Then any 

members from the structure are not removed because their fitness decrease if remove 

them. This stage reaches the end of the seed expansion for the seed {5}. Therefore, the 

members of local community structure for seed {5} are {1, 2, 3, 4, 5}. 

Seed Expansion result for seed {5} 

By following the above procedure, the final local community of seed {5} is {1, 

2, 3, 4, and 5}. 

 

 

 

 

 

 

Figure 3.16 A local community after seed {5} expansion process 
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The remaining next seeds {1} and {8} are also extended in the same way as the 

expansion process of seed node 5.  

Seed Expansion result for seed {1} 

The final local community of seed {1} is {1, 2, 3} and it can be seen in the 

Figure 3.17 by following with above procedure. 

 

 

 

 

 

Figure 3.17 A local community after seed {1} expansion process 

Seed Expansion result for seed {8} 

The local community structure for seed {8} is {4, 5, 6, 7, 8, 9} and it is shown 

in Figure 3.18. 

 

 

 

 

  

Figure 3.18 A local community after seed {8} expansion process 

Step3: Merge Intermediate Communities 

This step merges the all local community structures for seed {5}, {1} and {8}. When 

merged that three local structures, the overlapped communities and overlapped nodes 
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are occurred in the following figure. With three overlapped communities, the 

overlapping nodes 1, 2, 3, 4, 5 are identified. 

 

 

 

 

 

 

Figure 3.19 Overlapping communities with three local communities 

3.7.2 Fitness Functions 

In local community detection, the local communities are discovered by fitness 

quality optimization as well as modularity based optimization for extending seeds. 

Typical local modularities, R and M, were proposed by Clauset [96], Luo et al. [97] 

respectively and popular fitness function is proposed by Lancichinetti [13]. 

M function 

Lou et al. proposed a local modularity metric M for detecting communities in 

complex networks. The local modularity metric M is defined as follows: 

M =
𝑀𝑖𝑛

𝑀𝑜𝑢𝑡
=

1

2
∑ 𝐴𝑖𝑗𝜃(𝑖,𝑗)𝑖𝑗

∑ 𝐴𝑖𝑗𝜆(𝑖,𝑗)𝑖𝑗
             (3.1) 

Min represents the number of edges within a community C that have both 

endpoints in that community and Mout represents the number of edges that have one 

endpoint in community C and the other endpoint outside of community C. If both nodes 

i and j belong to community C, θ (i, j) = 1, otherwise, θ (i, j) = 0. A (i,j) = 1 when just 

only one of nodes i and j belongs to community C and else λ(i, j) = 0. A high value of 

M indicates a strong community structure in the network, where the communities have 
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more internal edges than expected by chance, and fewer external edges than expected 

by chance. 

R function 

The local community detection algorithm proposed by Clauset, which is based 

on the local modularity R. This algorithm defines a local community as a subset of 

nodes that form a subgraph, where the nodes on the boundary have more connections 

with nodes within the subgraph than with nodes outside of it. The local modularity R is 

defined as: 

𝑅 =
𝐵𝑖𝑛

𝐵𝑖𝑛+𝐵𝑜𝑢𝑡
             (3.2) 

Bin denotes the number of edges whose endpoints are in the boundary part of the local 

community, and Bout denotes the number of edges connecting the boundary nodes with 

the nodes outside the community. However, the algorithm needs to define the size of 

the community, in advance.  

Clauset's local community detection algorithm and the LWP method both 

concentrate on a specific portion of the subgraph to detect local communities. Equation 

(3.2) emphasizes only on the boundary nodes of the local communities, whereas 

equation (3.1) focuses only on the community center. As a result, both algorithms can 

only detect a portion of the actual local community. 

F function 

Lancichinetti et.al proposed a local modularity based algorithm for community 

detection that maximizes the fitness function fG [13]: 

𝑓𝐺 =
𝑘𝑖𝑛

𝐺

(𝑘𝑖𝑛
𝐺 +𝑘𝑜𝑢𝑡

𝐺 )∝
              (3.3) 

Where 𝑘𝑖𝑛
𝐺  𝑎𝑛𝑑 𝑘𝑜𝑢𝑡

𝐺  represent the sum of the weights of the edges that are internal to 

the community G and external to the community G, respectively. The parameter α 

controls the size of the communities and is usually set to a value between 0 and 1. The 

fitness of a node i with respect to a community G is defined as the change in the fitness 

of the community G when node i is added to or removed from the community, i.e. 𝑓𝐺
𝑖 =
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𝑓𝐺+𝑖 − 𝑓𝐺−𝑖. In this formula, if adding node i to community G increases the fitness of 

the community, then the fitness 𝑓𝐺+𝑖 is positive and node i is included in the community. 

If removing node i from community G increases the fitness of the community, then 𝑓𝐺−𝑖 

is negative and node i is removed from the community. Where 𝑓𝐺
𝑖> 0, means the value 

of fitness function increased with the node 𝑖 joining community 𝐺, and thus node 𝑖 

should be included in community 𝐺; conversely, where 𝑓𝐺 𝑖 < 0, means the point 𝑖 

should be removed from 𝐺.  

3.8 Similarity and Distance Measures 

Similarity or distance measures are core components used by distance-based 

clustering algorithms to cluster similar data points into the same clusters, while 

dissimilar or distant data points are placed into different clusters [98]. Generally 

speaking, the purpose of cluster analysis is to organize data into different groups: data 

in the same group are highly similar while those from different groups are dissimilarity. 

In graph clustering, popular Jaccard and Consine similarity measure to compute the 

similarity between communities or clusters among the following measurements. 

3.8.1 Jaccard Similarity 

The Jaccard coefficient is a metric that quantifies the similarity between two sets 

and is commonly used in graph analysis to measure the similarity of the neighborhoods 

of two vertices. It is computed as the size of the intersection of the neighborhoods of U 

and V divided by the size of the union of the neighborhoods of U and V. The Jaccard 

coefficient ranges from 0 to 1, where 0 indicates no similarity and 1 indicates complete 

similarity between the neighborhoods of the two vertices. 

The Jaccard coefficient is also sometimes referred to as the Tanimoto 

coefficient. In the context of text documents, the Jaccard coefficient can be utilized to 

evaluate the similarity of two documents based on the presence or absence of certain 

words. It is computed as the size of the intersection of the sets of words present in both 

documents divided by the size of the union of the sets of words present in either 

document. Similarly, in graph clustering, the Jaccard coefficient can be applied to 

evaluate the similarity between clusters or nodes. The Jaccard Coefficient’s formal 

definition when it is expressed over a bit vector can be given by 
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J(u,v)=
| N(u) ∩ N(v) |

| N(u) ∪ N(v) |
                    (3.4) 

The Jaccard similarity is defined as the size of the intersection of the 

neighborhoods of two vertices divided by the size of the union of their neighborhoods. 

N (u), N (v) represents neighbors of vertex u and v, respectively. 𝑁(𝑢) ∩ 𝑁(𝑣) refers 

to the set of nodes that are neighbors of both u and v. 𝑁(𝑢) ∪ 𝑁(𝑣) represents the total 

number of neighboring nodes that have at least one adjacent vertex with both nodes u 

and v. A larger value of the Jaccard similarity indicates a higher degree of similarity 

between the nodes, and a smaller value indicates a lower degree of similarity. Figure 

3.7 shows the example graph to compute similarity. 

When compute the Jaccard for vertex A and vertex D, the intersection of their 

neighborhoods is the single node, vertex B. The size of the union is two, nodes C and 

B. Note that despite that both A and D are neighbors of B, count only B as one node in 

the union. This makes the Jaccard value 1/2. 

 

 

Figure 3.20 Small graph with four vertices 

3.8.2 Cosine Similarity 

Cosine similarity is a widely used method for measuring similarity between two 

term vectors, which are commonly used to represent documents in text mining. It 

calculates the cosine of the angle between two vectors in a high-dimensional space. The 

cosine similarity score between two document term vectors ranges from 0 to 1, where 

0 indicates that the two vectors are completely dissimilar, and 1 indicates that they are 

identical. A higher cosine similarity score between two document term vectors indicates 

that they have more words or terms in common. 
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3.8.3 Euclidean Distance 

Euclidean distance is a distance metric that measures the straight-line distance 

between two points in Euclidean space. In the context of text clustering, Euclidean 

distance is commonly used to measure the distance between two document term 

vectors. The Euclidean distance measure is a special case of Minkowski distance 

measure. Summation of all such squared lengths are taken, next, square root of the same 

is computed. 

3.8.4 Minkowski Distance 

Minkowski distance is a generalization of both Euclidean distance and 

Manhattan distance. Minkowski distance can perform well when all the datasets are 

compact and isolated. However, the statement that large-set attributes will dominate the 

others if the dataset is not able to fulfil this condition is not necessarily true.  

3.8.5 Manhattan Distance 

The Manhattan distance is a measure of distance between two points in a grid-

like layout, such as a chessboard, where the distance is calculated as the sum of the 

absolute differences of their coordinates. It is called the Taxicab distance or City Block 

distance. Manhattan distance then refers to the distance between two vectors if they 

could only move right angles. There is no diagonal movement involved in calculating 

the distance. The Manhattan distance is a useful metric for measuring distance between 

points in a grid-like layout. But it may be less intuitive than the Euclidean distance in 

high-dimensional spaces. 

3.9 Evaluation metrics 

 Evaluating the quality of a detected cover is a vital task, and there are various 

metrics available to measure the similarity of partitions, which can be extended to 

covers as well. Performance metrics are used to evaluate the quality of a detected cover 

by comparing it with a reference cover. Performance Metrics are metrics which measure 

the similarity of a detected cover with a reference cover. These evaluations can be 

measured by ground truth and no ground truth for both overlapped and disjoint 

communities. However, researchers extended some traditional evaluation metrics to 
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measure quality of overlapped communities. That metrics are explained in the 

following and that are used in these experiments.  

3.9.1 Performance Evaluation without Ground Truth 

When measuring performance without ground truth information, modularity 

(Q) is popular evaluation metric. Naturally, when decomposes a graph, the nodes within 

a group densely connected with each other and the nodes between the groups sparsely 

connected. Therefore the connectivity within communities are measured by intra 

density and contraction. The symbol descriptions of evaluation metrics are shown in 

table 3.2. 

Overlapped modularity (Qov): The modularity of overlap is an extension of the 

classical modularity and the edge-based extension of modularity is given by: 

𝑄𝑜𝑣 =
1

2𝑚
∑ ∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]

1

𝑂𝑖𝑂𝑗
𝑖,𝑗∈𝑐𝑐                        (3.5) 

A higher Qov reflects a good community detection result. 

IntraDensity: It measures connectivity within a community. Meanwhile, it represents 

density of community and how much densely connected nodes within a community. If 

high intradensity, the result is better. 

𝐼𝑛𝑡𝑟𝑎𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
2∗|𝐸𝑐

𝑖𝑛|

|c|∗(|c|−1)
              (3.6) 

Contraction: It measures the average number of edges per node inside the community 

c. The larger the value of Contraction is, the better the community quality is. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
2∗|𝐸𝑐

𝑖𝑛|

|c|
              (3.7) 

 

 

Table 3.2 Symbol descriptions 

Symbol Description 

m the total number of edges in the network 

Oi , Oj the number of communities of the vertex i and j belong to respectively 
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ki, kj the degree of i and j respectively 

Aij the element of adjacency matrix of the network. 

|Ec
in| the total number of edges in Community c 

|Ec
out| the total number of edges on the boundary of Community c 

 

3.9.2 Performance Evaluation with Ground Truth 

The Normalized Mutual Information (NMI) and Omega index are widely used 

in evaluation metrics with known data to measure good partition. 

Normalize Mutual Information: The NMI was first introduced by Fred et al. as a 

measure of clustering quality and later extended to covers by Lancichinetti et al. [13]. 

The NMI measures the mutual information between the detected cover and the 

reference cover and normalizes it by the average entropy of the two covers. The 

resulting value is bounded between 0 and 1, where 0 indicates no similarity, and 1 

indicates perfect similarity. Lancichinetti defined as follows:  

𝐸𝑁𝑀𝐼(𝑋|𝑌) = 1 −
1

2
[

H(𝑋|𝑌)

𝐻(𝑋)
+

H(Y|X)

𝐻(𝑌)
]                        (3.8) 

H (X|Y) denotes the normalized conditional entropy for cluster X with respect to cluster 

Y. The variables X and Y are stochastic variables that are associated with the partitions 

C and C’, respectively. H (X|Y) is 

 H (X|Y) = H(X, Y)-H(Y)             (3.9) 

H(X, Y) = ∑ ∑ 𝑙𝑜𝑔
𝑋𝑖∩𝑌𝑗

𝑁𝑗∈𝑌 + 𝑙𝑜𝑔
𝑋𝑖−(𝑋𝑖∩𝑌𝑗)

𝑁𝑖∈𝑋 + 𝑙𝑜𝑔
𝑌𝑗−(𝑋𝑖∩𝑌𝑗)

𝑁
+ 𝑙𝑜𝑔

𝑁−(𝑋𝑖∪𝑌𝑗)

𝑁
(3.10) 

H (X) = ∑ 𝑙𝑜𝑔
𝑋𝑖

𝑁
+ log (1 −

𝑋𝑖

𝑁
)𝑖∈𝑋           (3.11) 

  H (Y) = ∑ 𝑙𝑜𝑔
𝑌𝑖

𝑁
+ log (1 −

𝑌𝑖

𝑁
)𝑖∈𝑌             (3.12) 

Omega: The Omega Index [99] is a similarity measure that was introduced by Collins 

et al. as a way to evaluate the quality of overlapping community detection methods. It 

extends the Adjusted Rand Index (ARI) to handle overlapping communities. The 

Omega Index is based on pairs of nodes that are clustered in the exact same number of 
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communities in both covers. Let K1 and K2 be the number of communities in covers 

C1 and C2, respectively. It defines as 

𝜔(𝐶1, 𝐶2) =
𝜔𝑢(𝐶1,𝐶2)−𝜔𝑒(𝐶1,𝐶2)

1−𝜔𝑒(𝐶1,𝐶2)
                      (3.13) 

The unadjusted Omega index 𝜔𝑢 is defined as 

𝜔𝑢(𝐶1, 𝐶2) =
1

𝑀
∑ |𝑡𝑗(𝐶1)| ∩ |𝑡𝑗(𝐶2)|

max (𝐾1,𝐾2)
𝑗=0          (3.14)  

M equals to n (n− 1)/2 represents the number of pairs of node, and tj (C) is the set of 

pairs appear exactly j times in a cover C. 

The expected Omega index in the null model ωe is given by 

𝜔𝑒(𝐶1, 𝐶2) =
1

𝑀2
∑ |𝑡𝑗(𝐶1)| ∩ |𝑡𝑗(𝐶2)|

max (𝐾1,𝐾2)
𝑗=0          (3.15) 

The value of the Omega Index is highest at 1, which indicates perfect matching of the 

two covers. When there is no overlap, the Omega index reduces to the ARI. 

F1-measure: This system is implemented by F1 measure at community level and was 

used in [100]. The F1 score is a common metric used to evaluate the quality of 

clustering or classification algorithms, and it combines both precision and recall into a 

single value. For each community identified by the algorithm, finds the best-matching 

reference community (i.e., the reference community that has the highest F1 score with 

the identified community).  Precision is the fraction of the detected covers that match 

known complexes and it is defined as: 

P (C, C’)  =
(𝐶∩𝐶′)

2
/(𝐶∗𝐶′ )

|𝐶|
              (3.16) 

Recall represents the fraction of known complexes that match detected covers and it is 

denoted as: 

R (C, C’)  =
(𝐶∩𝐶′)

2
/(𝐶∗𝐶′ )

|𝐶′|
              (3.17) 

 C means local community that given by the algorithm and C’ indicates the actual 

community. F1 is defined as: 

𝐹_𝑠𝑐𝑜𝑟𝑒 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
          (3.18) 
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3.10 Chapter Summary 

This chapter discusses basic concepts of the community detection, types of 

community structure, their challenges and application areas. The categories of 

overlapping community detection algorithms have already been described in the 

literature review of chapter 2. Therefore this chapter discusses an overlapping 

community detection approach, local expansion. It is also explained with the example 

calculation by applying random graph. Moreover, the similarity evaluation methods to 

find similarity between pairs of nodes are discussed and measurements to evaluate 

quality of overlapped community structure are also described. 
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CHAPTER (4) 

SYSTEM ARCHITECTURE OF THE PROPOSED METHOD 

 

This chapter describes the proposed system architecture, methodologies and 

algorithms for detection the overlapping communities.  There are three phases in the 

proposed system design: seed identification, community expansion for local 

community detection and overlapped node identification. For first phase, seed 

identification algorithm is used and proposed community expansion algorithm is 

applied in second phase. Finally, overlapping vertices are detected by merging the 

derived local communities. 

4.1 Methodologies 

The graphs can be used to model many types of relations and process dynamics 

in computer science, physical, biological and social systems. A graph is a structure that 

comprises a set of vertices and a set of edges. So a graph is modelled to define the 

elements of two sets: vertices and edges as G (V, E) and social network is represented 

as graph model. Consider an undirected and unweighted graph, denoted as G (V, E). 

Here, V represents the set of vertices in G, and E represents the set of edges. Let C = 

{C1, C2, ..., Cn} denote the network community structure, which is a collection of n 

subgraphs where Ci ϵ C, Ci is the set of V. The notation descriptions of this chapter are 

listed in Table 4.1. 

4.1.1 Extended Jaccard Similarity 

In section 8 of chapter 3, traditional jaccard similarity equation (3.4) is 

described. This similarity is applied in finding similarity between pair of nodes to 

calculate the weight of each node for identifying seed.  

In traditional jaccard index, their jaccard similarity index will be 1 if two 

datasets share the exact same members. Conversely, if they have no members in 

common, their similarity will be 0. Therefore, if there are no shared neighbors between 

pairs of vertices, the value of similarity can be zero. However, the seed node serves as 

the central node within a community, and its selection depends on the node's strength 

(i.e., the seed is a core node that is closely connected to many other nodes). Referring  

https://www.baeldung.com/cs/graphs
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Table 4.1 Notation descriptions 

Notation   Description 

𝐺(𝑉, 𝐸) Graph consisting vertices and edges 

𝑁(𝑢) ∩ 𝑁(𝑣) Common neighbour of vertex u and v 

𝑁(𝑢) ∪ 𝑁(𝑣) Total number of neighbour of vertex u and v 

𝑘𝑖𝑛
𝐶  Number of internal links within community 

𝑘𝑖𝑛
𝐶 + 𝑘𝑜𝑢𝑡

𝐶  Total number of internal and external links of community 

𝛼 Community’s resolution controlling parameter 

𝜌 Density of graph 

𝑘𝑒𝑥𝑡 Number of external links of initial community 

𝑘𝑖𝑛𝑡 Number of internal links within initial community 

𝑑𝑎𝑣𝑔
𝐺  Average degree of graph 

 

to equation (3.4), if there are no common neighbors between two vertices, a similarity 

value of zero is assigned, even if some nodes have a certain number of connections. 

Therefore, extended Jaccard Similarity is defined to avoid zero similarity by adding one 

in numerator. 

𝑆𝑖𝑚(𝑢, 𝑣) =
|𝑁(𝑢)∩𝑁(𝑣)| +1

|𝑁(𝑢)∪𝑁(𝑣)|
             (4.1) 

The example calculation of similarity between pairs of vertices is explained in section 

4.1.4. This evaluation is computed on pair of neighbor nodes of input graph. 

4.1.2 Weight Evaluation 

This weighted evaluation is grounded on the extended Jaccard similarity, which 

is defined as follows: 

𝑊𝑢 = ∑ 𝑆𝑖𝑚(𝑢, 𝑣)𝑢∈𝑉              (4.2) 
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This evaluation is conducted by summing up the similarities between each node and its 

neighbors. This approach enables the assignment of a core node or seed through 

weighted evaluation. Typically, vertices with a high degree in the network do not 

necessarily have a high weight. Therefore, the weight of a node in this study is not 

determined by the degree of each vertex. Instead, it is determined using equation 4.2. 

This weight is applied to identify core node among the nodes from the whole network. 

4.1.3 Fitness Function 

A community is a subgraph identified by the maximization of a property or 

fitness of its nodes. Lancichinetti et.al [13] proposed a fitness evaluation function f to 

measure tightly connected to the internal nodes of a community. This function is 

identified as follows: 

𝑓𝐶 =
𝑘𝑖𝑛

𝐶

(𝑘𝑖𝑛
𝐶 +𝑘𝑜𝑢𝑡

𝐶 )𝛼              (4.3) 

𝛼 is a positive real value parameter which is used to adjust the community scale. This 

quality evaluation function effectively measures the densely connected nodes within 

communities. Lancichinetti suggested this concept for each node (i) in the community, 

the number of internal links is more than the external links. That is, leads to the strong 

community and strong links with each other within a community if kin
C > kout

C. 

Otherwise, the community means weak community. On this idea, Lancichinetti 

developed equation (4.3) and conducted experiments in his research using a range of 

[0.6, 1.6], with the default value assumed to be 1. Consequently, the outcomes of 

different implementations are highly dependent on the parameter, and the best result is 

obtained by trying different parameter values. 

4.1.3.1 Optimized Resolution Controlling Formula 

In equation (4.3), the parameter variation leads to different outcomes in various 

implementations. As a result, the size of the community becomes unstable, and it is 

uncertain when the best result will be achieved precisely.  To control the community 

scale in this work, parameter evaluation formula is defined as follows:    

𝛼 =
𝑙𝑜𝑔(𝑘𝑖𝑛𝑡−𝑑𝑎𝑣𝑔

𝐺 )+𝜌

𝑙𝑜𝑔(𝑘𝑒𝑥𝑡)
             (4.4) 
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This formula is considered on the internal and external degree of initial cluster with 

density and average degree of the whole graph.  

4.1.4 Example Similarity Calculation of Karate Social Network 

 To clarify the similarity between nodes of karate network, the following 

calculation is performed by using Jaccard index. This network has 34 nodes and the 

similarity for every pair which has link are occurred. 

Sim(1,2) = 8/(25-7) = 0.4444444444444444 

Sim(1,3) = 6/(26-5) = 0.2857142857142857 

Sim(1,4) = 6/(22-5) = 0.35294117647058826 

Sim(1,5) =3/(19-2) = 0.17647058823529413 

Sim(1,6) = 3/(20-2) =  0.16666666666666666 

Sim(1,7) = 3/(20-2) =  0.16666666666666666 

Sim(1,8) = 4/(20-3) =  0.23529411764705882 

Sim(1,9) = 2/(21-1) =  0.1 

Sim(1,11) = 3/(19-2) =  0.17647058823529413 

Sim(1,12) = 1/(17-0) =  0.058823529411764705 

Sim(1,13) = 2/(18-1) =  0.11764705882352941 

Sim(1,14) = 4/(21-3) =  0.2222222222222222 

Sim(1,18) = 2/(18-1) =  0.11764705882352941 

Sim(1,20) = 2/(19-1) =  0.1111111111111111 

Sim(1,22) =2/(18-1) =   0.11764705882352941 

Sim(1,32) = 1/(22-0) =  0.045454545454545456 

---------------------------------------------------------------------------------------------- 

Sim(2,1) = 8/(25-7) =  0.4444444444444444 
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Sim(2,3) = 5/(19-4) =  0.3333333333333333 

Sim(2,4) = 5/(15-4) =  0.45454545454545453 

Sim(2,8) = 4/(13-3) =   0.4 

Sim(2,14) = 4/(14-3) =  0.36363363636366365 

Sim(2,18) = 2/(11-1) =  0.2 

Sim(2,20) = 2/(12-1) =   0.18181818181818182 

Sim(2,22) = 2/(11-1) =  0.2 

Sim(2,31) = 1/(13-0) =  0.07692307692307693 

---------------------------------------------------------------------------------------------- 

Sim(3,1) = 6/(26-5) =   0.2857142857142857 

Sim(3,2) = 5/(19-4) =  0.3333333333333333 

Sim(3,4) = 5/(16-4) =   0.4166666666666667 

Sim(3,8) = 4/(14-3) =  0.36363636363636365 

Sim(3,9) = 3/(15-2) =   0.23076923076923078 

Sim(3,10) = 1/(12-0) =  0.08333333333333333 

Sim(3,14) = 4/(15-3) =  0.3333333333333333 

Sim(3,28) = 1/(14-0) =  0.07142857142857142 

Sim(3,29) = 1/(13-0) =  0.07692307692307693 

Sim(3,33) = 2/(22-1) =  0.09523809523809523 

---------------------------------------------------------------------------------------------- 

- 

---------------------------------------------------------------------------------------------- 

Sim(34,9) = 3/(22-2) =   0.15 

Sim(34,10) = 1/(19-0) =  0.05263157894736842 
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Sim(34,14) = 1/(22-0) =  0.045454545454545456 

Sim(34,15) = 2/(19-1) =  0.1111111111111111 

Sim(34,16) = 2/(19-1) =  0.1111111111111111 

Sim(34,19) = 2/(19-1) =  0.1111111111111111 

Sim(34,20) = 1/(20-0) =  0.05 

Sim(34,21) = 2/(19-1) =  0.1111111111111111 

Sim(34,23) = 2/(19-1) =  0.1111111111111111 

Sim(34,24) = 4/(22-3) =  0.21052631578947367 

Sim(34,27) = 2/(19-1) =  0.1111111111111111 

Sim(34,28) = 2/(21-1) =  0.1 

Sim(34,29) = 2/(20-1) =  0.10526315789473684 

Sim(34,30) = 4/(21-3) =  0.2222222222222222 

Sim(34,31) = 3/(21-2) =   0.15789473684210525 

Sim(34,32) = 3/(23-2) =  0.14285714285714285 

Sim(34,33) = 11/(29-10) =  0.5789473684210527 

In that way, similarities of every pair of node from karate network which has 34 nodes, 

are calculated by applying equation (4.1) and then weight is evaluated according to 

equation (4.2). When rank with the descending order, the following evaluation can be 

seen. 

 

 

Weight of vertex 1= 2.895221119 

Weight of vertex 2= 2.654700855 

Weight of vertex 4= 2.581296155 

Weight of vertex 34= 2.482463735 

Weight of vertex 33= 2.475349006 

Weight of vertex 3= 2.29037629 

Weight of vertex 8= 1.570359053 
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The node with highest weight is 1 and it is selected as initial seed node for finding first 

local community structure. After the first local cluster is discovered, that cluster 

includes {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 18, 20, 22, 10, 17}. The node with highest 

weight among remaining unassigned nodes into any clusters is node number 34. 

Therefore, node 34 is selected as the next seed node to produce the next a local cluster. 

4.2 System Design 

 Figure 4.1 shows proposed system design. In this design, seed identification 

algorithm and community expansion algorithm are used for seed identification phase 

and community expansion phase, respectively. As an input, social network dataset is 

used and other networks are also used in this experiment. 

Weight of vertex 14= 1.464646465 

Weight of vertex 6=         1.4 

Weight of vertex 7=         1.4 

Weight of vertex 30=        1.265079365 

Weight of vertex 24=        1.214097744 

Weight of vertex 9=        1.195054945 

Weight of vertex 32=        1.055958747 

Weight of vertex 5=        0.909803922 

Weight of vertex 11=        0.877674957 

--------------------------- --------------------- 

-- ---- 

--------------------------- --------------------- 

Weight of vertex 22= 0.317647059 

Weight of vertex 15= 0.264957265 

Weight of vertex 16= 0.264957265 

Weight of vertex 19= 0.264957265 

Weight of vertex 21= 0.264957265 

Weight of vertex 23= 0.264957265 

Weight of vertex 10= 0.135964912 

Weight of vertex 12= 0.058823529 
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Figure 4.1 Proposed system design 

4.3 Proposed Algorithms  

 This section describes algorithms, seed identification and community expansion 

that are applied in system design of this dissertation. The seed identification algorithm 

finds core nodes among the nodes as the first phase. Then the community expansion 

algorithm which extends community to form local community in second phase is 

explained.  

4.3.1 Seed Identification Algorithm 

 The seed node is a crucial node in forming the local community among all 

nodes. Initially, the similarity between all pairs of nodes in the entire network is 

Calculate Similarity between pairs of node 

by using extended jaccard 

Form initial community C
0
 

 by adding neighbor nodes of seed 

Expand community by using fitness function based on 

proposed resolution controlling formula 

Local community 

Unassigne

d node? 

Yes 

Find Weight of each node according to 

similarity values 

Social network 

Dataset 

Choose the seed node with 

maximum weight 

Seed Identification 

Community Expansion 

No 

Detect overlapping nodes by 

merging local communities 
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computed using equation 4.1. Then, the weight of each node is determined based on 

equation 4.2.The example similarity and weight evaluation has already explained in 

section 4.1.4. The algorithm selects the node with the highest weight as the seed, which 

is then assigned to the initial community. Algorithm 1 provides the pseudo code for 

identifying the seed. 

Algorithm 1. Seed identification pseudo code 

 

 

 

 

 

 

 

 

 

 

 

 

 

After this process of Algorithm 1, the seed is identified, and the initial 

community is discovered by considering the neighboring nodes surrounding the seed. 

Then community expansion process from Algorithm 2 will be continued. As case study, 

the overlapped objects detection process is illustrated on karate network in section 4.3.3 

corresponding to the phase of system flow.  

4.3.2 Community Expansion Algorithm 

After accepting seed, initial community is formed with neighbor nodes of seed. 

For extending community, firstly fitness quality of initial community is calculated by 

using Eq. (6). Subsequently, the fitness of each member within the initial community 

is evaluated to determine whether they should be removed or retained. If the fitness of 

the initial community is higher than the fitness of a member node, then that member is 

removed from the initial community. Conversely, if the member's fitness is equal to or 

Input: G (V,E) 

Output: seed 

(1) seed=0; weight=0; 

(2) for each v ∈ V 

(3)  calculate similarity Sim (v , u) of each node by 

extended jaccard similarity;  // u ∈  neighbor of v 

 // compute the weight of each vertex 

(4)  weight (v)=  ∑ Sim (v , u); 

(5) end for 

(6) seed= max{weight(v)}; 

(7) return seed; 
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greater than the fitness of the initial community, they are retained in the initial 

community. 

Algorithm 2. Community expansion pseudo code 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example, consider an undirected graph with 12 nodes and 16 edges. For applied 

undirected graph, the edges are 34. Its average degree is 2 and density is 0.26. After 

seed identification process, seed = 11, initial community set {7, 8, 9, 10, 11}, internal 

links within community=7 and outer links =2, 𝛼 = 2.7. The initial community’s fitness, 

fc = 7/92.7 = 0.02. If remove node7 from community set, fitness of that community is fc-

7 = 5/72.7 = 0.03. In such way, fitness values by extracting each node within community 

are fc-8 = 5/92.7 =0.013, fc-9 = 4/92.7=0.01, fc-10 = 4/92.7=0.01. Except node 7, quality value 

of the rest nodes has decreased when each node is removed from community, the node 

7 is taken out from initial community. Thus, the current community set is {8, 9, 10, 11}. 

If this step is finished, then neighbors of community are considered to extend the 

community. Therefore, fitness of each of neighbor nodes are calculated and node with 

Input:  Initial community C
0
 , G(V,E) 

Output: Local community C 

(1) C=∅; 

(2) for each v ∈  C
0
 

(3) calculate fitness value according to f fitness  

 function; 

(4) if F (C
0
\v) >= F(C

0
 ) then C= C

0
 – v; 

(5) end if 

(6) end for 

(7) for each u ∈ 𝑁(𝐶) // neighbor nodes of C 

(8) calculate fitness value according to f fitness 

 function; 

(9) if F(C ∪ 𝑢) > F(C) then C=C ∪ u; 

(10) end if 

(11) end for 

(12) return C; 
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higher fitness is added to the community. This process continues until the all neighbors 

of community satisfy the fitness value.  

After this process, a local community is obtained. This process is described in 

Algorithm 2. After obtaining a local community by extending the community, check if 

there are unassigned nodes to any communities. If it exists, a node with highest weight 

from remaining nodes is selected as next seed node to form next local community as 

second iteration. If there are no unassigned node to any community, finally, the 

overlapped nodes are uncovered when merging the local communities. 

4.3.3 Case Study 

To show the community discovery results from algorithm, karate network is 

applied. Firstly after seed identification process, seed node 1 is discovered as center and 

initial community with neighbors of seed. It is described in Figure 4.2 and Figure 4.3 

shows uncovered first local community after expansion process. Then check if there are 

no unassigned nodes to any community. Because nodes are still left, the second iteration 

will be done. 

 

Figure 4.2 Initial community including neighbors surrounding seed for karate 

In second iteration, the next seed with the highest weight among unassigned 

nodes is chose. Therefore, the next seed is 34 and is described with red color. Figure 

4.4 illustrates explored initial community from seed identification process for next 

iteration. The detected local community at the end of community extension phase is 
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shown in Figure 4.5 for seed node 34. Finally, two overlapped community is occurred 

and two overlapping nodes with gray color are discovered in Figure 4.6. 

 

Figure 4.3 The discovered local community after expansion phase for karate 

 

Figure 4.4 Initial community involving seed 34 

 

 

 

 

 

 

Figure 4.5 The discovered local community after expansion process 
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Figure 4.6 The final discovered overlapped communities of karate 

4.3 Chapter Summary 

This chapter provides the detail explanation of proposed system design and 

methodologies. The two proposed algorithms, the seed identifying algorithm to detect 

seeds and community expansion algorithm to find local community are also discussed 

with case study.  
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CHAPTER (5) 

OVERLAPPED COMMUNITIES DETECTION AND 

PERFORMANCE RESULTS 

 

This chapter describes the implementation of proposed system and the 

performance of the proposed algorithm along with the experimental results. Various 

quality evaluation metrics are used to prove cluster quality of proposed algorithm over 

other algorithms. For these measurements, real world networks and synthetic networks 

datasets are applied on the experiments and the performance results are analyzed by 

comparing other overlapped detection algorithms. The proposed system can partition 

network into clusters with good quality on not only the real datasets but also synthetic 

graph datasets. Although the system performs well in detecting overlapping community 

at community level, less accuracy of overlapped nodes at nodes level on real datasets 

because ground truth overlapped nodes of real networks are formed by relying on 

assumption of data collectors. Therefore, the system is tested on synthetic graphs which 

are generated by program of LFR using all measurements and overlapping fraction. The 

assessment of overlapping fraction is compared with actual overlapping fraction. 

Moreover, performance comparisons of extended jaccard and traditional jaccard 

similarity are also implemented in this chapter.   

5.1 Datasets 

 The experiment results are carried out with real world networks datasets and 

explain their descriptions in this section. This chapter demonstrates the effective 

performance results of the system with many evaluation measurements on real datasets 

and synthetic or artificial graphs. In the experiment, both real and synthetic networks 

are used to measure system’s performance by using ground truth and without ground 

truth information. 

5.1.1 Real Networks 

In this experiment, well-known real datasets are applied and they are 

extensively employed in the field of community detection. The real networks are 

obtained from different domains and exhibit varying scales and degree distributions. 
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Karate club network: is a well-known and widely studied example of a social network 

that has been used in many community detection studies. The data was collected by 

Wayne Zachary in 1977, and it represents the social interactions between members of 

a university karate club. The network consists of 34 nodes (representing individual 

members of the club) and 78 edges (representing friendships or other social ties between 

members). After a conflict between the administrator of the club and the club's 

instructor, the network was split into two communities, with one community following 

the instructor to a new club. 

Dolphin social network: The dolphin social network, as compiled by Lusseau et al. in 

2003, is another well-known and frequently studied example of a social network in the 

field of community detection. The network consists of 62 nodes (representing 

individual dolphins) and 159 edges (representing frequent associations between pairs 

of dolphins). The dolphins were observed over a period of several years in a community 

living off Doubtful Sound, New Zealand. The network is undirected, meaning that the 

associations between dolphins are not directional.  

American Football network: represents the games played between Division IA 

colleges during the regular season of fall 2000. Each node in the network represents a 

college football team, and the edges represent the games played between pairs of teams. 

The nodes are also labeled with values that indicate which conferences they belong to. 

The conferences are groups of teams that compete against each other more frequently 

than against teams from other conferences. 

US politics books network: This network consists of books focusing on US politics 

that were published during the 2004 presidential election and were available for sale on 

the online bookstore Amazon.com. The edges between books represent frequent 

instances of customers purchasing those books together. Nodes have been given values 

"l", "n", or "c" to indicate whether they are "liberal", "neutral", or "conservative". 

Risk map network: this network is a map of the popular strategy board game,  

Risk and two to six players can play on a board. It is a political map of the Earth, divided 

into 42 territories, which are grouped into six continents. Therefore, this network 

comprises 42 vertices and 83 edges in accordance with the six continents. 
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Ego_facebook: this network contains Facebook user–user friendships. A node 

represents a user. An edge indicates friend relationships of user to user. Facebook data 

was collected from survey participants using this Facebook app.  

Net science: It is a network of coauthor ships between scientists 1588, scientists in this 

case who are themselves publishing on the topic of networks. It is based on data, 

including publications up until early 2006. In this network, multiple nodes represent 

authors and edges represent joint publications on which authors have collaborated 

together. 

Amazon product co-purchasing network: represents products sold by Amazon.com, 

and the edges between products represent frequent co-purchasing of products by the 

same buyers. Each product category defines a ground-truth community, meaning that 

products that are frequently purchased together are likely to belong to the same category 

or have similar properties.  

DBLP collaboration network: represents collaborations between authors who have 

published papers in computer science journals and conferences. Nodes in the network 

represent authors, and an edge between two nodes indicates that the corresponding 

authors have co-authored at least one paper together. The ground-truth communities in 

this network are defined based on the journals or conferences where papers were 

published.  

Table 5.1 Statistics of real datasets 

 Node Edge density Avg. degree 
Ground 

truth 

Karate[101] 34 72 0.14 4 Y 

Dolphin[102] 62 159 0.08 5 Y 

Political 

book[105] 
105 441 0.08 8 Y 

Football [22] 115 613 0.09 10 Y 

Riskmap[105]  42 83 0.096 3 Y 
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Ego-facebook 

[104] 
2888 2981 7.15 E-4 2 N 

Netscience[105] 22963 48436 0.00257 3 N 

DBLP [106] 317080 1049866 0.001196 6 Y 

Amazon [106] 334863 925872 0.004 5 Y 

 

5.1.2 Synthetic Networks 

The experiment also employs the LFR benchmark [18] to create synthetic 

datasets. The network created by this program has the ability to accurately regulate the 

distribution of node degrees and community sizes. LFR is proposed by Lancichinetti 

and Fortunato and is a type of computer-generated networks with predefined tunable 

parameters. The networks possess real world characteristics and are widely applied in 

various overlapping network community detection algorithms. The basic parameters 

are illustrated in Table 5.2. This experiment sets the network parameters as follows: N 

= 1000 to 50000, k= 15, µ= 0.3, on= 10%, om= 2, maxk=50, minc=10, maxc=50; 

Table 5.2 Meaning of parameters 

Parameter Meaning 

N Number of nodes 

k Average degree of nodes  

maxk The nodes’ maximum degree 

maxc Nodes’ maximum cluster size 

minc Nodes’ minimum cluster size 

mu (µ) Mixed parameter 

om The number of communities to which overlapping nodes belong 

on Number of nodes which belongs to multiple communities 

 

5.2 Performance Analysis 

 This section showcases the outcomes achieved by implementing the techniques 

outlined in chapter 4 on a collection of 9 actual networks that are commonly utilized as 
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benchmarks in network community structure studies.  All the experiments were carried 

out using Java on a PC laptop equipped with an Intel Core i5 processor running at 2.7 

GHz, a 64-bit CPU, and 8 GB of RAM. The laptop was running Windows 10. The large 

real datasets have taken from standford network dataset collection site and some small 

data are available at personal homepage server for the University of Michigan. 

 In this dissertation, the performance of proposed system is analyzed by using 

evaluation metric with both ground truth and no ground truth information. The 

evaluation metrics have been described in section 3.9 of chapter 3. That section has 

presented widely used measurements for overlapping communities on both ground truth 

information and measurements without ground truth. ENMI (Extended Normalized 

Mutual Information), Omega index, F1 measure are applied with ground truth and Qov 

is used with no ground truth. What is more, overlapping rates are compared with other 

state of the art overlapping detecting algorithms. The following algorithms are used as 

based line algorithms in this part. DEMON, LFM, NILPA, OSLOM and GREESE are 

Democratic Estimate of Modular Organization of a Network, Local Fitness Method, 

Node Important based Label Propagation, Order Statistics Local Optimization Method 

and Greedy Coupled-seeds Expansion, respectively. They are analyzed on both real 

datasets and benchmark (artificial) networks consisting of N= (1000, 2000, 3000, ----, 

5000). On benchmark networks, running time of proposed algorithms is also illustrated 

and the efficient running time of proposed system has occurred over the other 

algorithms. 

5.2.1. Evaluation Results for Real Networks 

Based on the ENMI (Normalized Mutual Information Entropy) results in Figure 

5.1, the proposed system demonstrates superior performance compared to other 

algorithms in the karate, Amazon, and DBLP networks. In the political book network, 

the proposed system shows a slightly better performance than the others. NILPA 

performs well on small and sparsely connected networks like risk-map but it cannot be 

partitioned the football network into communities by resulting in only one community 

being identified with a measurement of zero. It does not perform effectively on medium 

and large networks according to the results. The OSLOM algorithm achieves a higher 

ENMI value than all other algorithms on the football network, while GREESE 

outperforms the proposed algorithm significantly on the dolphin network. The proposed 
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algorithm decreases the accuracy in dolphin, football, political and riskmap datasets 

because the ground truth communities of these datasets are formed based on their 

features and natures. The football and political book datasets have node features, and 

the ground truth of the football network, for instance, it is based on conferences to 

which teams belong. 

 

Figure 5.1 Comparison results of ENMI on different datasets 

 

 

Figure 5.2 F1 results of comparison algorithms 
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Furthermore, the large networks such as Amazon and DBLP show slightly 

better outcomes according to the F1 results of the proposed system in Figure 5.2. All 

algorithms, except for LFM, produce similar results in the karate and risk map 

networks. There are no significant differences observed in this experiment. In this 

measurement, similar to the ENMI measurement, GREESE performs better on the 

dolphin network, while OSLOM demonstrates superior performance on the football 

network. However, OSLOM generates the isolation nodes and it cannot be added all 

nodes from the graph to the corresponding communities. As for NILPA, the F1 

evaluation for the football network is zero, indicating the absence of communities. 

 

 

Figure 5.3 Qov comparison of overlapping algorithms 

The evaluation of the quality of overlapped communities is measured using a 

metric called Qov, without relying on any predefined ground truth. This evaluation is 

conducted on various datasets, disregarding the presence of ground truth. The quality 

of proposed system is observed to surpass that of other algorithms across all datasets. 

When comparing the baseline methods, including the proposed algorithm, it is found 

that LFM decreases accuracy in all measurements which is shown in Figure 5.3. 

The performance comparisons of the proposed extended and traditional jaccard 

similarity are illustrated in from Figure 5.4 to 5.6. According to these experiments, it is 

seen that there is beneficial results in the extended jaccard similarity because of that 

results, it is important to identify core nodes for each local community in local 
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community discovery methods. To be continued, the overlapping fraction is described 

in this dissertation. 

 

Figure 5.4 ENMI of extended and traditional jaccard on real networks 

 

Figure 5.5 Omega index of extended and traditional jaccard on real networks 

 

Figure 5.6 Qov result of real networks 
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 In Figure 5.7, the proposed system exhibits an acceptable level of overlapping 

in the communities it discovers. This rate is calculated as a percentage, representing the 

ratio of the number of overlapped nodes within the discovered communities to the total 

number of nodes in the graph. When there is an excessive number of overlapped nodes, 

the system generates hierarchical communities, resulting in numerous highly 

hierarchical structures. The Demon method tends to have an excessively high fraction 

of overlapping, leading to isolated nodes. Similarly, NILPA demonstrates a high 

overlapping rate in networks other than the football network. However, this method 

fails to explore overlapped nodes specifically in the football network. OSLOM and 

LFM are unable to identify overlapped nodes in the football and karate networks, 

respectively, despite having a low overall overlapping ratio in some networks. To 

address issues related to isolated nodes and excessive overlapping, the GREESE 

method refines the community structure.  

 The proposed system does not occur outlier and can detect, in addition to, all 

nodes from the network to the corresponding communities. In order prove whether 

acceptable overlapping rate is or not, this overlapped fraction is evaluated on LFR 

benchmark networks. The parameters for generating that network are set to N=1000 to 

5000, k=15, mu=0.3, om= 2, on=10% on N, maxc=50, minc=10, maxk=50. 

 

Figure 5.7 Overlapping rate of different algorithms 
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5.2.2 Evaluation Results on Benchmark Graphs 

 This part analyzed the results of proposed algorithm with baseline methods on 

benchmark (artificial) graphs including number of nodes 1000 to 5000. The parameter 

setting to generate graph has been described in the above section 5.1.2 and notation 

description of that parameter has been listed in Table 5.2. 

 According to the ENMI performance of Figure 5.8, the proposed algorithm has 

better accuracy than LFM, Demon, and GREESE. With OSLOM and NILPA, proposed 

methods have almost same result on all LFR networks and each of them is only 0.01 

apart. OSLOM and NILPA can perform well on benchmark graphs but they cannot 

perform well in real networks. GREESE can reveal good overlapped community 

structures on only real networks. LFM does not have good ENMI result in both real and 

benchmarks. 

 F1 results also perform well on the benchmarks like OSLOM and NILPA. 

Although the proposed method cannot outperform on all real datasets, it has good quality 

overlapped structure on some real datasets and LFR benchmarks when compare other 

overlapped detection algorithms. F1 evaluation result is demonstrated in Figure 5.9. 

With both ENMI and F1 results, OSLOM and NILPA seem to perform well because 

these methods based on label propagation strategy. Therefore, they have slightly 

increased in accuracy but running time of that methods takes a long time. LFM algorithm 

cannot detect overlapping nodes accurately on 3000 nodes. Therefore, its’ ENMI and F1 

results are zero. 

 

 

Figure 5.8 ENMI of different algorithms on overlapping LFR benchmark 

0

0.2

0.4

0.6

0.8

1

1.2

1000 2000 3000 4000 5000

EN
M

I

Proposed Demon OSLOM GREESE NILPA LFM



  

91 

 

 

 

Figure 5.9 F1 result comparison on LFR benchmark 

  

 

Figure 5.10 Qov of comparison algorithm for LFR  

 

 

Figure 5.11 Overlapping rate of comparison algorithms on N= 1000 
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Figure 5.10 shows the overlapping modularity (Qov) result. The proposed 

method outperforms over the comparison algorithms in measurement of Qov which 

measure quality of overlapped structure with no ground truth information.  

To verify appropriate overlapping rate of discovered overlapping structure, 

percentage of overlapped nodes is set to 10% of total number of nodes of graph as 

parameter when generate the LFR benchmark graph. Therefore, number of overlapped 

node is set to ten, twenty, thirty, forty and fifty nodes on 1000, 2000, 3000, 4000 and 

500 respectively. The overlapping fraction of comparison algorithms on each LFR 

graph is illustrated in Figure 5.11 to Figure 5.15. With respect to Figure 5.11, the 

detected number of overlapping nodes is 10 and overlapped fraction is 10% on 1000 

nodes. Therefore, it is found that overlapping accuracy is at good result. LFM and 

NILPA have also competitive result but LFM occur isolation nodes and sometimes, it 

cannot detect overlapping nodes on 3000 nodes. Therefore, LFM may have good result 

if it is compared on overlapped rating but it cannot identify overlapped nodes accurately 

when compare performance quality at overlapped node level by observing ENMI and 

F1. 

According to evaluation results of overlapping rate, the rate of discovered 

overlapping nodes from proposed algorithm can discover exactly on node 4000 and 

5000. In node 1000 and 2000 data size, it can detect approximate overlapping rate with 

the actual rate. The ground truth data of real world networks do not have overlapping 

rates and some networks have also no overlapped nodes. Therefore, the overlapping 

node parameter is set to 10% for the overlapping community structure generated by 

LFR and the proposed algorithm is tested. 

 

Figure 5.12 Overlapping rate of different algorithms on N=2000 
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Figure 5.13 Overlapping rate of N= 3000 

 

Figure 5.14 Overlapping rate of algorithms on N=4000 

 

Figure 5.15 Overlapping rate of different algorithms on N= 5000 
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 Omega results are analyzed by comparing proposed method and GREESE in 

the Figure 5.16. Except N=3000 network, the result of proposed algorithm can compare 

GREESE in other LFR networks. The Figure 5.17 to 5.19 are also shown as 

performance evaluation for extended and traditional jaccard similarity on benchmark 

graphs. In contrast, the extended jaccard outperforms than traditional in all 

measurements of all benchmark graphs.  

As shown in Table 5.3, the run time comparison of overlapping detection 

methods is described in millisecond. The proposed algorithm is the faster than the 

others. NILPA and OSLOM have accurate result on LFR benchmark graphs 

corresponding to their performance evaluation metrics but its execution time take more 

time. Not only in accuracy but also in execution time, the method is competitive in 

benchmark graphs. 

 

Figure 5.16 Omega measurement on LFR networks 

 

Figure 5.17 ENMI of extended and traditional jaccard on LFR networks 
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Figure 5.18 Omega index on LFR networks 

 

Figure 5.19 Oov measurement of LFR networks 

Table 5.3 Running time comparison in milliseconds 
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5.3 Chapter Summary 

 In this chapter, the experimentation and evaluation of the proposed algorithm 

by using various quality assessment methods for overlapped communities. The 

experiments compared the state of the art overlapping algorithms with various quality 

measurements by applying real world datasets and benchmark datasets (artificial 

networks). Overall, the proposed algorithm is found to be better on all measurements 

for most datasets especially large scale network datasets and it takes less running time 

than the other algorithms. Although the proposed extended similarity method is not 

occurred significantly difference on some measurements for real networks, it 

outperforms on benchmark graphs. 
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CHAPTER (6) 

CONCLUSION AND FUTURE WORK 

 

Community analysis of a network has been a consistent area of focus among 

researchers for the past decade and a half. Much of the research has aimed to develop 

algorithms for identifying and detecting communities within networks. Real world 

systems are made of elements with complex interconnections in between them. The 

biochemical networks, human networks, collaboration networks are examples of 

biological, social, and scientists’ paper collaboration systems, respectively. The 

distinction in characteristics between communities in real networks, such as non-

overlapping and overlapping communities, has posed a challenge when using existing 

algorithms for community detection. Therefore, although exposing the overlapped 

community structure has increasingly been interested, the most researchers ignore these 

features and focus on the disjoint community structures. This research focuses on 

uncovering overlapped community structures and local community discovery method 

is applied to discover overlapped objects instead of global community discovery 

methods.  

6.1 Conclusion of Research 

This work proposes an algorithm for detecting overlapping communities 

through a local community expansion strategy. Most existing overlapping community 

detection algorithms employ a local expansion strategy lead to instability in the 

community structures due to fluctuations in the fitness evaluation function they utilize. 

The detected community structure heavily relies on a parameter that controls the 

resolution of the communities. Hence, this study presents a parameter evaluation 

formula that prioritizes resolving the instability of community structures to mitigate the 

impact of parameter choices. To ensure efficient computation time, the local 

community expansion algorithm is designed by optimizing the fitness evaluation 

function, f, based on the parameter evaluation formula. Additionally, the extended 

Jaccard similarity is employed to determine the seed node, as the core node or seed 

plays a crucial role in identifying the center of the local community. 

In the experiment of this dissertation, both real world networks and LFR 

benchmark datasets are applied. Some real world datasets do not include ground truth 
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information. For datasets consisting of ground truth, therefore, the performance of the 

proposed algorithm is evaluated by ENMI, Omega index and F1. For datasets with no 

ground truth, evaluated by Qov. The results show that, Qov measurement of the 

proposed algorithm has the significant improvement on both type of datasets and 

overlapped fraction is not high. Moreover, other performance results (ENMI, F1) are 

occurred with better accuracy on benchmark datasets, while on real datasets it only 

achieves more accurate results on most of the datasets. In addition, it saves more 

running time than the others on both real and benchmarks. 

6.2 Research Discussion 

 By analyzing based on 9 real network datasets including small, medium and 

large size, it is found that the proposed system has better accuracy than the other base 

line algorithms (Demon, OSLOM, LFM, GREESE, NILPA) on the most of the datasets.  

OSLOM and GRESSE methods have also competitive results on ENIM and F1 

measurements that measure by using ground truth information. However, in large 

complex networks, the proposed method has more effective result than the other 

algorithms including OSLOM and GREESE according to ENMI, F1 and Qov 

measurements. What is more, the overlapped modularity (Qov) of proposed method 

outperforms over the all. That is why, satisfied results are occurred by system if see the 

various quality evaluation results. According to the overlapping fraction evaluation, 

proposed system and GREESE have appropriate overlapping rate. Except those two 

methods, the others cannot detect overlapped nodes for some datasets and they generate 

isolation nodes which cannot assigned to any communities. Therefore, omega index 

results have not been described in the comparison with real datasets.  

 When implementing algorithms with 5 LFR benchmark graphs including node 

1000 to 5000, the proposed method can reveal overlapping community structure at 

better accuracy. Just like when experimented in real networks, the OSLOM has 

competitive results on benchmark graphs. However, the execution time of OSLOM is 

long. NILPA has been occurred that it has accurate performance results on these graphs 

even it has poor accuracy in real graphs. The proposed system performs well with all 

quality measurements on LFR networks. In addition, performance of extended and 

traditional jaccard similarity is measured on both real and LFR networks. With results 

from experiments, it is found that extended jaccard has good results except football and 
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political book networks because ground truth communities of these datasets were 

formed by relying on their features like political book types. That is why, the members 

within a community do not directly concerned with the core node. For this reason, the 

proposed system is a slight decrease in performance for these two real datasets. 

Although it has decreased a bit in result of these two real datasets, it is found that the 

all benchmark datasets have greater results on all measurements. Moreover, the 

proposed system also save more time than other overlapped detection methods in 

running time.  

6.3 Advantages and Limitations 

The OSLOM algorithm operates with more execution time although it achieves 

good accuracy score on both real and benchmarks. In experiments with various 

evaluation criteria, the proposed method shows good accuracy in real datasets and better 

accuracy in benchmark datasets.  With respect to running time, the proposed algorithm 

has competitive run time than the other algorithms and it can detected overlapped 

communities in good efficiency. 

The system has been implemented only on homogeneous networks and focus 

on the links between nodes. Therefore, the features of network such as attributes and 

weight on links are not considered. As ground truth communities can be different for 

each dataset depending upon the features of classification. This situation declines the 

accuracy in some real networks, which form the ground truth communities by relying 

their attributes. In addition, ground truth of some real networks has no overlapped 

nodes. In that case, the accuracy for some networks is less than some algorithms when 

the performance of the overlapped structure is measured by evaluation metrics. 

Therefore, this dissertation also describes performance of algorithm on the artificial 

graphs (LFR benchmark) and Qov metric for overlapping communities for increasing 

the accuracy. 

6.4 Future Works 

In the real world, the structure of networks undergoes dynamic changes over 

time. As a result, communities within these networks can also evolve, experiencing 

growth, contraction, merging, splitting, birth, continuation, and even dissolution. To 

address these changes in community structure, future studies will focus on developing 

methods to handle dynamic networks. Furthermore, in recent years, there has been 
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significant development in utilizing deep learning techniques for community detection, 

particularly for effectively handling high-dimensional network data. (i.e. high 

dimensional features of heterogeneous networks).  The studies like that will be tried to 

know whether there is significant improvement. 
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