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ABSTRACT 

 
This dissertation aims to investigate the data augmenting and scrutinizing 

methods in developing a speech dataset for text independent Burmese speaker 

identification in open-set case which means the test speaker may not pre-modeled and 

included in the classifier. The training acoustic models are built based on Gaussian 

Mixture Model-Universal Background Model (GMM-UBM) and Time Delay Neural 

Network (TDNN) model. The speech dataset for speaker identification is firstly 

constructed because there is no available speech dataset for speaker identification 

research in Burmese. The data are collecting from the two domains: the web-based 

news data and recorded daily conversations. By this dataset, state-of-the-art acoustic 

speaker models for Burmese speaker identification are constructed. 

Speaker identification is the task of analyzing the speakers’ characteristics in 

speech to exactly identify individuals. The identification task performs better when 

there is enough background training data. The sufficient amount of speech data 

collection is a very challenging task in a short time for building Burmese speaker 

identification system because Burmese language can be considered as an under 

resourced language due to its linguistic resource availability. For getting sufficient 

amount of background training data, MUSAN speech dataset is used as speech data 

augmenting. For high quality training data, many other scrutinized techniques are 

investigated. Among them, the two data scrutinizing methods: increasing the speech 

intensity in SNRs to 10 dB and downing the tempo factor 0.2 times without affecting 

the pitch of utterances are applied to the original speech dataset. Moreover, white 

noise-added dataset is also created from the original dataset in order to prove that any 

kinds of noise can cause trouble the identification performance. Mel Frequency 

Cepstral Coefficient (MFCC) is used to extract the speaker specific features as front-

end processing. In this work, TDNN and GMM-UBM based acoustic speaker models 

are constructed based on original, scrutinized and white noise-added training data. It 

can indicate that the impacts of speech data quality in constructing speaker models by 

using scrutinized training data and points out the important role of speaker models in 

identification process. The speakers’ identities are assessed with probabilistic linear 

discriminant analysis (PLDA) approach. The system performance is presented in the 

form of Equal Error Rate (EER) and detecting accuracy (Acc).  
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CHAPTER 1 

INTRODUCTION 

 

 The most advanced mean of conveying thoughts, desires, and emotions among 

human beings is speech, the most crucial tool for communication in our daily lives. 

Nowadays, speech processing is growing a branch of emerging applied areas of 

digital signal processing and plays the key role in many speech processing research 

areas such as Automatic Speech Recognition, Speech Synthesis, Speaker Recognition 

or something else. Speaker recognition is a type of biometric authentication 

technology. It is also known as voiceprint recognition with the branches of Speaker 

Verification and Speaker Identification.  

 In order to solve daily security problems and improve their speech signal 

processing technologies, researchers around the world have explored the speaker 

identification. It is a natural portrayal of human computer interaction (HCI) that 

naturally recognized the person’s identity from their voiceprints. The sound of human 

beings involves numerous distinct acoustic characteristics which can be determined 

who they are. The vocal tract’s formation structure is distinctive for everyone. There 

are two types of speaker identification: one where the text is needed and one where 

it’s not. While text dependent speaker identification must say an exact identical 

phrase to determine who they are, text independent speaker identification has no limit 

or restrictions on the words spoken. It is more applicable and flexible applications in 

real world. The quality and appropriate volume for modeling speaker models are 

required in order to enhance the performance of the speaker identification scheme. 

Many variations can be also encountered in speaker identification. The duration of 

utterances is the first one of many variations. The long utterances can better recognize 

the corresponding speaker than the short utterances. Any kinds of noise can lead to 

hinder the identification process. It is the second variation. To prove the second 

variation, the assessments of speaker models constructed with white noise-added 

dataset are implemented in this dissertation. Accent (speaker specific facts) comes as 

the third variation. The system can easily identify these speakers, as long as the 

speaker has spoken a standard dialect or one which corresponds to the speech 

information contained in training. The last variation is the speech recorded conditions. 

Various noises can contain in the data because these are collected and came from 
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various sources. If the data quality is low, the system performance is degraded. To 

prove the last variation, data scrutinizing methods are applied to the speech dataset for 

being the data quality uniformly.                                                                                                                           

 Universal background model (UBM) is constructed using audio samples from 

multiple speakers and an adaptive Maximum A Posteriori (MAP) is used to obtain 

individual speaker models. By using Expectation-Maximization (EM) algorithm, 

GMM parameters are trained [4]. Firstly, a diagonal covariance UBM is trained 

basically in UBM training. To obtain full covariance model, the expectation 

maximization is implemented with mixture weights and fixed means [17] per 

iteration. In recent years, Gaussian Mixture Models (GMMs) have been used for 

speaker identification. But, GMMs did not resolve the channel distortions that occur 

when its assumptions about the corresponding talker are not exactly identical when 

different speech signals are used under different recording conditions. To address this 

issue, Joint Factor Analysis (JFA) modeled speaker variability and channel variability 

as two separate subspaces. Nevertheless, the recognition process may not perform 

well because there may be useful speaker related information in session variability 

subspace. To deal with these problems, i-vector method evolved from GMM super 

vectors is used. To solve these problems, i-vector method developed by GMM super 

vectors is used. Vectors called i-vectors that occur in low-dimensional and smaller 

spaces are used to reduce the detecting time [2]. Compressing the information to a 

low dimensional vector and modeling the total variations in the training data are the 

main goals of i-vector based systems that collect statistics from spoken utterances. 

Moreover, changing the parameters like the Gaussian components number and 

vectors’ dimensions can affect the system performance. 

 A network with many hidden layers, which contains many nonlinear units and 

a large output layer, is called a deep neural network (DNN). It has recently been used 

to obtain special features of speakers and relies on a lot of model training data, but as 

a result, it can produce accurate results even though it takes a lot of time to train the 

model. Time Delay Neural Networks (TDNN) are designed to express the 

relationship between input features in time and learn transfer invariant feature 

transformations, which is a beneficial architecture for DNN-based speakers and 

models phonetic information directly [15]. It can be considered the predecessor of a 

convolutional neural network. Due to its efficiency in capturing long-range temporal 
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context dependencies and its capacity to extract stronger speaker features, it improves 

x-vector training ability [18]. While the higher layer uses a wider temporal context, 

TDNNs implement the initial transforms are learned within narrow temporal contexts 

[19]. The three main components of TDNN architecture are feature learning, 

statistical pooling, and finally, the speaker classification. 

 Subspace covariance modeling allows a Gaussian PLDA backend coupled 

with fixed-length feature vectors to leverage multiple input feature frames. In 

subspaces, the model extracts strongly associated feature vectors using generative 

hierarchical probabilistic modeling. The computational cost and feature dimension 

can be reduced by PLDA. In addition, it can also improve detection rate [13]. It is 

applied for scoring in feature vector-based speaker detection. The projection and 

centering of representations is done with LDA (Linear Discriminant Analysis). Vector 

representations are taken by length normalization and modeled with PLDA after 

dimensionality reduction. PLDA scoring method is used as in [3, 20]. It used the 

batch-likelihood ratio between the target and test i-vectors as the scoring method, 

appraised the wrong detecting percentage with equal error rate (EER) for measuring 

the performance of identification engines [6] and with Detecting Accuracy (Acc) for 

measuring the performance of detecting rate. 

1.1 Research on Speaker Recognition  

Speaker recognition research has been accomplished by many researchers with 

their respective languages and the recognition rate has also been improved by 

adopting particular properties of their target language or exploring the new 

architecture. Speaker verification and speaker identification are the two main 

categories of speaker recognition. Claiming to be an exact identity with their voices 

respectively is called the speaker verification. It is one to one match because one 

speaker’s voice is matched to one template. Speaker identification determines as the 

identity recognizing who is speaking. It is one to N match where the voice is 

compared against N templates. Identification process is slower than the verification 

process because of the processing time of matching. Speaker identification has the 

two branches: text independent and text dependent. In text dependent identification, 

the speakers need to say exactly the same speech for determining who they are but 

text independent identification has no boundaries and restrictions on the words that 
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are talked. In this work, open set (independent of text and speaker) identification is 

implemented by applying particular features of Burmese language because open set 

systems are most applicable in real world applications and this research is for the aim 

of developing speaker identification in Burmese firstly. 

1.2 Intentions of Research 

Speaker Identification is trying to develop by many researchers for improving 

the technologies in their respective national languages. The main objectives of 

research are: 

1. To develop an efficient and accurate Automatic Burmese Speaker 

Identification system as the first work on Burmese speech from various 

sources  

2. To construct the Speech Dataset for Burmese Speaker Identification 

3. To analyze the scrutinizing techniques for getting good quality speech 

data needed to use in building the acoustic models 

4. To prove augmenting on Burmese Speech Dataset improves in 

Acoustic Modeling 

5. To save time and cost through automatic authentication 

1.3 Focus of Research 

This research focuses on developing a neural network-based speaker 

identification system in Burmese. The focused works include the following:  

1. Building Burmese speech dataset for the first time to apply in speaker 

identification system  

2. Applying augmenting methods to increase the diversity and volume of 

data in speech dataset 

3. Scrutinizing the collected speech dataset to get the higher quality of 

data 

4. Analyzing the results from the three models built with the original, 

scrutinized and white noise-added speech datasets 

5. Comparing the system performance from both sides of text dependent 

(ClosedTestSet) and text independent (OpenTestSet) assessments 
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1.4 Contributions of Research 

  This research has four main contributions. 

1. The speech dataset needed for Automatic Burmese Speaker 

Identification system builds as the first contribution of this research. 

Speech dataset building is the first step in any automatic speaker 

identification research. As Burmese language is an under resourced 

language, there is no already built speech dataset like resourced rich 

language, English and cannot be freely available the speech dataset. It 

is also the first important requirement and essential for developing 

Burmese Speaker Identification research. The speech dataset is built by 

two ways: collecting recorded speech data in Web news from various 

sources and recording the daily conversational speech ourselves. 

2. The second contribution is augmenting the existing training data in 

order to enhance the system performance. Data augmentation can find 

out more speaker-oriented information due to its increasing length of 

utterances (durability). By finding the speaker specific information 

more and more, the system performance improves more. There are 

many data augmentation techniques for enhancing the system 

performance. Contaminating the environmental noise, adding room 

impulse responses to reverberate the original audio, adding additive 

noises to corrupt the original audio with babble, music and general 

noise, speed perturbation, feature warping, pitch shifting and 

spectrogram augmentation, etc., are used to contaminate the data. In 

this work, adding room impulse responses to reverberate the original 

audio, and adding additive noises to corrupt the original audio with 

babble, music and general noise by MUSAN dataset are used for 

augmenting the training data. 

3. The third contribution is to apply the data scrutinizing methods to the 

existing dataset to improve the acoustic models’ performance. It is the 

main component of this work and these techniques can show the 

significant improvements of speaker identification system. The 

proposed scrutinized dataset is created by applying the intensity level 
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raises to 10 dB and decreasing the tempo down to 0.2 times (20%) in 

the original dataset. To create this scrutinized dataset, the intensity 

levels of -10 dB, -5 dB, 5 dB and 10 dB are firstly applied to the 

original raw dataset. And then, the results of these four types of 

datasets are compared with the original dataset’s performance. Among 

them, the dataset with the intensity level of 10 dB outperforms the 

original dataset because the speech having reasonable loudness can 

recognize well than the lower loudness. But, the loudness of speech 

beyond human hearing perception damages the tone of speaker and 

speech spectrum. Moreover, analyzing in the tempo factor up and 

down to 0.2 times comparing with the original dataset is done. From 

these experiments, decreasing the tempo factor down to 0.2 times give 

better results than the original dataset because speaking slowly can 

recognize the speaker well and understand what they are saying in 

clarity. Therefore, setting the intensity raises to 10 dB and the tempo 

slows down to 0.2 times to the original dataset forms the scrutinized 

dataset giving the significant improvement in speaker modeling.  

4. The final contribution is to contaminate the noise in the original data. 

Although white noise that helps to induce a more relaxed state is a 

pleasing sound for many people, adding it in the human speech can 

cause the disturbance. According to the experimental results, the error 

rate increases the rate of original and scrutinized dataset although it 

can be able to cover up intrusive noises. Therefore, Noise-added 

dataset is created with white noise to prove that any noise can hinder 

the system performance because it has full-spectrum coverage than the 

other noises: pink, brown and black. They cover only a section of the 

spectrum for different impact (pink and brown emphasize in lower 

frequencies and black noise emphasizes the sound of complete 

silence). 

1.5 Organization of Research 

 This dissertation is comprised with seven chapters including literature review, 

related work and background theory of speaker recognition research, building speech 
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dataset for speaker identification, description of proposed system architecture, nature 

of speech data in Burmese dataset, feature extraction process, implementing GMM-

UBM based and TDNN based acoustic models with data augmentation and 

scrutinizing methods, adding white noise, experimental results, conclusion and future 

work of research on Burmese speaker identification.  

 Chapter 1 describes the introduction, objectives, focus and contributions of the 

speaker recognition research work. Chapter 2 expresses the classification of speaker 

recognition: identification, verification and diarization, the speaker recognition 

criteria, the types of speech and speaker modes, applied areas, diversifications of 

speaker identification and literature reviews concerning with the dissertation. 

Background theories required for speaker identification process is described in 

Chapter 3. It includes data preprocessing suitable for Burmese language, feature 

extraction technique, the acoustic models about GMM-UBM, and TDNN, 

Probabilistic Linear Discriminant Analysis (PLDA), likelihood score computation and 

finally describes the performance metric. Chapter 4 explains how to collect and 

prepare the speech data from various sources and building scrutinized and white 

noise-added speech datasets for speaker identification. Moreover, the speaker 

information and statistics of Burmese speech datasets are also reported in this chapter.  

 Chapter 5 describes general architectures of speaker recognition system, and 

design and implementation of proposed system architecture for speaker identification. 

Chapter 6 describes the performance analysis for speaker identification. It includes 

building GMM-UBM and TDNN based acoustic speaker models, the experimental 

setup, performance results (with and without data augmentation) and discussion about 

the acoustic models. Finally, Chapter 7 presents the conclusion extracted from this 

research work with the advantages and limitations of research work and describes the 

future research lines to continue it. 
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CHAPTER 2 

PRINCIPLES OF SPEAKER RECOGNITION SYSTEM 

 

This chapter discusses the literature reviews and recent publications related to 

the Automatic Speaker Identification. Since early 1960’s, researchers have been 

endeavoring to develop the computer system that can record, interpret and understand 

human beings’ voice because speech signal carries the mixed types of information 

that express speaker specific characteristics or identity such as vocal tract, excitation 

source, behavior feature and language. For developing nations, the usage of speech 

may help as the language technologies for interacting with the computer and are 

implemented for e-government system. 

2.1 Introduction to Automatic Speaker Recognition  

Automatic Speaker recognition is one of the important research topics in the 

field of speech processing and is also known as voiceprint recognition. It can 

recognize the speaker by analyzing the speech signals and speaker characteristics 

elicited from their voices [73]. It focuses on the identity information of the speaker 

while speech recognition focuses on the text information corresponding to the voice. 

The individuals’ sounds are not identical because of the different voice production 

organs and everyone has their own speaking style, vocabulary usage, pronounced 

pattern and so on. Speaker recognition systems attempt to verify and identify the 

speakers’ individuality by their unique voice characteristics and control access to 

services such as banking transactions over a telephone network, telephone marketing, 

telephone shopping, voice dialing, security control access to confidential areas, voice 

mail and remote access to computers. The evolution of speaker recognition system 

from the late 1900s to the early 2000s is shown in Figure 2.1.  

2.1.1 Classification of Speaker Recognition System 

This section describes the three branches of speaker recognition. The speaker 

recognition system can be classified into three different types as speaker verification, 

speaker identification and speaker diarization in detail. They are considered to be the 

most natural and economical methods to avoid unauthorized access to the computer 

systems or physical locations. In general, the speaker recognition system has two 
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stages: training and testing. In the training phase, the respective speaker models are 

developed by using the training data. The model is labeled with the identity of speaker 

and is stored in the database containing the speaker models together with their 

corresponding identities. In the testing phase, the utterance of an open speaker is 

tested against the models existed in the database. This testing process relies on the 

problem, whether it is the speaker verification case, identification case, or diarization 

case. 

 

 

 

 

 

 

 

 

 

Figure 2.1 Evolutions of Speaker Recognition System 

2.1.1.1 Speaker Verification 

Speaker verification can be considered to be a special case of speaker 

classification in an open-set case. It makes a binary decision on whether the speaker 

he/she claims be. Verification means that the speaker affirms to be of a certain 

identity and the uttered voice is used to verify this claim. It is also known as speaker 

authentication. 

Because one speaker’s voice is matched to one template, it is called a one-to-

one match. If the similarity score between the template and the voice sample exceeds 

a predefined decision threshold, the speaker is determined as accepted person, and 

otherwise this speaker is rejected. Setting the high threshold makes it difficult for 

accepting the different speakers by the system. It can cause rejecting the speaker 

falsely. Otherwise, valid users can be accepted consistently by a low threshold but 

accepting impostors can cause as the risk. Therefore, data showing distributions of 

target and impostor scores is essential to set the threshold at the acceptable level of 

false rejection and false acceptance. For this, one or more enrollment sessions are 
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required for obtaining the training utterances. Depending upon the application 

sensitivity, the matching score should be assessed with a predefined threshold. 

Moreover, the performance of verification task is not, at least in theory, affected by 

the population size since only two speakers are compared. Therefore, identification 

process takes longer than the verification process because of the processing time of 

matching. It is effortless for the system to match the testing speaker only with the 

claimed model from the database and not with the entire database and the testing 

speaker is either accepted or rejected.  

2.1.1.2 Speaker Identification 

The process of determining in which the acoustic speech signals is associated 

to its respective speaker is known as speaker identification. The input speaker’s 

utterance is analyzed, the features are extracted, a speaker model is developed by this 

input utterance and it is assessed against all the existing speaker models in the 

database. This takes a protracted process because it relies on the number of the 

speaker models existed in the database. On the other hand, it classifies the test speaker 

into one of the pre-modeled classes (close-set case) and identifies the test speaker as a 

new speaker (open-set case). In open set case, the test speaker is defined as new or 

unknown speaker if it does not match any of the speaker models in the database. It is a 

one-to-N speaker match where the voice is compared against N templates. It is one of 

the challenging topics in signal processing and the validation task of claimed identity 

by machine. Of the verification and identification tasks, verification task is not 

difficult to implement. Identification task is generally considered more difficult. The 

probability of an incorrect decision increases when the number of registered speakers 

increases. This is intuitive. In speaker identification, it can be sub-divided into text 

dependent and text independent cases, based on whether or not the speech used is 

known for each speaker [13].  

2.1.1.3 Speaker Diarization 

Speaker diarization is also an essential part of speaker recognition system. It is 

the process of splitting up an audio recording stream containing a number of speakers 

into homogenous segments. These segments represent the unique characteristics 

associated with each individual speaker. It is a task of answering the question “who 
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spoken when?” It is identified which speakers talk when and also referred to as the 

step-by-step process that is the system discriminates the speaker segmentation of the 

speech signal, speaker clustering of these developed segments into homogenous 

groups with respect to the changes in speaker and then followed by some hypothesis 

result. All these steps are performed within the same stream. The system has no prior 

knowledge about the speakers’ identities and how many speakers are participating in 

the input stream. It has the applications of many fields such as video captioning, 

content structuring, audio information retrieval, understanding the content of any 

conversations, speaker indexing and segmentation (locating the boundaries by finding 

acoustic changes in the signal), etc. [75].  

2.2 Speaker Recognition Criteria 

There are many criteria in speaker recognition from the aspects of text usage 

(dependent or independent), included speakers (open or close), type of word usage 

(isolated or connected) and type of speech uttered (continuous or spontaneous). Text- 

and speaker-independent (open set case) are more convenient and applicable in 

practice because it can freely test the system without restricting the text usage and 

speech uttered. 

2.2.1 Classification on Usage of Text 

This section presents the text criteria which can be either text independent or 

dependent. The training and test data use the same transcript in text dependent system. 

However, the system without depending on text does not need to use the same text. 

Although text independent system is more accurate in system performance, text 

independent system is more convenient in practice because the speakers can freely 

speak to the system without any constraints and limits on speech contents. 

2.2.1.1 Text Dependent 

Text dependent systems need to use absolutely the identical utterance to 

decide who they are. Both training and testing datasets use the same transcript of text. 

The text used during the testing phase contains as a subset of the whole text during the 

enrollment phase. Therefore, the test speaker has prior knowledge of the system and 

text dependent systems are more accurate than text independent system. 
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In other words, the text spoken by a person is known and the speaker must say 

a fixed or prompted sentence. In security-oriented applications, where user input is 

strongly controlled with respect to access to personal organization, text dependent 

recognition of the speakers is applied. The advantage of this type is that the system 

has an early knowledge of spoken text, making it more efficient. 

2.2.1.2 Text Independent 

Speaker recognition without depending on text is applied for identifying any 

type of informal speech and colloquial of user. It has no constraints on the speech 

contents and limits on the spoken words that are uttered. Training and testing data are 

entirely unconstrained. It does not know the previous information of the text spoken 

by person. Applications with a lack of user input controls typically use this type.  

Compared to text dependent speaker recognition, it is usable and more 

convenient in real world applied areas because the speaker does not have any prior 

knowledge about the contents of the training phase and can speak freely to the system. 

To get better accuracy, text independent speaker recognition system needs training 

and testing data more.  

2.2.2 Classification on the Types of Speakers Mode  

This section presents the criteria of speaker aspects can be either speaker 

dependent or speaker independent or speaker adaptive.  

2.2.2.1 Speaker Dependent 

One speaker at a time can be identified using a speaker dependent system. It is 

trained on all of the data per speaker and generally easier to implement, cheaper to 

purchase and more accurate in recognizing. This type of system is more applicable for 

close-set speaker identification systems. 

2.2.2.2 Speaker Independent 

This type of system is built to recognize the voice of anyone, no matter who is 

speaking. This kind is very hard to develop and most expensive. It has a lower 

accuracy rate than speaker-dependent applications because the incoming speaker is or 
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isn’t known by the system, but more flexible in practice. It is more suitable for 

automatic speech recognition systems and interactive voice response systems.  

2.2.2.3 Speaker Adaptive 

The speaker adaptive systems utilize the speaker dependent data to adapt the 

speaker independent system. They also adapt to the best appropriate speaker to 

recognize the speech and increase the accuracy rate by adaption [22]. Speaker 

adaption technique is mostly used in automatic speech recognition. 

2.2.3 Open and Close-set Speaker Recognition 

Speaker recognition is further categorized into open-set and close-set tasks. 

The recognition task is a close-set problem if the target speaker is assumed to be one 

of the registered speakers. The system makes a forced decision simply by choosing 

the best matching speaker from the speaker database – no matter how poor this 

speaker matches. In other words, close set problem has only a specified (fixed) 

number speaker of registered to the system. 

The task is called an open-set problem if there is a possibility case that the 

target speaker is none of the registered speakers. It is much more challenging in 

general. The system must have a predefined tolerance level so that the similarity 

degree between the unknown speaker and the best matching speaker is within this 

tolerance. The verification task can be seen as a special case of the open-set 

identification task, with only one speaker in the database. 

Classification of speaker recognition system is described in Figure 2.2. Text 

independent open set speaker identification in Burmese is implemented as research 

work because text independent system is applicable and flexible in real world applied 

areas. 

2.2.4 Classification on the Types of Speech 

This section presents the criteria of speech uttered by the speakers in the 

system. The types of speech used in this work are continuous speech (broadcasting 

news), and spontaneous speech (radio talks, conversational talks like interview, 

delivered speeches) comprising with the connected words. Isolated words have 
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shorter length than others and are mostly used in automatic speech recognition and 

speaker verification system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Classification of Speaker Recognition System 

2.2.4.1 Continuous Speech 

The users speak almost naturally in continuous speech systems without silent 

pauses between words and the contents. The recognizers are difficult to develop on 

continuous speech because they need special methodologies to decide the boundaries 

of the utterance and allow the users to talk the system without stops and pauses. It can 

recognize more utterances than a command-and-control system.  

2.2.4.2 Spontaneous Speech 

It can be thought of as a casual way of speaking style in basic, and a speech 

that is not rehearsed and automatic natural sounding.  It is opposed to read-aloud 

speech and generated in real time.  Examples of spontaneous speech are interviewing 

speech, delivered speech and conversational talk. 
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2.2.4.3 Isolated Word 

Isolated word recognizers set the condition of each utterance having with little 

noise or clean on both sides of sample window by recognizing single word or 

utterance at a time. These types of speech have the states of “Listen/ Not-Listen” 

because the speakers have to pause between utterances. 

2.2.4.4 Connected Word 

The connected word requires being the separate utterances with the minimum 

pause or stop between utterances to be smooth. These are similar to the isolated word 

having the states of “Listen/ Not-Listen”.  

2.3 Application Areas of Speaker Recognition 

Speaker recognition has many application areas, namely: law enforcement, 

access control: physical facilities, computer networks and websites, speech data 

management, online transaction authentication: telephone banking and remote credit 

card purchases, surveillance, forensic speaker recognition, security, multi-speaker 

tracking, multimedia and personalized user interfaces. The following are the example 

applied areas from some of them. 

▪ Access control: Confidential computer databases as well as secure 

physical locations can be entered through sound. Access can also be 

allowed to restricted and private websites. One of real world example 

is door locks. In this, authentication is performed by speaking freely 

while the door button pressed.  

▪ Law enforcement: Additional information for forensic analysis can be 

provided by using speaker recognition systems. At prison, convict roll-

call monitoring can be implemented automatically. 

▪ Online transactions: An access phrase to buy an item over the phone or 

to pass bank information, person’s speech signal can be used as an 

additional security layer. 

▪ Management in Speech Data: Audio mining applications, voicemail 

services, and live or recorded meetings’ annotation can use to label the 

text spoken by the speakers automatically. 



  

16 
 

▪ Telephone Banking: To check whether an authorized person is 

attempting to enter the accounts, personally and private information, 

voice control access may be used when entering a bank account. In 

order to respond and adapt to users, intelligent machines may be 

installed. 

▪ Personalization and Multimedia: Singer name and track information 

are labeled on sound tracks and music automatically. To send e-mail 

messages over a phone, E-mail sending service application allows the 

callers as part of personalization. As an attachment, voice message can 

be recorded and sent to the E-mail. A special recognizer is used for 

spelling e-mail addresses, subject and sender of the message. To 

improve the recognition performance of the spelling recognizer by 

loading speaker dependent data, identification system is used. In this, 

the sender is identified by a combination of ASR scores and 

verification scores.  

2.4 Diversifications of Speaker Identification 

Many diversifications are still encountering in every speaker identification 

research like duration, environmental condition, voice tones (quiet, normal, shouted), 

speed (slow, normal, fast), noise robustness, accent, speaker characteristics, recorded 

conditions, speaking styles, speaker variability, sex, age, and so on.   

Among them, the duration of utterances is the first one in variations. The 

longer the utterances, the more recognize the specific facts of the corresponding 

speaker. Noise is the second variation because various kinds of sounds that causes 

disturbance can lead to decline the performance of identification. The accent of 

speaker specific facts varying among speakers comes as the third variation. It's easy to 

tell who the speakers are if they speak normally or the way they were trained to speak. 

If the speaker is speaking in a common local dialect or language that corresponds with 

the training data, the speech is easier to understand. The fourth variation is the 

recorded conditions. The voice that is recorded in quiet conditions can raise the 

system performance. The other variation is the speaker variability such as the health 

of the speaker, vocal effort, emotional condition, stress, phonation style, and disguise. 
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Moreover, there are still remaining the variations such as the impacts on the shape of 

the spectral envelope produced in speaker identification. 

2.5 Literature Reviews 

This section points out about the literature and incremental efforts of speaker 

recognition system. In 1952, Audrey at Bell Laboratories invented understanding 

number as voice recognition first. The attempt as the first work for automatic speaker 

recognition was made in the early 1960s after one decade later than that for automatic 

speech recognition. The first research corresponding to speaker recognition was 

approached by Pruzansky at Bell Labs in 1960s, where he employed filter banks and 

correlated the two digital spectrograms for measuring the similarity [27]. Prunzansky 

and Mathews [40] enhanced upon these techniques, and linear discriminators are used 

by Li et al. for further development [41]. In 1970’s, the first automatic speaker 

verification system was developed by Texas Instruments by replacing formant 

analysis on behalf of filter banks. Furui suggested using the combination of cepstral 

coefficients together with their first and second polynomial coefficients as frame-

based features to make the sound clearer when it is changed by the telephone system. 

In [42], an online system was tested and used for six months with 120 users making 

many calls. Later, not only for speech recognition, but also for speaker recognition, 

the cepstrum-based features become standard. In 1980’s, a major breakthrough was 

the development of the hidden Markov model which used statistics. Robustness 

became a central theme on increasing research in the 1990s. Text-prompted speaker 

recognition was proposed by Matsui et al. [43] in which every time used by the 

system; the key sentences are absolutely changed. A mixture of a syllable based 

HMM and a GMM system adapted by MAP system is evaluated with 35 speakers of 

NTT dataset [28]. In this, MFCCs were used as speech features and the recognition 

accuracy was found to be 99 % in 1995. HMM techniques and Vector quantization 

(VQ) were investigated by T. Matsui and S. Furui to make more robust at speaker 

recognition in 1996 [29]. In 1999, speaker identification without depending on text 

was studied based on a segmental approach. Final decisions and outlier rejection was 

based on a confidence measure [30]. In this work, Mel-frequency Cepstral 

Coefficients were used as acoustic features.  
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To raise the confidence level of speaker recognition systems and to make the 

systems more robust, research became focusing on adding higher level information 

such as pitch and energy to speaker recognition systems in the 2000’s. In 2001, the 

idealistic features of speech such as word unigrams (monograms) and bigrams as 

language models from manually transcribed conversations were applied by G. R. 

Doddington [44] to characterize a certain speaker in a traditional target/background 

likelihood ratio and score. Evaluation was carried out on the task of NIST extended 

data, consisting of the long duration speech conversation recorded on telephone from 

400 speakers. A missing rate of 40 % was observed at every FAR of 1% [31]. D. A. 

Reynolds has been done robust text independent speaker identification by using 

GMM speaker models since 1995. The focus of this work aimed for practical applied 

works like voice mail labeling and retrieval [32]. In 2003, D. A. Reynolds et al. were 

also investigated successfully in text independent speaker recognition with the use of 

Gaussian Mixture Models (GMM) [33]. They used high-level information which were 

fused and modeled with the use of multi-layer perceptron (MLP) to combine n-grams, 

Hidden Markov Models (HMMs) and Gaussian Mixture Models (GMMs) [34]. The 

extended dataset of NIST was employed for evaluation and TAR of 98% was 

observed at every 0.2% FAR. In 2006, the NIST’s multilingual dataset of 310 

speakers was also used to identify multilingual speakers. Using GMMs, N grams, and 

SVMs, several speaker-related features were modeled from short-term acoustics, 

prosodic behavior, pitch, duration, phoneme, and phone usage [35]. Many modeling 

systems using a multi-layer perceptron (MLP) were experimented together in this 

work. It has been reported that the recognition rate is 60% and the FAR is 0.2%.  P. 

D. Bricker et al. experimented the speaker recognition on independent of text using 

averaged auto-correlations in 2005 [36].  J. M. Naik et al. approached the research 

using HMM techniques, rather than template matching speaker recognition depending 

on the text [37]. In 2006, the speaker models were implemented on the features of 

Mel-frequency Cepstral Coefficients (MFCCs) together with the adoption of speaker 

adaptive modeling and phonetically structured GMMs. This method was measured on 

Mercury dataset including 38 speakers on the quality of speech recorded with 

telephone and YOHO dataset comprising of clean speech data from 138 speakers. The 

error rates were commemorated to datasets of 18.3% on Mercury and 0.25% on 

YOHO [38]. Moreover, GMM-UBM system on MLP fusion and speaker adaptive 

ASR system were used to model the acoustic features. In this work, MFCCs and its 
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first order derivatives were used as acoustic features. The rate of 7.3% has reported as 

a miss rate when evaluated on the Orion and Mercury data involving 44 speakers in 

total [39].  In most speaker recognition systems, universal background models (UBM) 

are constructed on Gaussian mixture models (GMM) from training a large amount of 

data using expectation maximization (EM) algorithm.  

Nowadays, many researchers become apply the neural architectures in speaker 

recognition not only in front-end analysis but also in backend processing to promote 

the recognition accuracy. Among them, time delay neural networks (TDNNs) become 

one of the popular neural architectures due to its ability of time shifting and input 

context modeling. It is a kind of multilayered neural network which involves the 

properties of its classifying patterns with shift-invariance and modeling context at 

each layer of the network. The first architecture of Time Delay Neural Network, 

TDNN is developed by Alex Waibel since 1987 to apply in phoneme classification for 

ASR in which the automatic determination of precise segments of feature boundaries 

was difficult [7]. One of the methods he was investigating is stage learning to speed 

up the training time of the networks. It was found that the first subsets are small and 

fast to learn, and the size of each successive subset increases rapidly until the entire 

training dataset is used. It is easy to learn the smaller set of data. In order to minimize 

errors and improve generalization, the larger sets fine tune the networks. From 1989, 

the success of TDNN is emphasized by many speech researchers. TDNN has the two 

properties of dynamic structure of speech: the temporal structure and relationships 

between acoustic events.  The advantages of TDNN are reducing the number of 

weights; requiring fewer examples in the training set, faster learning and executing 

compared to the fully connected multi-layer perceptron (MLP). According to the 

benefits using TDNN, it was evolved and applied to speaker and speech recognition 

until the success reaches today. From the success in [7], TDNN architecture applied 

with many modifications in network layers and changing time steps in the input 

contexts. In 2015, the data derived from using the two types of data augmentation 

methods: reverberation (RVB) and speed perturbation (SP) were used for building the 

acoustic models on TDNN which are robust to training data distortions. Three 

different distorting databases (Aachen impulse response database, REVERB 

challenge database, RWCP-SSD sound scene database) were used to get the multi-

condition training data. Three different copies of individual original speech were 

formed by randomly sampling. The results were compared with three different 
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systems constructed using three types of input contexts frames namely [t - 22, t + 12], 

[t - 16, t + 12], and [t - 13, t + 9] in various training data creating of with only 

reverberation and both reverberation and perturbation extracting i-vectors or without 

extracting i-vector. According to the results, speed perturbation was not effective in 

this work. Moreover, although acoustic models constructing with i-vectors leads to 

better results, the acoustic model constructing with the use of features directly 

increase word error rate. In extracting i-vectors, extracting from reliable speech 

segments can achieve better performance than extracting from the speech segments 

comprising with speech and non-speech segments [45]. The effectiveness of learning 

wider temporal dependencies of TDNN architecture on both small and large dataset 

was proposed in [18]. It was used to model the temporal dependencies in long term 

from short-term speech features like MFCCs. To emulate perturbation on speaking 

rate and vocal tract length, applying the method of speed perturbation on training data 

was done. This was provided the progress across several LVCSR tasks with 4.3% 

relative improvements. The speed perturbations of 0.9, 1.0 and 1.1 were applied to 

obtain the three copies of the corresponding perturbed training data. The volume 

perturbation compared to speed perturbation reduced the word error rate (WER) with 

1.5% relative improvement across test sets. The results showed that DNNs are not as 

efficient at processing larger temporal contexts as TDNNs. The temporal input 

context frames of [t - 13, t + 9] was observed the excellent temporal context. 

Compared with baseline configuration, an average relative improvement of 6% was 

shown across six different LVCSR tasks. David Snyder compared the system 

performance of acoustic models among GMM-UBM, supervised GMM-UBM and 

multi-splice TDNN for speaker recognition [15]. The system performance is 

evaluated on the condition five extended task of SRE10. Six layers multi-splice 

TDNN with left input contexts of 13 and right input contexts of 9 was used as in [18]. 

Several thousand of mixture components on full covariance GMM was employed to 

train the background model on 5 iterations of EM. Full covariance supervised GMM 

(sup-GMM) was used in a lightweight model for creating the speaker recognition 

features and using DNN posteriors to implement the GMM for the purpose of 

modeling the phonetic content. The only difference between unsupervised and 

supervised GMMs is in the UBM training process. The system performance was 

evaluated with three points: Equal Error Rate (EER), minDCFs (10-2 and 10-3) on 

gender dependent and gender independent models. According to the results, TDNN 
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based systems achieved the best outcomes resulting 1.09 % and 1.2 % EERs on 

gender independent and gender dependent respectively.   

2.6 Summary 

This chapter discusses the principles of speaker recognition system in detail. It 

describes what the speaker recognition system is and the difference among speaker 

verification, speaker identification and speaker diarization contained in the speaker 

recognition system. It also presents the criteria of speaker recognition depending on 

the text independent or dependent, types of speech and speaker dependencies. 

Moreover, some applied areas of speaker recognition are described and the variations 

encountered in speaker identification research are also explained. In the end, literature 

reviews and evolution history corresponding to speaker identification are expressed in 

brief. 
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CHAPTER 3 

SPEAKER IDENTIFICATION METHODOLOGIES 

 

This chapter describes the theoretical backgrounds and methodologies to 

speaker identification system in detail. It describes about the signals of speech as well 

as the mechanism for its development and representation. It also describes the speaker 

identification process consisting of preprocessing the speech data to achieve the high 

recognizing rate, eliminating the non-speech data frame, extracting features from the 

well-prepared input speech data, taking the highly correlations of feature vector, 

computing the log likelihood ratio for scoring and appraising the system performance 

in terms of equal error rate and detecting accuracy. 

3.1 Speech Signals 

A speech signal consists of a mixture of voices that are created by exhaling air 

from the lungs and stimulating the vocal tract. The irregular acoustic tube is the glottis 

which its length is determined by the distance between the lips and the vocal folds, 

and its cross-section is determined by the position of the tongue, velum, jaw, and lips. 

When the area of cross sectional and the vocal tract’s length are changed, dissimilar 

sounds are produced. Because of divergences in shape and length of vocal tract, the 

speech signal seems different although different speakers who produce the same 

phonemes convey the same information. The resonant frequencies, which are also 

known as formants contains in the spectrum of the vocal tract. One formant is 

generally presented every 1 kHz on average meaning that 3 to 4 formants may be 

contained in the band of speech signal limited to 4 kHz. The nasal tract is another 

important part of speech production starting with the velum at the end of the throat 

and ending with the nostril. When the velum is lowered, the nasal tract is acoustically 

connected to the vocal tract to produce the nasal sounds of speech. Air flows through 

the vocal folds and vocal tract. The sound of excitation is produced because the vocal 

tract forms the spectrum of the speech signal. 

The speech signal is separated into two categories based on how the vocal 

cords work: unvoiced speech and voiced speech. The generation of unvoiced and 

voiced speech is separated by silence region in the producing process of speech 
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because the speech is not complete with the absent of silence region between 

unvoiced and voiced speech. There is no speech sound output in the silence section 

because there is no excitation supplying to the vocal tract. It is not important but it is 

very essential for intelligible speech. 

Unvoiced speech occurs when the vocal cords are kept high and air continues 

to flow at open speed through the vocal folds into the vocal tract. It is producing an 

aperiodic noise which is similar to the natural signals. This is the main difference 

between voiced and unvoiced speech. Compared to voiced speech, the formants at the 

lower frequencies are generally lower in magnitude than those even at the higher 

frequencies in unvoiced speech. 

However, when the vocal cords vibrate at a fundamental frequency of the 

voice and take the part of an active role, the voiced speech is generated. Vocal cords 

receive air in small puffs that cause the vocal folds to open and close on a quasi-

periodic basis for voiced speech. This gives rise to a glottal wave, which is formed by 

energy at fundamental frequency and its harmonics. To produce the voiced speech, 

this wave is traveled through the vocal tract. The formants are the resonant 

frequencies that the vocal tract responds to. In order to define voice speech, higher 

frequencies formants which are usually lower in magnitude than lower frequencies 

formants shall be considered. As the frequency decreases, the level of formants 

increases; however, there are certain exceptions to this rule. The magnitude level of 

formants continues to increase as the frequency decreases. However, there are certain 

exceptions to this rule.  

According to age and gender, the fundamental frequency existed in voiced 

speech is ranging. In the range of 200-400 Hz, the fundamental frequency of children 

is present. Male speakers’ frequency rate fluctuates between the ranges of 50-200 Hz 

while the fundamental frequency of females is changing from 150 Hz to 300 Hz. This 

fundamental frequency determines the pitch of the speakers. The ones who have 

higher pitch possess the higher fundamental frequency. Due to higher frequency rate, 

children’s voices are the loudest, followed by women and then men.  
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3.2 Data Preprocessing 

Preparation of the data for a proper implementation of further processing steps 

such as features extraction and speaker modeling, is an essential part of front-end 

analysis. The quality of data preprocessing in front-end analysis performs the 

important role in speaker identification systems. From high to low quality speech 

signal subspaces, the front-end analysis is transformed while preserving 

discriminative characters and features of speakers [8]. Speech data collection is the 

very first step in any statistical based speaker identification tasks especially for under 

resourced language. Burmese speaker identification encounters some problems due to 

the lack of proper data. For text independent speaker identification, the speech dataset 

for low-resourced tonal language like Burmese is not existed in publicity although 

English that is resource rich languages are easily available. Therefore, as the first 

contribution of this work, the speech dataset needs to build first systematically for 

Burmese language. The speech data were obtained from two main sources: online 

sources1 (Web-based) and collected ourselves in this work.  

The videos are formed into different formats types (.mp4,.wma,.mp3) in a 

variety of frequency. It is needed to convert the wave (.wav) file format uniformly 

with the help of the command 'ffmpeg' for obtaining Web data. These are formatted as 

16-bits mono channel PCM in frequency rate of 16 kHz after converting to wave files. 

The features extracted from this frequency rate enhances and affects for further 

processing because this rate is the most suited one for Burmese’s spoken tone. Then, 

the whole wave file is split to multiple speech segments with Audacity2, open source 

and cross-platform recorder and audio multi-track editor software and then is cut out 

the silent part simultaneously. The non-speech (silence) frames are removed as a task 

of detecting the voice activity. The data collected by this way have clear and accurate 

sounds because the speakers are well experienced and professional. Both global and 

local news about sport, health, politics, speech, crime, education, weather and 

business news, etc., contain in Web-based data.  

 
1Democratic Voice of Burma (DVB), Voice of America (VOA) Burmese, Eleven Broadcasting media, 

British Broadcasting Corporation (BBC) Burmese news, Radio Free Asia (RFA), Mizzima News 

Myanmar, One News Myanmar Channel, Irrawaddy Burmese News, 7days TV, Myanmar Radio and 

Television (MRTV) 
2 https://www.audacityteam.org/ 

https://www.audacityteam.org/
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For recorded data, the text corpus of the daily conversational dialogue is 

prepared first and the transcripts in the text corpus is recorded with microphone and 

telephone which are already setting to 16-bits mono PCM in 16 kHz of frequency 

rate. The dialogues for recording were obtained from U-STAR Universal Speech 

Translation Advanced Research which is ASEAN language speech translation. These 

data were recorded by 25 Lab members and 24 internship students from three 

academic years. In a quiet room at University of Computer Studies, Yangon, 

Myanmar, these data are recorded. It does not suffer from external disturbance such as 

room’s echo and environmental noise. The recordings are performed with the device 

naming Tascam DR-100MKIII3. The duration of every daily conversational dialogue 

is more diminished than the duration of the news, talks, and delivered speech. These 

are the words of conversational dialogue in restaurants, parks, hotels and traveling.  

3.2.1 Data Augmentation Techniques 

The system development has reached to a certain condition but robustness and 

noise tolerant systems are remained problems which cause the system inconvenient to 

use. There are many researches around the world that are currently being conducted to 

the development of speaker identification systems in robustness. Like Burmese 

language, tonal languages such as Vietnamese, Thai, Mandarin, etc., augmented the 

tone corresponding features in building acoustic speaker models in order to increase 

the recognizing rate and robustness of their identification system. Moreover, unlike 

them, Burmese speaker identification system also shows the development by getting 

the data from scratch because Burmese language is the low-resourced language. 

Therefore, this research aims to develop automatic speaker identification with the use 

of state-of-the-art features and technologies applicable for Burmese speech. The 

speech quality matters for more precise recognition, in addition to the efficient 

volume of speech that is required for each speech processing task. 

Data augmentation can be regarded as a method to generate additional training 

data for gathering the substantial volume of data in a short time.  This will increase 

the volume and diversity of the training data. It is a technique to artificially create new 

and different data from existing data by contaminating the artificial value to existing 

data with adding the recorded data information derived from surroundings. 

 
3 https://tascam.com/us/product/dr-100mkiii/top  

https://tascam.com/us/product/dr-100mkiii/top
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Augmented with noise and reverberation as a low-cost method multiply the diversity 

and quantity of existing training data without actually collecting new data and 

improve the system robustness. It can be beneficial in training powerful. It can also 

find out the more speaker specific information due to the increasing length of 

utterances (durability).  

As part of augmenting the data, additive noise and reverberation are employed 

to the original training data. And also, convolving simulated room impulse responses 

(RIRs) with audio is applied to add the echo to the speech data artificially. For 

additive noise, MUSAN4: Music, Speech and Noise dataset consisting of over 900 

noises, 60 hours of speech derived from twelve languages and 42 hours of music 

collected from various genres is used for augmenting the existing training data [21].  

¶ babble: Three to seven speakers are randomly picked from MUSAN speech, 

summed together, then added to the original signal (13-20 dB SNR). 

¶ music: A single music file is randomly selected from MUSAN, trimmed or 

repeated as necessary to match duration, and added to the original signal (5-15 

dB SNR). 

¶ noise: MUSAN noises are added at one second intervals through the recording 

(0-15 dB SNR). 

¶ reverb: The training recording is artificially reverberated via convolution with 

simulated RIRs. 

These augmented data are randomly selected for combining to the original 

“clean” training data. By doing this, the data size becomes doubling the size of the 

original dataset. It is a strategy adapting to raise the abundance of training data, 

enhance the robustness of the models and avoid over-fitting [14]. Augmenting makes 

increasing the volume and diversity of data and the derived results are acceptable. 

Therefore, augmenting the training data is applied as the second contribution of this 

work for the aim of enhancing the system performance. 

3.2.2 Data Scrutiny 

This section presents the third contributions of this work. Nowadays, 

researchers are keeping analyzing and investigating the performance of their 

 
4 https://www.openslr.org/17/  

https://www.openslr.org/17/
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researches not only from the aspect of data quality but also from theoretical surveys. 

Although the facts that the theoretical perspectives enhance the performance progress 

of system, the next processes following data collection are convenient and the system 

is more robust only if the high-quality data is used. The researchers become more and 

more careful in preparing data because it is the most important and essential part in 

every research development. Moreover, the data done as possible as exact can give 

the more compatible results and enhances the system performance.  Therefore, the 

speech dataset is well-preprocessed and scrutinized as the main contributions of this 

research work according to these facts.  

Many audio analyses in tempo, speed and volume, etc. are investigated in [14, 

45]. Among them, the two scrutinizing methods are contributed in preparing Burmese 

speech dataset to implement the speaker identification system more robust. Firstly, 

since changing the speech intensity of speech can change the structure of the sound 

spectrum, the Signal to Noise Ratios (SNRs) levels are adjusted to examine the 

intensity of speech segment. Different intensity levels are tested to find out whether 

changes in voice improve. The performance of data on these SNRs levels (-10 dB, -5 

dB, 5 dB, 10 dB) is analyzed because the form of the loudness of sound collected 

from different sources varies. These data comprised with different dBs were 

implemented to take out of which dB scale is suitable for the timbre of Burmese. This 

is implemented by setting the same SNRs uniformly to all of the speech segments. 

According to the results, setting the intensity level up to 10 dB gave the assured 

results than the performance of original data.  

The further method is the detailed inspection in tempo factors. This is done by 

making the tempo up and down the speech segments. Although the target speaker may 

recognize slightly slower rhythm, a speaking rhythm that is too fast may not 

accurately capture the speech. However, as a consequence, reduction in speech rate 

may cause the duration of the initial utterance to increase. When the speed factors 

increase and decrease in tempo with 0.2 times (20%) apply on existing original speech 

dataset, decreasing the tempo factor on speech yields more reasonable results than 

increasing tempo coefficient and rhythm are normal. The cause of performing the 

tempo factor down than the tempo factor up is that speaking more slowly can catch 

and identify well what they are talking. 
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There are two variations of pace on spoken speech namely tempo and speed. 

In this work, tempo is altered rather than speed because tempo factor investigation 

had no effect on speech pitch. But, altering the speed rate leads to not only change the 

spectral shape of speech but also influence on both tempo and pitch. This can lead to 

loss of precise information about the speaker contained in the speech clips. According 

to pointed out by the experiments, it can be seen that speaking slower can better 

recognize the speaker’s voice and better understand what we are saying due to the 

clarity of vocabulary. Moreover, it may also make the improvement in automatic 

speech recognition. 

The examined dataset is then created by allowing the SNR level to rise to 10 

dB and the tempo factor to slow to 0.2 times (20%), in order to approach the nature 

and efficacy of intensity levels and tempo factor in voice signals. Acoustic speaker 

models are then built using the features extracted from the original, scrutinized and 

white noise-added datasets to substantiate that the scrutinized dataset decreases the 

error rate than the original and white noise-added datasets.  

3.2.3 Impacts of Adding White Noise 

White noise refers to the sound of all audible frequencies at the same 

amplitude or volume. It has full spectrum coverage as opposed to the other noise 

colors: pink brown and black noises covering only a portion of the spectrum for 

different levels of impact. While white noise that promotes relaxation is a pleasant 

sound for most people, adding it to human speech can lead to the disturbance. The 

aims of adding white noise to the clean data is to simulate the corruption and to obtain 

the multi condition noisy training data [77]. Although one advantage of containing 

white noise in speech is that it can be able to cover up the intrusive noises, the 

accuracy rate still degrades than the original clean data and scrutinized data. This is 

because any kind of noise can hinder in recognition process. To cover the noises of 

different spectral shapes and bandwidths, the experiments were done in this work with 

adding white noise to the clean data. According to the results, white noise leads to 

degrading the system performance on acoustic speaker model. 
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3.3 Feature Extraction 

The absolute speech is derived through a Front-end analysis module that 

separates speech components from non-speech parts. From these absolute speeches, 

the acoustic features required for speaker modeling are extracted. Feature extraction is 

a fundamental preprocessing step to pattern recognition and machine learning 

problem. It is a part of dimensionality reduction process in which the raw data are 

diminished and split to more manageable states.  

In other words, the main goal is to compute the feature vectors sequence 

representing a compact description of the input signal but effective depiction that is 

more stable and discriminative than that the original signal. It is a unique kind of 

dimensional reduction that is used to get rid of data that is too big for an algorithm to 

handle. The given input data is converted into a feature set, which produces the 

necessary data to carry out the intended task using the reduced set without requiring 

the full-size data.   

Feature extraction plays the important role not only in speech synthesis, 

analysis, recognition, coding and enhancement but also in speaker recognition, voice 

modification and language identification. It is the process of keeping the useful 

information from the speech signal while unnecessary information is discarded. In 

this, some useful information may lose in removing the unnecessary information from 

the speech signal. Moreover, low level (short-time) features are more powerful than 

the high-level features. Therefore, the acoustic features can be easily extracted. 

However, the extraction process is more difficult than the low-level features, although 

the high-level features contain more information related to the speakers [4].   

3.3.1 Categories of Audio Features 

Transforming audio streams into acoustic features can be efficiently applied to 

extract unique characteristics of individuals. The proposed features used for speaker 

identification are separated into long time (high-level) features, medium time features 

and short time (low level) features depending on the duration [74]. It is advantageous 

to divide the basic time period for features, so that they can be chosen according to 

the decision timeframe. Short time (low level) features like Mel Frequency Cepstral 

Coefficients (MFCCs) and Perceptual Linear Prediction (PLP) are easy to extract 
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speaker specific information but long time (high-level) features like pitch are 

complicated to compute. Some of the audio features are shortly expressed below. 

3.3.1.1 Short-Time Features  

Short time features are considered to be the speech properties obtained from 

frames of approximately 30 m long, and have been referred to as low level 

characteristics. In extracting the instant frequency or timbre of the signal, such 

features are effective. Moreover, they are very easy to excerpt speaker specific 

information over the frames. For speaker identification, MFCCs have been regarded 

as the most effective feature in short time level, have surpassed than other features at 

a similar time and have given the accurate recognizing result [74].   

3.3.1.2 Medium-Time Features  

The medium-time features are defined as features which are taken once every 

740 ms and can be retrieved from the signals of a longer frame length, or short time 

features that have continuous frames. They are also efficacious for retrieving 

modulation components of the signals. MFCCs, and mean and variance of Filter Bank 

coefficients are short-time features. To obtain medium-time features, another 

technique used for feature consolidation of MFCCs is autoregressive model [74]. 

Low short time energy ratio (LSTER) and high zero crossing rate ratio 

(HZCRR) are other instances of medium-time features extracted from short time 

energy and zero crossing rate (ZCR) of the signal respectively. HZCRR shall be 

defined as the number of frames in which a zero-crossing frequency is at least 1.5 

times higher than an average ZCR. Although they offer some benefits in ease of 

implementation and reduced computational costs, the ratio of the numbers of frames 

with temporal energy less than half to these two features can be significantly impaired 

due to noise identified as LSTER.  

3.3.1.3 Long-Time Features  

In frames whose length changes from 4.81 seconds to 9.62 seconds, the 

features obtained are called long-time features and it can capture the phonetic, 

prosodic and lexical information. It also refers to the features that are extracted over 
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regions longer than a frame. Although long time features can provide useful metadata 

about a speaker for discriminating, they are very hard to compute.  

3.3.2 Mel Frequency Cepstral Coefficients (MFCCs) 

Speech features isolate a speaker from other speakers with the aim of 

exploring robust and discriminative phonetic features that improve detecting rate in 

acoustic data. Mel-frequency Cepstral Coefficient (MFCC) is the most useful feature 

extraction technique in every speech processing system. In 1980, it is a nonlinear 

mapping of the audible frequency range introduced in speech processing domains 

[24]. In speech classification problems such as speech and speaker recognitions, it has 

become one of the most widely used short-time features because they produce an 

accurate and compact representation of the speech magnitude spectrum.  

Short-term speech representation is a commonly utilized feature in speech 

processing systems, drawing inspiration from the human auditory system. It is also a 

type of feature extraction method that extracts short term speech features from long 

term temporal dependencies. Low-level spectrum (short term) features are more 

potent and simpler to extract than high-level features. Although high-level features 

contain more information about speakers than low-level features, feature extraction 

from high-level features is a more difficult and time-consuming operation. Figure 3.1 

shows the extracting steps of MFCC features. 
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Therefore, for the next processing step, the quality of the speech features 

should be improved. The 13rd feature combining 12-dimensional Mel-frequency 

Cepstral Coefficients (MFCCs) features and 1 energy feature is extracted by using the 

Hamming window. It extracts the features every 10 ms from the frame size of 25 ms 

long for short-time Fourier transform (STFT). Double delta features are added to have 

39 dimensional MFCC features for more recognizing the speakers’ identity and 

improving the system performance.  

3.3.2.1 Sampling  

The process of measuring the instant values of continuous time signal into a 

discrete form is defined as sampling. It is the first step of converting the analog 

representation into digital signal in processing speech. Continuous analog signals are 

digitized by converting to discrete time, discrete valued signals. Converting analog to 

digital signal involves two steps: sampling and quantization.  

A sample is analyzed by measuring its amplitude at a particular time; the total 

number of samples taken per second is defined as the sampling rate and is generally 

used between 8 kHz and 20 kHz for speech processing systems. 16 kHz range is 

suitable for speaker identification system. A wave needs at least two samples in each 

cycle in order to be measured precisely. The first one gauges the wave’s positive 

component, while the second gauges its negative component. If there are fewer than 

two samples in a wave, the frequency will be entirely missed; however, if there are 

more than two samples in a cycle, the accuracy of the amplitude is increased. 

Consequently, a frequency wave with a frequency half of the sample rate is the 

highest frequency wave that can be detected. The Nyquist frequency is the highest 

frequency for a given sampling rate. Most information in human speech exists in 

frequency below the range of 10 kHz; therefore, the sampling rate existing in the 

range of 20 kHz would be necessary for complete accuracy. Wideband sampling rate 

which has 16 kHz is mostly used in every speech related system.  

Quantization determines what scale is used to represent the signal intensity. It 

is usually stored as integers, either 8 bits ranging the values from -128 to 127 or 16-bit 

ranging the values from -32798 to 32767. Quantization is the process of expressing 

real-valued numbers as integers. This is because any values that are closer together 
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than this quantum size are represented similarly, and there is a minimum quantum size 

(the granularity). Generally, it appears that 11 bits numbers capture sufficient 

information, although by using a log scale, 16 bits per sample provide 216 = 65536 

quantization levels. In 16 kHz of sampling frequency is suitable for 16 bits pulse code 

modulation (representing the speech signal by binary-coded quantized samples) for 

enough processing power, a higher bit resolution for the sampled values is preferable. 

Each sample in the digitized quantized waveform is referred as x [n], where n acts an 

index over time. A digitized, quantized representation of the waveform is gained and 

it is ready to extract MFCC features [23]. 

3.3.2.2 Pre-emphasis 

Pre-emphasis refers to filtering that emphasizes the higher frequencies. That 

is, the speech signal is lesser in magnitude during high frequencies. In other words, it 

is performed for flattening the magnitude spectrum and balancing the low and high 

frequency components. The purpose of pre-emphasis is to balance the spectrum of 

voiced sounds that have a steep roll-off in the high frequency region. Prior to 

transmitting or recording to a storage medium, the initial objective is to increase the 

amount of high frequency energy in order to improve the signal-to-noise ratio. 

Boosting high frequency energy gives more information because more energy exists 

in the spectrum of voiced segments at lower frequencies than higher frequencies. It is 

used in speech processing because of the rapid decaying spectrum of speech. This 

decay in high frequency part is seen to be suppressed during the sound production 

mechanism of humans with amplifying the importance of high frequency formats.  

The formula for pre-emphasis filter is  

 

                                        ◐ ▪ ●▪ ♪ ●z ▪                      (3.1) 

 

where the per-emphasis coefficient is ɻ and its values should be in the range between 

0.9 and 1, the output signal is defined as Ù Î, the input signal is defined as  ØÎ 

and  Ø Î ρ defines as the last input signal. The most common used coefficient of ɻ 

is 0.97. 
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3.3.2.3 Framing and Windowing 

Framing makes the non-stationary speech signals to stationary signals. The 

purpose of windowing is to reduce the effect of the spectral artifacts that result from 

the framing process [25]. Speech is a non-stationary signal. Spectral features are 

extracted from a small window of speech that characterizes a particular sub-phone. It 

can be done by using a window which is non-zero inside some region and zero 

elsewhere, running this window across the speech signal and extracting the waveform 

inside this window.  

A signal is divided into shorter frames having distorting spectral information 

in segmented speech. To minimize this distortion, all samples in frames are then 

multiplied with a window weighting function before feature extraction. Multiplying 

the speech waveform by using a window function can gradually prevent in any 

change between frames. The time for which the signal is considered for processing is 

called a window, data acquired in a window is called a frame, and features extracted 

for a certain millisecond are called a frame rate. The window length is bigger than the 

frame interval for preventing any loss of information during transitions between the 

frames. Overlapping frames are used to avoid missing data, so that the current frame 

covers a part of information from the previous frame. Therefore, the windowing 

process has three parameters: the width of window in milliseconds, the offset between 

successive windows, and the shape of the window. Usually, 30 to 50 frames per 

second can give intelligible speech. The frames can be independently analyzed and 

represented as a single feature vector. The speech signal is usually divided into frames 

of small duration typically 20ms to 40ms with overlap of 10ms to 15ms for short-term 

spectral analysis. In this research, the speech signal is split into a number of 

overlapping frames; each frame is 25ms long and shifted by 10ms. By multiplying the 

value of the signal at time n, x[n], with the value of the window at time n, w[n], the 

windowing can be done. 

 

                                          ◐▪ ◌▪ ●z▪  ▪ ╝                                  (3.2) 

 

There are many window functions available for signal processing applications 

namely: Triangular window, Hamming window, Rectangular window, Hanning 
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window, and so on. Having a narrow main lobe and low side lobe levels in their 

transfer function is a good window function.  

The most useful windowing in feature extraction is Hamming window 

shrinking the values of the signal toward zero at the window boundaries, avoiding 

discontinuities. It is used to minimize the effects of transmission overlap and 

spectrum flux in the Discrete Fourier Transform (DFT) by highlighting the signal 

content at the center of the frame that corresponds to its edge. A Mel scaled filter 

bank passes the DFT’s magnitude spectrum. Instead of a linear scale, Mel scale is 

used because the human auditory system consists of filter. Its center frequencies and 

crucial bandwidths resolve non-linearly over the audio spectrum. The following 

equations are for rectangular window, Hanning window and Hamming window. 

 

                                      ╡▄╬◄╪▪▌◊■╪►ȟ◌▪  ȟ          ╝
ȟ          ▪╝ ȟ                      (3.3)  

 

The simplest window is the rectangular window but it abruptly cuts of the 

signal at its boundaries which are replacing N values by zeros, and the waveform will 

be suddenly turned on and off. 
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In this work, Hamming window is used to minimize the signal discontinuities 

at the beginning and end of each frame. The choice of window is critical for analysis 

of speech signal utilizing because the proper use of windowing in the preprocessing 

step not only reduce the frequency component leakage but also make spectrum 

smoother. Rectangular window has easily lost the details of the waveform of speech 

signal.  

Therefore, Hamming window is better for using to truncate the long signal 

sequence into short time sequence and is more effective to decrease frequency 
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spectrum leakage with the smoother low pass effect. Moreover, it has relatively stable 

spectrum for speech signal and it helps to enhance the characteristics of original 

signal. 

3.3.2.4 Discrete Fourier Transform 

Discrete Fourier Transform (DFT) performs extracting the spectral 

information from the windowed signals. It is used to get the spectral content for the 

discrete frequency bands of a discrete temporal signal. The output ὢὯ is a complex 

number in the original signal representing the phase and magnitude of the frequency 

component. The formula for DFT is as follows: 

 

                                            ἦἳ  В ὀἶἭἲ
ἳἶ

ἚἚ
ἶ                                               (3.6) 

 

For converting the signals from time domain to frequency domain, the 

commonly used algorithm for computing the DFT is the Fast Fourier Transform 

(FFT).  It is also used to increase the speed of computation time and computes for N 

values that have the powers of 2 because of some limitations. 

3.3.2.5 Mel Filter Bank 

Mel frequency warping means converting the frequency domain signal to 

‘Mel’ frequency scale (a measuring unit of the perceived frequency or pitch of a 

spoken tone) based on how the human hearing perceives frequencies. The frequency 

content of sounds for speech signals in human perception does not follow a linear 

scale because human earing is not equally sensitive to all frequency bands. Like the 

actual, normal frequency measure in Hz, the subjective pitch is measured on ‘Mel’ 

scale, a unit of pitch. The ‘Mel’ frequency scale is the linear frequency spacing below 

1 kHz and the logarithmic spacing above 1 kHz. Removing the pitch of speech signal 

and smoothing the magnitude spectrum is the main tasks of Mel-filter bank. The 

formula for computing ‘Mel’ scale for a particular frequency is  

 

                              ╜▄■ █ ■z▫▌
█

                                  (3.7) 
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3.3.2.6 Computing Log 

Taking the log of the power at each of the ‘Mel’ spectrum values for 

compressing dynamic range of values is done in this step. Using a log makes the 

feature estimates less sensitive to variations in input such a power variation due to the 

speakers’ mouth moving closer or further from the microphone. In general, the human 

response to signal level is logarithmic. Humans are less sensitive to slight differences 

in amplitude at high amplitudes than at low amplitudes. Taking the log implements 

that intuition by establishing a bank of filters that accumulate energy come from each 

frequency band having 10 filters spaced linearly below 1 kHz and the remaining 

filters spread logarithmically above 1 kHz [23]. The log of each ‘Mel’ spectrum is 

calculated as follows: 

 

                           ╔□  ■▫▌ В ╧▪ ╗□ ▪
╝
▪  ȟ  □  ╜                    (3.8) 

 

where M is the number of ‘Mel’ filters, ὢὲ is the N point FFT of the input speech 

signal’s specific window frame, and Ὄὲ is the ‘Mel’ filter transfer function. 

3.3.2.7 Discrete Cosine Transform 

Discrete Cosine Transform converts the log ‘Mel’ spectrum back to time 

domain to obtain the MFCC features. DCT gathers most of the information existing in 

the signal to its lower order coefficients by discarding the higher order coefficients 

and also de-correlates the energy because filter banks are all overlapping and the filter 

bank energy are quite correlated with each other. 

 

                                         Ἣἶ  В ἏἵἫἷἻ 
ἶ
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where ὧὲ is the resulted MFCC features. Moreover, additional energy feature is 

added as the 13rd feature to MFCC. The features with 12 plus 1 energy dimensional 

cepstral coefficients with double delta are used in this work. 
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3.3.3 Delta MFCC 

Adding time derivatives to the basic static parameters enhances the 

performance of a speaker recognition system. By analyzing frame, the speech signal 

in time domain is lost in the frame. Delta feature is a widely method used to encode 

some of the dynamic information of spectral features. The time derivatives of the 

features are estimated by some method, and then this derivative estimation is 

appended to the feature vectors, giving a feature vector having the higher dimensional 

feature. As an example, if 12 plus 1 (energy) dimensional Mel-Frequency Cepstral 

Coefficients are appended with their time derivative estimates, the dimensionality of 

the new feature vector is 13 + 13 = 26. As one of the interesting features of the 

classification system, one of the important characteristics is channel invariance. But 

this property does not exist for MFCC features that will be distorted by the spectral 

divergence in a channel.  

However, the property of channel invariance exists in the dynamic features 

reflecting changes over time. Thus, the first- and second-time derivatives of MFCC 

are currently adopted by the researchers in the research community as extra features. 

The improvements of identification accuracies when used with MFCC have been 

shown by these time derivations [26]. Delta is the type of velocity feature. The 

acceleration feature of a frame is a double delta. The cepstral coefficients of 12 

dimensional for each frame are obtained by extracting the cepstrum from the previous 

step with the use of DCT. The energy from the frame is added as a 13rd feature. The 

change between frames existed in the corresponding cepstral or energy feature is 

represented by each of the 13 delta features. 

The computation of the delta MFCC Ὠ for frame ὸ is mathematically given by 

equation. 

                            ▀◄  
В ▓ ╬◄▓  ╬◄▓
╓
▓

В ▓╓
▓

                                   (3.10) 

 

where the delta window size is represented as Ὀ and ὧ represents the MFCC at frame 

ὸ. The use of delta cepstral features is a disadvantage to an increase in feature vector 

size, although they have the benefit of improving accuracy at certain cases. But delta 

features are important for enhancing the robustness of the recognition. Delta and 
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double delta features improve the accuracy of the speaker recognition system. 

Therefore, 39 dimensional Mel-Frequency Cepstral Coefficients (MFCC) are used as 

the acoustic feature in this work. 

3.4 GMM-UBM based Speaker Model 

Gaussian mixture models (GMMs) are widely used in the speaker recognition. 

Literature shows that GMM based probabilistic models yields better and more 

reasonable outcomes for training of speaker recognition applications in both text-

dependent and text-independent tasks. A speaker probabilistically is represented 

through a multivariate Gaussian probability density function (pdf) recognizing that 

speech production is inherently non-deterministic. Each statistical variable 

corresponds to a single acoustic sound class as a state because this is a multi-

dimensional structure. GMM takes as input a sequence of vectors provided by the 

MFCC and uses it to build one model per speaker. 

3.4.1 Gaussian Mixture Model (GMM) 

Gaussian mixture models (GMMs) can provide greater flexibility and 

precision in modeling the underlying statistics of sample data [32]. These are a type of 

density model which comprise a number of Gaussian component functions. These 

component functions are combined to provide a multimodal density. A Gaussian 

mixture density is a weighted sum of M component densities as shown in Figure 3.2 

and the equation is as follows:  

 

                          ▬●ᴆȿⱦ В ▬░╫░●ᴆ
╜
░                                              (3.11) 

 

where ὼᴆ is a D-dimensional random vector, ὦὼᴆ, Ὥ = 1,…,M are the component 

densities and ὴȟὭ ρȟȣȟὓ are the mixture weights of ith component. Each 

component density is a D-variate Gaussian distribution function of the form  

 

    ╫░●ᴆ
Ⱬ 
╓
 ȿВ░ȿ  

ἭὀἸ  ●ᴆ Ⱨᴆ░
╣В ●ᴆ Ⱨᴆ░░               (3.12) 
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with the number of dimensions D, mean vector ‘ᴆ extracted from feature matrices and 

covariance matrix В which provides information about the difference between 

features. The mixture weights satisfy the constraint that В ὴ ρ. The complete 

Gaussian mixture density is parameterized by the mean vectors, covariance matrices 

and mixture weights from all component densities. These parameters are represented 

by the Equation 3.13. 

  

                            ⱦ ▬░ȟⱧᴆ░ȟВ░ ░ ȟȣȟ╜                                   (3.13) 

Each speaker is represented by a GMM and is referred their respective speaker 

model by ‗. Each speaker is attributed a GMM. The spectral shape of the ith acoustic 

class can be represented by the mean ‘ᴆ of the component density and covariance 

matrix В is represented as the average spectral shape’s variations. Depending on the 

selection of covariance matrices, GMM can have several different structures. The 

three classifications of covariance matrix are (1) one covariance matrix represented 

for one Gaussian component (Nodal covariance), (2) one covariance matrix 

describing for all Gaussian components in a speaker model (Grand covariance) and 

(3) a single covariance matrix which shares to use by all the speaker models (Global 

covariance). In addition, the covariance matrix can also be full or diagonal. For 

speaker modeling, nodal (one covariance matrix intended for one Gaussian 

component) and full covariance matrices are taken into account in this work. Figure 

3.2 shows the description of M component Gaussian mixture densities. 

 

 

 

 

Figure 3.2 Description of M component Gaussian mixture densities. A Gaussian 

mixture density is a weighted sum of Gaussian densities, where pi, and bi ( ), i=1, 

… M, are the mixture weights and the component Gaussians. 
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The goal of speaker model training is to estimate the parameters of the GMM, 

‗ which matches the distribution of the training feature vectors. The method 

employed in this situation is the Maximum likelihood estimation. For estimating the 

parameters of a GMM, there are several available techniques. Among them, 

Exception-Maximization (EM) algorithm is used to estimate the parameters of a 

GMM model in this work. It served as an initialization to estimate a full covariance 

UBM. The basic idea of this algorithm is beginning with an initial model ‗, to 

estimate a new model ‗  in order to such that ὴὢ‗ ὴὢȿ‗ . The new model then 

becomes the initial model for the next iteration and the process is repeated until some 

convergence threshold is reached that is until the parameters of ‗ reach a stable value. 

On each EM iteration, the parameters are updated and re-estimation formulas 

are used which guarantee a monotonic increase in the model’s likelihood values for 

mixture weights, means and variances. For re-estimating the mixture weights, 

Equation 3.14 is used. Equations 3.15 and 3.16 are used for re-estimating the means 

and variances. 

 

                            ▬░ ╣
 В ▬░ ȿ●ᴆ◄ȟⱦ
╣
◄                                                    (3.14) 
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                                             (3.15) 
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 Ⱨᴆ░                                  (3.16) 

 

where „ , ὼ, and ‘ are the arbitrary elements of the vectors „ , ὼᴆ, and ‘ᴆ, 

respectively. The final step of maximum likelihood is to attain the a posteriori 

probability for each feature vectors. The a posteriori probability for acoustic class Ὥ is 

given by  

 

                             ▬░ ȿ●ᴆ◄ȟⱦ
▬░╫░●ᴆ◄

В ▬▓╫▓●ᴆ◄
╜
▓

                                        (3.17) 
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Selecting the order ὓ of the mixture and initializing the model parameters 

prior to the EM algorithm are the two critical factors in training a Gaussian mixture 

speaker model [32]. In speaker identification, a group of Ὓ speakers’ Ὓ ρȟςȟȣȟὛ 

is represented in GMM as ‗ȟ‗ȟȣȟ‗ . Finding the speaker model with the maximum 

a posteriori probability for a given observation sequence is the primary objective, and 

it is represented as  

 

                                      ╢ ἩἺἯἵἩὀ
▓╢
ἜἺ ⱦ▓ȿ╧                                       (3.18) 

 

According to the Bayes’ rule, the speaker model with the maximum a 

posteriori probability becomes  

 

                                            ╢ ἩἺἯἵἩὀ
▓╢

╧ ȿⱦ▓ ἜἺⱦ▓

▬╧
                                          (3.19) 

 

By (i) assuming equally likely speakers (equivalent to 0Ò‗  ρὛ ) and (ii) 

observing that ὴὢ  is the same for all the speaker models, the above classification 

rule can be made even simpler. Therefore, Equation 3.19 reduces to 

 

                                                ╢ ἩἺἯἵἩὀ
▓╢
▬╧ ȿ ⱦ▓                                          (3.20) 

 

Finally, the speaker identification system calculates  

 

                                          ╢ ἩἺἯἵἩὀ
▓╢
В ἴἷἯ▬●ᴆ◄ȿ ⱦ▓
╣
◄                                 (3.21) 

using the logarithms and the independence between the observations in 

which ὴὼᴆȿ ‗  is given in Equation 3.11 [32]. 

3.4.2 Universal Background Model (UBM) 

Universal background model (UBM) in speaker recognition systems is a 

widely used effective framework that has found great success. UBM is a large 
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Gaussian mixture models (GMMs) model representing general, person-independent 

feature characteristics to be compared against a model of person-specific feature 

characteristics when making accept and reject decision. It is used in biometric 

systems. It is an improvement in the field of speaker recognition using GMMs and 

typically characterized as a single GMM trained with a huge amount of data from a 

large set of speakers. The UBM technique is consolidated into the GMM based 

speaker identification system to reduce the required time for recognition significantly. 

It is the key element of i-vector system for collecting statistics from speech utterances. 

A large UBM with full covariance matrices is employed to collect statistics for the 

evaluation of i-vectors, which includes many computations. The method is to first 

select a speaker specific trained model, and then determines a likelihood ratio of the 

match score of a test speech sample with the trained model and the universal 

background model [59]. 

A GMM characterizing the specific features of all different speakers is a UBM 

in the speaker identification system. Each speaker model can be developed by 

Bayesian adaptation from the UBM using particular speaker training speech instead of 

employing the maximum likelihood training. The mixture components concerning 

with each adapted speaker models retain an assured correspondence with the UBM 

because the likelihood value for a feature vector is significantly contributed only in a 

few of the mixtures of a GMM according to the findings from prior experiments 

focused for speaker recognition. Therefore, log likelihood score of the speaker model 

can be evaluated by scoring only the more significant mixtures. The mixtures that 

have the highest scores from the UBM are computed to obtain these significant 

mixtures because of the correspondent relation of mixtures between the speaker 

models and the UBM [60].  

3.4.3 GMM Based i-vectors Extraction 

Modeling the overall training data variability and compressing the speaker 

information to a vector which has low dimensional are the aims of i-vector system. It 

represents the important information about the speaker and all other types of 

variability. GMM based approach for i-vector extraction estimates the mean values of 

speaker speech features associated to each component of Universal Background 

Model (UBM). Figure 3.3 shows the total variability space representations. 
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Figure 3.3 Total Variability Space Representations 

 

Identity Vectors or i-vectors known as the lower dimensional vectors have a 

compact representation of speech signals. These are derived by transforming from 

supervectors. The speaker- and channel-dependent GMM supervector ί can be 

modeled as this main idea: 

 

                                            ▼ □ ╣◌                                                   (3.22) 

where ά is the GMM-UBM mean supervector, Ὕ is a low rank matrix representing 

the total variability space, and ύ is the total i-vectors following a standard normal 

distribution. The global parameters Ὕ and ά can be estimated by using EM algorithm. 

The MAP point estimate of ύ is i-vector, and i-vector extractor is referred by Ὕ. It can 

be easily extracted an i-vector ύ with ί , ά and a trained Ὕ matrix. After i-vectors are 

extracted, the PLDA model can be used to calculate the log likelihood ratio scores for 

the hypothesis test that determines if the two i-vectors of utterances are produced by 

the same speaker.  

3.5 Neural Network based Speaker Model 

In automatic speech recognition, successful applications of Deep Neural 

Networks (DNNs) have supported a forceful motivation to exploring attempts of 

possible consequences in speaker recognition task by implementing with DNN 

architecture. GMM with a lot of components is inefficient because only a small 

portion of the data are applied for each parameter whereas an overwhelming amount 

of data constrains to each parameter in a product model. The non-linearity of the two 

models is not the same. Although GMMs need uncorrelated data, DNN can exploit 

d × 1 

s = m + T w User supervector 

UBM supervector Total variability matrix 
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correlated data forming multiple frames of input coefficients. Moreover, GMM 

learning employs Expectation Maximization (EM) algorithm which is much easier to 

parallelize while DNN learning uses stochastic gradient descent. 

DNNs consist of a large output layer and numerous hidden layers with 

numerous non-linear units. It has been utilized recently to obtain speaker-related 

attributes and requires a large amount of processing data in order to train the model, 

but as a consequence, it can provide the optimal results although model training takes 

a lot of time. There are two approaches of using DNN in speaker identification: one 

uses DNN for extracting the acoustic features, and another uses DNN for modeling 

the acoustic features. Modeling is performed with the use of i-vector framework, and 

DNN is replaced instead of using the traditional universal background model [62]. In 

this work, the efficiency of TDNN implementation is investigated at feature 

modeling. When it comes to DNN-based speaker identification models and systems, 

TDNN is an effective architecture. 

3.5.1 Time Delay Neural Network (TDNN) Based Model 

Time Delay Neural Networks (TDNNs) have been used as the predominant 

form of neural network architecture for the purpose of speech and speaker recognition 

[61]. The first TDNN is developed by Weibel and Lang in 1989 designed to handle 

the frame-based analysis of speech [7]. It is a type of feed forward network 

architecture which has strong ability in its context modeling and effective in 

classifying patterns with shift invariance and modeling long term temporal contexts at 

each layer of network. TDNNs construct the initial transforms are learned within 

narrow contexts in lower layers and learned the hidden activations from the longer 

temporal relationships in deeper layers (higher layers) although the initial layers 

learns an affine transform for the whole temporal context in a standard DNN. It can 

also learn wider temporal dependencies in both large and small amount of training 

data. Therefore, when modeling long term temporal dependencies derived from short 

term acoustic features like MFCC, TDNN is utilized. 

Because it is effective at obtaining features of long-range temporal context 

dependencies [7] and improving the x-vector learning capability by obtaining more 

robust speaker characteristics, TDNN is the progenitor of convolutional neural 

networks [18]. It is trained to extract “x-vectors” which has in segment level for text 
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independent speech recognition [69]. The architecture has a continuous input that is 

delayed and sent as an input to the network. As an example, consider training a feed 

forward neural network being trained for a time series prediction. The desired output 

of the network is the present state of the time series and inputs to the neural network 

are the delayed time series of past values. Hence, the output of the neural network is 

the predicted next value in the time series which is computed as the function of the 

past values of the time series [7]. Although DNN diminishes the system performance 

for under resourced data while there is a lack of the amount of training data required 

and the fully connected nature of DNN can’t alleviate over fitting, TDNN 

outperforms DNN and Gaussian Mixture Model-Universal Background Model 

(GMM-UBM). It is because it can model the context information at each layer of 

network and captures long term temporal dependencies in shift invariance. The 

advantages of using TDNN are reducing the number of weights (require fewer 

examples in the training data and faster learning), and executing faster in the network 

in comparison of fully connected multilayer perceptron. Moreover, if there is a limited 

amount of training data because subsampling excludes duplicate weights, it has an 

advantage in fast convergence. 

Feature learning, statistical pooling and identification process are the three 

parts of TDNN architecture for speaker identification. Five-time delay layers are used 

in feature learning in this study to learn frame-level speaker features that are modeled 

to deliver the required information in an appropriate fashion. The experiments are 

analyzed on eight different slicing parameters of time delay layers of network to look 

into which network context best captures the model’s efficiency. Secondly, statistical 

pooling is used to calculate the mean and standard deviation of the frame level 

information extracted from a speech segment. To discriminate the speakers at segment 

level, the subsequent nonlinear layers get activations from this pooling layer. The 

third component, speaker classification uses one full connection layer to separate each 

speaker based on the number of speakers in training data. The penultimate full 

connected layer’s 512-dimensional activations are retrieved as an x-vector after 

training. The network can receive these fixed length feature vectors that are generated 

for each utterance as input. During extracting the vectors, the only difference between 

GMM and TDNN based systems is the model implemented to compute posteriors. 

TDNN posteriors create the adequate statistics for extracting the vector in conjunction 
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with the speaker features. Figure 3.4 represents the fully connected TDNN 

architecture without subsampling. 

 

 

 

 

 

 

 

 

 

                                                                                         

Figure 3.4 Example of TDNN Architecture without Subsampling  

 

Moreover, a frame level VAD is used to filter the speaker recognition features. 

To maintain the correct temporal context, the feature frames cannot remove from 

TDNN input features. Instead, VAD results are reused to filter out posteriors 

corresponding to non-speech frames [15]. These fixed length vectors which are 

extracted from each utterance can be inputted to the network. By using greedy layer-

wise supervised training, TDNN learns the way to update the network parameters 

[63]. To train neural networks, this supervised training was used together in Kaldi, 

speech recognition toolkit supporting multiple GPUs in the training. It was shown that 

x-vector based model can achieve better speaker recognition performance compared 

to the traditional i-vector approach. In the event that the system is trained utilizing a 

fully connected TDNN configuration without subsampling, the hidden layers of the 

network will compute a lengthy training period. But the training time and 

computational cost are saving and effective if subsampling technique is used in the 

network. 
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3.5.2 TDNN with Subsampling Technique 

TDNN is optimized by removing duplicated weights in the networks. 

Subsampling technique is used together in TDNN with the aim of reducing duplicated 

weights between nodes in network. The duration of training is reduced when these 

duplicated updates are discarded. Subsampling decreases the size of the model and 

speeds up training time by allowing gaps between feature frames instead of splicing 

together consecutive temporal windows at each layer, which saves money on 

computing the hidden activations at all time steps.  

 

 

 

 

 

 

 

 

 

Figure 3.5 Example of TDNN Architecture with Subsampling 

These are the justifications behind the subsampling approach used in TDNN 

architecture. If subsampling technique which has the property of selective 

computation of time steps is used, the forward pass and back propagation minimize all 

necessary computation. The benefits of subsampling technique include a reduction in 

the number of parameters and an increase in computational efficiency. By leaving a 

gap between frames, it does not connect two or more inputs in a hidden layer. All 

input features can be learned by the model if the interval between frames is permitted. 

This is because TDNN has a lengthy context reaching up to the upper layer. 

Moreover, by minimizing edges and nodes number in the network, the number of 

parameters which can represents the model is reduced. Nodes and weights 
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representations are depicted by red dashed line. These are only updated when 

subsampling technique is used as shown in Figure 3.5. 

The frames are not spliced more than two frames in the hidden layers of the 

network. For instance, as shown in Figure 3.5, the frames are spliced together the 

input at the current frame minus 7 and the current frame plus 2 are described by the 

notation {-7, 2}. The configuration in Figure 3.5 splices together frames ὸ

ς through ὸ ς at the input layer (written as context {-2, -1, 0, 1, 2} or more 

compactly as [-2, 2]) and then the frames are spliced at offsets {-1, 2}, {-3, 3}, and {-

7, 2} in three hidden layers. Figure 3.6 describes an example of context modeling over 

3 frames in a TDNN. 

 

 

 

 

 

 

Figure 3.6 Example of Context Modeling over 3 Frames in a TDNN 

Table 3.1 compares with a hypothetical setup without subsampling and shows 

these contexts (on the right). The differences between the offsets at the hidden layers 

were chosen to be multiple of 3. This way is implemented to compute a small number 

of hidden layer activations for each output frame. In Figure 3.5, the frames in red 

dashed lines are those needed to evaluate. The current subsampling approach reduces 

the total amount of computing required because time steps are computed selectively. 

The TDNN training time speeds up and the model size reduces by using subsampling 

technique. Contiguous frames that were spliced together at hidden layers would either 

drastically increase the number of parameters of drastically decrease the size of the 

hidden layer.  
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Table 3.1 Example Context Specification of TDNN 

Layer 
Input Context without 

Subsampling 

Input Context with 

Subsampling 

1 [-2, +2] [-2, 2] 

2 [-1, 2] {-1, 2} 

3 [-3, 3] {-3, 3} 

4 [-7, 2] {-7, 2} 

5 {0} {0} 

 

3.5.3 TDNN Based x-vectors Extraction (Speaker Embedding) 

Deep Neural Network architecture for embedding is widely studied in [68, 

69]. The Kaldi recipe from David Snyder [70] is used in this work. Input features to 

the network are 39-dimensional MFCCs extracted using a 25 ms Hamming window 

shifted by every 10 ms. The TDNN embedding can be divided into three parts. The 

first part operates on the frame level and begins with 5 layers of time delay 

architecture [18]. The first four layers contain each 512 neurons, the last layer before 

statistic pooling has 1500 neurons. The consequent pooling layer gathers mean and 

standard deviation statistics from all frame level inputs. The single vector of 

concatenated means and standard deviations is propagated through the rest of the 

network. This process aggregates information across the time dimension so that 

subsequent layers operate on the entire segment. The extracted embedding part of the 

network consists of two hidden layers each with 512 neurons and the final output 

layer. The output layer has a dimensionality related to the number of speakers. As 

nonlinearities in hidden layers, Rectified Linear Units (ReLU) is used by the network. 

On the output layer, soft-max is used. The network is trained by optimizing multi 

class cross entropy objective function as shown in Equation 3.23. The network is 

trained to classify N speakers in the training data for several epochs using natural 

gradient stochastic gradient descent [71]. After training, the embeddings are extracted 

from the affine component layer. The network is trained to predict speakers from 

variable length segments rather than frames. Suppose there are ὑ speakers in 

ὔ training segments. Then, the probability of speaker  Ὧ  given  Ὕ  input 

frames ὼ ȟὼ ȟȣὼ  is ὖὛὴὯὶ ȿὼȡ   . The quantity Ὠ  is 1 if the speaker label 

for segment ὲ is Ὧȟ otherwise it is 0. 
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╝
▪                 (3.23) 

 

3.6 Probabilistic Linear Discriminant Analysis (PLDA) 

Multiple input feature vector frames can be employed with Simplified or 

Gaussian probabilistic linear discriminant analysis (also known as Simplified or 

Gaussian PLDA) which is used to analyze fixed length feature vectors. This is made 

possible through the use of subspace covariance modeling. Recently, identity vectors 

have been successfully modeled using this hierarchical generative latent variable 

model, which takes the feature vectors in highly correlated subspaces. It can also be 

seen as a probabilistic version of classical LDA. It was originally proposed by Price et 

al. for face recognition [47]. Later, it was adapted for modeling i-vector distributions 

for speaker verification by Kenny et al. [48-50] as a generative model.  

PLDA provides a linear transformation of n dimensional feature vectors into 

m dimensional space (m<n), so that samples belonging to the same class are close 

together but samples from different classes are far apart from each other [51]. The 

class center is generated by using continuous non-linear functions even from single 

example of unseen class. In hypothesis testing, the two examples from previously 

unseen class can be compared by determining whether they belong to same class. On 

the other hand, the two examples of unseen classes’ scores using PLDA can be 

compared in the task of recognition by comparing likelihood of examples from same 

class versus likelihood of examples from different. PLDA can only improve the 

identification rate, but also diminish the feature dimension and computational cost 

[13]. In feature vector-based speaker identification, it is employed for scoring. The 

backend consists of i-vector mean subtraction and length normalization followed by 

PLDA scoring. Scoring method of PLDA is as implemented in [3, 20].  

3.6.1 Linear Discriminant Analysis (LDA) 

A technique for dimensionally reduction that projects the data onto a subspace 

which satisfies the requirement of maximizing between class variance and minimizing 

within class variance is called the standard Linear Discriminant Analysis (LDA). 
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Centering and projecting the vector representations need 150-dimensional Linear 

Discriminant Analysis (LDA) tuning. LDA can improve the classification rate in 

addition to lowering the calculation cost and feature dimension. Therefore, the 

representations (i-vectors or x-vectors) are centered and projected using LDA. The 

LDA can be defined according to the following: 
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                                   (3.24) 

 

The between-speaker covariance matrix and the within-speaker covariance 

matrix are ὄ and ὡ defined by: 
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In above two equations, the number of utterances for speaker ί is ὲ, the total 

number of utterances is ὲ, the i-vectors of sessions of speaker ί is ύ , the mean of all 

the i-vectors of speaker ί is ώ and ‘ represents the overall mean of the training data 

[65]. 

In the speaker recognition domain, the better performance achieved [66] by 

replacing ὄ and ὡ with the scatter matrices:  
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After dimensionality reduction, the representations are length normalization 

and modeled by PLDA. 
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3.6.2 Probabilistic LDA (PLDA) 

Probabilistic Linear Discriminant Analysis (PLDA) has begun to be the state-

of-the-art configuration for speaker recognition. A simplified variant of Gaussian 

PLDA successfully establish an i-vector representation generative model. For the 

Ὥ speaker, the vector ύȟ representing the Ὦ recording can be expressed as 

 

                       ◌░ȟ▒  □ ╢●░ ╖◐░ȟ▒ ░ꜗȟ▒                                 (3.29) 

 

Here, ά Ὓὼ is the speaker dependent part and Ὃώȟ  ‭ȟ is the recording 

dependent part. The overall training data is denoted by the symbol ά. Ὓ and Ὃ are sets 

of basic vectors that express the speaker’s subspace between speaker variability, and 

the channel’s subspace within speaker variability, respectively. It is assumed that the 

latent variables ὼ and ώȟ which represent a specific channel and speaker respectively, 

have typical normal distributions. The remaining residual variability represented 

by ‭ȟ. The residual term ‭ is assumed to have a normal distribution with a diagonal 

covariance matrix. The within speaker variability is modeled by a full covariance 

residual term omitting the channel subspace. The generative model for i-vector is 

represented by  

 

                                                                            ◌░ȟ▒  □ ╢●░ ░ꜗȟ▒                                                               (3.30) 

 

The term ‭ assuming as the residual of within speaker variability is used to 

have a normal distribution with full covariance matrix ∑. The two covariance models 

specify as a special case of the simplified PLDA model having the speaker factors S is 

full rank [64]. 

3.6.3 PLDA on Kaldi 

Kaldi is an open-source and widely used speech recognition toolkit [46]. 

PLDA on Kaldi follows the formulation proposed in [72]. For Kaldi PLDA, the 

Simplified PLDA with full rank Ὂ is the conceptual starting point. Kaldi PLDA is 
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only associated with getting the average i-vector for each speaker ●░  В ●░▒□░ϳ□░
▒ , 

which is distributed according to 

 

                                  ▬●░   ︣ ȟ╕ ╕╣  
□░
                                 (3.31) 

 

where ά is the numbers of extracted i-vectors for speaker Ὥ. As the data likelihood 

function, Equation 3.31 is then applied. The average i-vector (a single sample) which 

is assumed to obey the decomposition collapses from all the extracted i-vectors for 

each speaker: 

 

                                                           ●░  Ⱨ░  ꜗ░                                               (3.32) 

 

where ‘ ͯ ︣ πȟ◔ models the between class variability with the covariance ῲ

ὊὊ and the average residual 

 

                                            ░ꜗ  В ░ꜗ▒□░ϳ  ͯ 
□░
▒ ︣ ȟ

□
                              (3.33) 

 

models the within class variability. The excepted complete log likelihood function for 

the EM algorithm is optimized to iteratively estimate Γ and Λ, as follows: 

 

                                       ἵἩὀВ╔▬Ⱨ░ȟꜗ░ȿ ●░Ƞ ◙◄ ἴἷἯ▬Ⱨ░ȟꜗ░Ƞ ◄░                (3.34) 

 

The total hidden variables ‘ȟ‭ , having good convergence are selected by 

the EM iteration in Kaldi PLDA. However, in Kaldi PLDA, only the additive 

decomposition applies to the average i-vector. For estimating between class 

covariance, although this is helpful, it is harmful for estimating within class 

covariance. Kaldi PLDA also carrys out simultaneously Λ diagonalization and Γ 

diagonalization at the testing phase. The significance of computational saving is less 

than others because Kaldi only calculates the likelihood of an individual average i-

vector [67]. 



  

55 
 

3.6.4 Likelihood Computation 

There are various scoring strategies for utilizing the PLDA model to get a 

likelihood ratio for a given speaker trial after estimation of the PLDA meta-

parameters through an iterative EM algorithm. Depending on whether the two vectors 

(target and test) were generated by the same speaker or not, the log likelihood ratio for 

the test case in the two vectors scoring is directly determined. The log likelihood ratio 

is calculated for each test case in order to identify which speaker’s test vectors 

correspond to which ones in order to score numerous sessions.  

3.6.4.1 Scoring for Two Vectors 

The scoring approach in PLDA for both i-vector and x-vector has been 

applied. It can be employed to evaluate likelihood scores between test vectors and a 

set of enrollments once the PLDA model is trained. In cases of vectors ύ for 

test and ύ for enrollment, the score Ὓύȟύ  of PLDA can be evaluated by deciding 

the likelihood ratio given by: 

 

                                        ╢◌ȟ◌◄  ἴἷἯ
▬◌ ȟ◌◄ȿ ╗

▬◌ ȿ ╗  ▬◌◄ȿ ╗
                                 (3.35) 

 

Here, both i-vectors ύand ύ  comes from the same speaker is indicated as the 

hypothesis Ὄ and hence have the same speaker identity variable ὼ in Equation (3.30) 

while both are independently derived from different speakers is indicated as Ὄ . 

According to the given Gaussian assumptions above, the log likelihood ratio can be 

evaluated in closed form as given in [20]. 

3.6.4.2 Multi-Session Scoring 

The formula in Equation 3.35 is used for scoring the likelihood between two 

vectors. Moreover, it can be extended to evaluate the likelihood for multiple test 

utterances and enrollment. If ύ ȟύ ȟȣύ  are available for testing and multiple 

vectors ύȟύȟȣύ  are available for enrollment, then the following equation can be 

used to generalize the log likelihood ratio computation function: 
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               ╢◌ ȣȟ◌◄ȟȣ  ἴἷἯ
▬◌ ȟȣȟ◌╝ȟ◌◄ȟȣȟ◌◄╜ ȿ ╗

▬◌ ȟȣȟ◌╝ ȿ ╗  ▬◌◄ȟȣȟ◌◄╜ ȿ ╗
                (3.36) 

 

The closed form for one test vector ύ  and ὔ enrollment vectors is derived as 

given in [20].  

3.6.4.3 Heuristic Scoring Techniques 

The heuristic scoring methods are also used instead of multi session scoring. 

The enrollment i-vectors to be statistically independent given the speaker identity are 

assumed the likelihood ratio score for multiple enrollment i-vectors as defined in 

Equation 3.36. Rather than reflecting physical reality, this independence assumption 

is for mathematical convenience. Different i-vectors derived from the identical target 

speaker might have more in common than just the speaker identity (for instance, 

transmission channel or recording environment). In general, i-vectors retrieved from 

the speech features cannot be considered that it is truly statistically independent. The 

reason is that the likelihood ratio computation of multi-session scoring will be sub-

optimal in a practical setting [20]. As a result, other heuristic scoring methods are 

used for controlling multiple enrollment i-vectors. Four of the most common heuristic 

scoring methods are: 

1. Averaging vectors: ὔ vectors are evaluated by using Equation 3.37 to obtain 

the average for a single vector representing the class and then use this average 

vector to compute the score with the test vector using Equation 3.35. 

 

 

                                              ◌░  
╝
 В ◌░▒
╝
▒                                          (3.37) 

 

 

2. Averaging scores: The score fusion is used in which the two i-vector scoring 

uses to score the individual enrollment i-vectors and then combined. Average 

scores of individual enrollment utterance with test utterance to obtain the final 

score. 

 

                                     ╢◌░ȟ◌◄  
╝
 В ╢◌░▒ȟ◌◄
╝
▒                            (3.38) 
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3. Max score: Take the maximum score value while scoring with the individual 

test utterance and enrollment utterance. 

 

 

                                    ╢◌░ȟ◌◄  ἵἩὀ
▒╝
╢◌░▒ȟ◌◄                               (3.39) 

 

 

4. Session pooling: A single enrollment i-vector can be obtained from multiple 

enrollment utterances by pooling sessions in comparing with utilizing 

multiple enrollment i-vectors. This is done by pooling acoustic feature vectors 

from all the utterances and estimating zeroth and first order Baum-Welch 

statistics. A single enrollment i-vector then is obtained as if only a single 

enrollment utterance was available, and scored using the two i-vector scoring. 

In other words, concatenate features of all enrollment utterances and compute 

a vector representation of concatenated utterance.                                                                                                                                                                                                                                                                   

3.7 Performance Metric 

Equal Error Rate (EER) and visual investigations of the detection error 

tradeoff (DET) curves are commonly employed as the evaluation tools in speaker 

recognition literature. In most speaker recognition, the performance is shown with the 

detection error tradeoff (DET) curve. It is implemented by plotting the false negative 

rate versus false positive rate. The comparison between different DET curves 

becomes clearer by scaling x- and y-axes with logarithmic transformation. Comparing 

two curves can sometimes be complicated. This is especially true when two systems 

perform well in different regions (e.g., one is good at rejecting false candidates while 

the other is better at picking correct hits). Equal Error Rate (EER) is used to bypass 

this problem. EER refers to the point where false positive rate and false negative rate 

equal on DET curve. 

Experiments are evaluated using equal error rate (EER) and detecting accuracy 

(Acc) for the identification task. The EER represents the value at which the false 

positive rate equals to the false negative rate when comparing each testing sample 

against all speakers in the test set. The identification accuracy is the percentage of 
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correct identification among all the test trials. Both of these metrics are commonly 

used for evaluating speaker recognition systems. 

3.7.1 Equal Error Rate (EER)  

This work appraised the automatic evaluation of Equal Error Rate (EER) for 

assessing the performance of speaker identification models. It is a common measure 

of the performance of speaker recognition system showing that of how many False 

Acceptance (FA) and how many False Rejection (FR) are there. The concession 

between False Acceptance Rate (FAR) and False Rejection Rate (FRR) is called EER 

and also the point where FAR and FRR are equal, optimal, and minimal. It is also 

known as cross over rate or crossover error rate (CER). Equation 3.40 refers to FAR 

that is a type of error permitting the impostor speaker is wrongly identified as the 

known speaker and Equation 3.41 referring to FRR computes that the value of 

refusing incorrectly the real speaker known by the system as impostor. A large 

number of testing samples are needed to evaluate the performance of EER in 

identification [6]. 

 

                          ╕═╡ 
╣▫◄╪■ ╕╪■▼▄ ═╬╬▄▬◄╪▪╬▄

╣▫◄╪■ ╕╪■▼▄ ═◄◄▄□▬◄▼
 Ϸ                            (3.40) 

 

                         ╕╡╡ 
╣▫◄╪■ ╕╪■▼▄ ╡▄▒▄╬◄░▫▪

╣▫◄╪■ ╣►◊▄ ═◄◄▄□▬◄▼
 Ϸ                               (3.41) 

 

3.7.2 Detecting Accuracy (Acc) 

To assess the performance of correctly identifying on every test speech 

samples, this work describes the recognizing rate with detecting accuracy in 

percentage of how many test set samples are correctly detected on the whole test set. 

It takes into account the number of test sets found on speaker models that are different 

from those which have been correctly tested shown in Equation 3.42. 

 

                             ═╬╬ Ϸ  
╣╣╢▼  ╦╓╢▼

╣╣╢▼
                                (3.42) 
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Here, the test set’s accuracy in percentage is ὃὧὧ Ϸ  , the total test speech 

samples is  ὝὝὛ  and the wrong detected samples in the whole test set is ὡὈὛ .  

3.8 Summary 

This chapter discussed the methodologies and theoretical background of 

implementing the speaker identification system. It explains what are the speech 

signals, how to preprocess the data for processing, data augmentation techniques, data 

scrutinizing techniques, steps involved in Mel Frequency Cepstral Coefficients 

(MFCCs) feature extraction process, extracting the i-vector and x-vector, building 

acoustic speaker models based on GMM-UBM and TDNN, computing the likelihood 

score using probabilistic linear discriminant analysis (PLDA), different scoring 

methods and in the end, it describes the performance metric of what is the equal error 

rate and detecting accuracy for measuring the performance of speaker models. 
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CHAPTER 4 

BUILDING SPEECH DATASETS 

 

This chapter covers the development of speech datasets used in this research. 

Speech dataset building is an imperative and a very first task for implementing any 

speaker recognition system. The lack of accurate data in low-resourced, tonal 

language like Burmese is a major problem in conducting speaker recognition research. 

Although there are freely and widely available resources in well-resourced language 

like English, the speech dataset is needed to build first for Burmese which has no 

available speech dataset easily to use.  

4.1 Building Original Speech Dataset 

 The first stage in any statistically based speaker identification tasks, especially 

for languages with limited resources, is to gather the speech data. Burmese language 

can be considered to be a low-resourced, tonal language. The main problem in 

speaker identification research for Burmese language is the lack of proper data. 

Therefore, the speech dataset is necessary to develop first. The speech dataset is an 

abundant collection of recorded audios of spoken languages and is important for 

statistical based speaker identification. The next steps will be exact to process if the 

data have been prepared properly. It can also affect the performance of a recognizer. 

Many speaker recognition systems are constructed on the statistical models based on 

the speech data. Therefore, speech dataset building is essentially needed to develop 

the speech related systems. Read speech and Spontaneous speech are the two types of 

speech. Broadcasting news, word lists, and number sequences are examples of Read 

speech. Interview speeches and narratives are included in the type of Spontaneous 

speech. The speech dataset used in this work is constructed by collecting from the two 

main sources: Web based collected news and daily conversational dialogue recorded 

for the purpose of training the speaker identification system. The speech required for 

Burmese dataset was collected with two ways. The first approach is taking the speech 

that is already been existed from online resources. The second approach uses prepared 

texts of everyday conversational dialogues to record speech after first gathering a 

corpus of texts. 
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4.1.1 Collecting Data from Web-based Sources 

As the first approach, the speech data are collected from online sources that is 

already been recorded. Nowadays, speech data can be gathered from the Internet and 

is readily available for free access. There are various resources on Internet: news 

portals and blog posts are lengthier texts and more formal, and only audio files, 

whereas social media like Facebook and Twitter gives video files and short, 

conversational, colloquial texts. The collected speech includes both national and 

international news. The process of gathering Web data takes around two years.  

4.1.1.1 Speech Dataset Preparation  

Speech data collection is the most important effort in every speech related 

system. Nowadays, Burmese News, interviews, delivered speech and talks are 

available on many Web sites. From the sites of Democratic Voice of Burma (DVB)5, 

Myanmar Radio and Television (MRTV)6, Radio Free Asia (RFA)7, Voice of 

America (VOA)8, the speech data are obtained. Moreover, the speech data are also 

collected from social media, British Broadcasting Corporation (BBC) Burmese 

News9, Eleven Broadcasting10, 7days TV11, ForInfo News12, Good Morning 

Myanmar13, Breakfast News14, Irrawaddy Burmese News15, Mizzima News 

Myanmar16, and One News Myanmar Channel17. The speech dataset involves both 

foreign and local news about politics, health, education, sport, speech, crime, business 

and weather news, etc.  

 

 

 
5 http://burmese.dvb.no 
6 https://mrtv.gov.mm/mm 
7 https://www.rfa.org/burmese/audio 
8 https://burmese.voanews.com/ 
9 https://www.facebook.com/bbcburmese/ 
10 https://www.facebook.com/elevenbroadcasting 
11 https://www.facebook.com/7DayOnlineTV/ 
12 https://www.facebook.com/forinfo/ 
13 https://www.facebook.com/GoodMorningMyanmarLive/ 
14 https://www.facebook.com/bmrtv/ 
15 https://burma.irrawaddy.com/ 
16 https://www.mizzimaburmese.com/ 
17 https://www.facebook.com/onenewsmyan/ 
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4.1.1.2 Speaker Distribution 

Reporters, interviewers, speechwriters and commentators are well-experienced 

and professional. They have got a clear and concise tone in broadcasting News, 

making interviews, delivering speech and talks. Female presenters are mostly found 

on Web News in most fields. Therefore, female speakers are included more than male 

speakers. There are totaling 111 speakers including 47 male speakers and 64 female 

speakers. The speakers’ age is ranging from 25 years to 70 years old. Figure 4.1 

shows the gender distribution of the speakers in Web based speech data. 

 

Figure 4.1 Distribution of Speakers in Web News Data with regard to Gender 

4.1.2 Recording Data from Daily Conversations 

The second way is preparing the text corpus of daily conversational dialogues 

first and then is recording this text with telephone and microphone. This recording 

process is done by the 36 internship students from three academic years, 31 Lab 

members and 31 persons from others. The speech utterances involved in the speech 

dataset have less in duration than that of Web News domain.  

4.1.2.1 Text Corpus Preparation 

Daily conversational texts in English with Burmese translations are collected 

from the Internet. Only Burmese translation texts are taken for text corpus 

preparation. These texts are the conversational dialogue spoken in restaurants, hotels, 
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parks, street, telephone and traveling. These collected text are used to record the 

speech utterances. 

4.1.2.2 Speaker Distribution 

The speech utterances are recorded by 42 male speakers and 56 female 

speakers including students, and Lab members from the University of Computer 

Studies, Yangon, Myanmar as well as those in unrelated fields. The female speakers 

are mostly found in the dataset because the female speakers outnumber male speakers 

in our University.  Therefore, the male speakers from other fields contributed in the 

recording. The age of the speakers contained in recording is ranging from 20 years to 

53 years old. Figure 4.2 shows the distribution of speakers in daily conversational 

data with regard to gender. 

 

 

Figure 4.2 Distribution of Speakers in Conversational Data with regard to 

Gender 

4.1.3 Speech Segmentation and Recording 

For Web based data, the formats of the collected video and audio files that 

comes with various format types (.mp4, .wma, .mp3) in different frequency rate (8 

kHz, 16 kHz, 44 kHz) are uniformly changed to the files format of .wav. Then, a type 

of mono channel in 16-bits PCM with the sampling rate of 16 kHz is uniformly fixed 

to these audio files. For recording the speech utterances, these recording settings are 
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already prepared before recording. For speech segmentation, Audacity18 is used. It is 

cross-platform and open-source multi-track audio recorder and editor software. 

Silence part and background noise are also discarded as a task of voice activity 

detection while cutting the audio files. The duration of each segmented audio files is 

ranging from 3 seconds to 45 seconds. A quiet recording studio in University of 

Computer Studies, Yangon, Myanmar is used to capture the dialogue of daily 

conversational discussion. It is a place that has no external disturbance like 

background noise, environmental noise, and room echo. Tascam DR-100MKIII 

recording device recommended to be used for audio engineers and designers is used 

for recording. It can record into the .wav, .bwf, and .mp3 file formats and features the 

most dependable, user-friendly interface. It is also possible to choose between mono 

and stereo recording channels. For speech dataset used in this work, the speech 

utterances are recorded as .wav format of 16 kHz in16-bits mono PCM. All speakers 

read the utterances at normal pace. Although the speakers utter correct and smooth 

pace, the recordings are done repeatedly until the speakers do not have a clear tone. 

4.2 Building Scrutinized Speech Dataset 

Data that is as accurate as possible improves system performance and yields 

more logical results. The quality of speech is important in order to be able to 

recognize more accurately, and the amount of speech data required for each speech 

processing task is also important. There are many audio augmentation techniques in 

tempo, speed, volume, etc. [14]. To achieve the necessary speech quality for efficient 

operation, this section offers instructions on how to carefully examine the speech data. 

The scrutinized speech dataset is built by applying the two scrutinizing techniques to 

the original collected speech dataset for the purpose of enhancing the system 

performance.  

The first technique is the changing of speech intensity. To know whether 

changing the intensity in speech improves or not, various intensity rates are analyzed. 

Since the loudness of sound waves collected from diverse sources has distinct forms, 

the intensity of each speech segment is analyzed by adjusting with different SNRs 

levels (-10 dB, -5 dB, 5 dB, 10 dB). In order to determine which dB scale is 

appropriate for Burmese tones, these data prepared with various dBs were analyzed. It 

 
18 https://www.audacityteam.org/ 
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was done by setting the same SNRs uniformly to all speech segments. In these 

experiments, increasing the intensity by 10 dB on the data produced satisfactory 

results along with a relative improvement over the original dataset’s performance on 

GMM-UBM and TDNN. In reducing the intensity to -10 dB and -5 dB, there is no 

change in relative improvement. This is because reduction the intensity level than the 

normal tone is not discriminated the spoken utterances well in Burmese tone. In the 

part of increasing the intensity to 5 dB and 10 dB, setting to 5 dB raises the 

performance but setting to 10 dB leads to better performance. Increasing the volume 

by more than 10 dB can cause the speech to change in tone from the original 

utterance. Consequently, in this work, the studies were conducted with the maximum 

sound level set at 10 dB. 

Another scrutinizing technique is to analyze the tempo factor for each speech 

segment in detail. When the speech segments increase and decrease the tempo in the 

existing speech data by a factor of 0.2 (20%), slowing down the tempo of the current 

speech gives better results than increasing the tempo factor and the original pace with 

a relative improvement of GMM-UBM and TDNN. A too fast speech rate may not be 

accurately recognized, while a slow speech rate may well recognize whether the target 

speaker is present or not. As a result, slowing down the speaking rate can cause the 

original utterance to take longer. Based on the experiments, it can be observed that 

speaking more slowly recognizes the speakers more and better controls the 

understanding of what is said with the clarity of the vocabulary. It may also improve 

in automatic speech recognition. Although the speed of the speech utterances was also 

analyzed with the speed factor, this work does not use the speed factor because 

changing the index factor affects both pitch and tempo, causing changes in the 

spectral shape of speech segments. This can cause the loss of speaker-specific 

information in speech segments. Using the tempo factor for analyzing the pace of 

speech utterances does not impact on the pitch of speech segments.  

Therefore, the scrutinized speech dataset is created by applying with the two 

scrutinizing methods of increasing the intensity level to 10 dB and downing the tempo 

factor to 0.2 times to all the speech utterances in the original dataset for the aim of 

increasing the system performance. 
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4.3 Building White Noise-Added Speech Dataset  

The white noise-added speech dataset is built by using the following sox 

command to the original collected speech dataset to prove that noise hinders for 

enhancing the system performance. To add the white noise in original speech, the 

following sox command is used. 

sox -m input.wav <(sox input.wav ïp synth whitenoise vol 0.02) output.wav 

Contaminating to original dataset with white noise proves that the system 

performance can degrade by the disturbances of noise. Due to performance of this 

dataset, the future speaker recognition researchers will need to investigate to be noise 

robustness in system.  

4.4 Statistics of Speech Datasets 

The speech datasets used in this work comprise with 209 total speakers 

consisting of 89 male speakers and 120 female speakers with the age of ranging from 

20 years to 70 years old. The size of original speech dataset is over 96 hours 

containing 58,014 utterances extending from 8 hours [P1, P2], and 57 hours [P3]. The 

scrutinized speech dataset is obtained by applying with the scrutinized methods. Its 

size extending from the dataset of 96 hours has the size over 120 hours with the same 

utterances as original dataset. The white noise-added dataset is created by using the 

original dataset. The detailed statistics of speech datasets and total number of 

utterances used for training, validation and test cases used in this work is described in 

Table 4.1. 

Table 4.1 Statistics of Speech Datasets 

Datasets 
White noise 

(hh:mm:ss) 

Original 

(hh:mm:ss) 

Scrutinized 

(hh:mm:ss) 

No. of 

Utterances 

Training 86:12:26 85:53:13 107:02:16 51,976 

Validation 07:37:28 07:17:37 09:05:28 4,256 

OpenTestSet 03:38:48 03:28:42 04:20:12 1,782 

ClosedTestSet 03:21:21 03:11:13 03:58:22 1,782 

Total 97:28:42 96:39:32 120:27:56 58,014 
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4.5 Summary 

 This chapter presents building the Burmese speech dataset for using in speaker 

identification. It describes collecting, preparing and segmenting the speech data 

obtained from Web, preparing the transcriptions of daily conversational data for 

recording. The settings of recording platform are prepared in order to get the 

formatted speech segments. The scrutinized and white noise-added datasets are also 

created. The number of speakers and their age range contained in the speech dataset 

are represented and finally expressing the information of speech datasets used in this 

work. 
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CHAPTER 5 

THE PROPOSED SYSTEM ARCHITECTURE 

 

Speaker identification is the use of a machine to identify someone’s identity 

based on a spoken phrase. It is way to make automatic recognizing of the person on 

the basis of specific information that comes from speech signals. There are many 

perspectives approaching to speaker identification system from the aspects of data 

point of view, and state-of-the-art technologies to enhance the system performance. 

This work emphasizes from the data point of view to boost the performance of the 

speaker models. The basic structure of the speaker recognition system, including 

verification and identification of speakers as well as their diarization, is shown in this 

chapter. It also presents the design and implementation processes of proposed system 

architecture together with clear understanding of pictorial representation. 

5.1 Basic Structure of Speaker Recognition System  

The three different tasks: speaker verification, speaker identification, and 

speaker diarization exist in speaker recognition. The detailed components contained in 

speaker recognition were explained in section 2.2 of Chapter 2. Speaker verification is 

the process of verifying a speaker’s claimed identity based on their already registered 

voices. It verifies that a given speaker is one who claims to be and is one-to-one 

matching process.  If it matches the set threshold, then the identity claim of the user is 

accepted otherwise rejected. Finally, the verification result (accept or reject) produces 

to the user outputs by the system. The process of speaker verification system is 

depicted in Figure 5.1. 

 

 

 

 

 

 

 

 

Figure 5.1 Basic Structure of Speaker Verification System 
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Speaker identification is a procedure that determines one’s identity by 

machine. It detects a particular speaker from a known population by identifying 

whether a speaker’s voice matches or not with any member of several registered 

voices. When the user provides the test speech utterance to the system, it identifies the 

best matched user by comparing the features of given speech utterance with those of 

the stored in the reference models ρȟȣȟὓ which contain the most likely speakers, 

could have given that speech utterance. Speaker identification performs one-to-many 

matching and finally gives the speaker identity that has a maximum score. The output 

speaker’s identity is recognized as target speaker or impostor by determining with a 

predefined threshold in open set identification. If the output score is exceeded the 

threshold, the speaker who has this score is identified as the target speaker. If not, the 

speaker is identified as the impostor. The process of speaker identification system is 

depicted in Figure 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Basic Structure of Speaker Identification System 
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whole audio conversation that contains the unknown amount of speech and number of 
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Mixture Model (GMM) is used to extract the feature vectors from speech and describe 

how many people are talking in the conversation. There are two types of speaker 

diarization namely online and offline speaker diarization. Online speaker diarization 

is also known as real time speaker diarization. Offline speaker diarization is based on 

the finished conversations like recordings and produces better outputs than online 

speaker diarization. The models for speaker diarization can be trained in two ways: 

supervised or unsupervised learning. In supervised approach, some or all of the 

individual speakers in parts of the stream conversation are already tagged and it leads 

to the lower error rate. But supervised training can only take place on offline 

recordings. Conversely, unsupervised learning leads to lose on a completed unlabeled 

conversation and increase the error rates because it does not know in advance who 

contain in the audio stream. The process of speaker diarization system is depicted in 

Figure 5.3. 

 

 

 

 

 

 

 

 

Figure 5.3 Basic Structure of Speaker Diarization System 

5.2 Design and Implementation of Proposed System Architecture  

The process of precisely identifying speakers through analysis of their speech 

features is known as speaker identification. Unlike speech recognition and pattern 

recognition problems, voice biometrics refers to the identification of an individual 

based on the characteristics of their voices. This section describes the design and 

implementation of proposed speaker identification system architecture with pictorial 

representation as shown in Figure 5.4.  

As shown in Figure, there are two phases in speaker identification system: 

training and testing phase. There are also two parts: front-end and backend analysis in 

both phases. Data preprocessing, data augmentation and feature extraction are front-
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end analysis. Constructing speaker models in training phase and identification process 

in testing phase are backend analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Proposed Architecture of Burmese Speaker Identification System 
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mono data in 16-bit PCM of 16kHz with the use of “ffmpeg” command by writing 

script in bash programming language. These converted .wav formatted data are 

segmented with Audacity tool to obtain the utterance level segments ranging from 3 

seconds to 45 seconds depending on the spoken utterance duration.  

For recorded data, daily conversational dialogue is recorded by internship 

students from three academic years and Lab members from Natural Language 

Processing Lab., University of Computer Studies, Yangon, Myanmar. The sentence 

level utterances which have at least 200 utterances each are recorded with the 

prepared setting with the format of 16-bit PCM of 16 kHz in mono data. At the end of 

data preprocessing, the original clean data long over 96 hours are obtained by 

combining Web data and recorded data.  

Every segment of the original dataset is subjected to a tempo factor warp of 

0.2 times (20%) and intensity amplified to 10 dB in order to get the scrutinized data. 

This makes enhancing the speech quality for effective performance, finding out the 

more speaker specific information and improving the system performance with 

reducing the error rate and raising the detecting accuracy. By analyzing the data, the 

scrutinized dataset with the size of 120 hours is obtained. As a consequence, slowing 

down the speaking rate (tempo factor down to 0.2 times) can cause the elongated 

duration on original utterance. Moreover, the original dataset is used to create the 

white noise-added dataset for proving that any kind of noise disturbances the system 

performance. 

In the process of data augmentation, the training data in three types of datasets 

are individually contaminated to increase the diversity and volume of data. The data 

are augmented with noise and reverberation as an inexpensive method to multiply the 

quantity of training data for the aim of constructing effective speaker models. It can 

find out more speaker specific information and enhance the robustness of the speaker 

models in original and scrutinized datasets. Moreover, MUSAN’s additive noises and 

simulated small Room Impulse Responses (RIRs) ranging the room area from 1 m to 

10 m are artificially added to the training data. MUSAN dataset is freely downloaded 

from OpenSLR supported by National Science Foundation Graduate Research 

Fellowship. By augmenting with different techniques, the training data size increases 

in volume but only the amount equal to the original training data size is randomly 

taken as the augmented data. Therefore, the training data size of original, scrutinized 
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and white noise-added datasets gets doubling the size of the existing dataset when 

these augmented data are combined individually to each corresponding training data. 

Feature extraction is also important in every speech related system. It converts 

the speech waveform into a set of feature vectors for further analysis by extracting the 

speaker specific information from the corresponding speech frames and investigates 

phonological characteristics that are resilient and discriminative improving 

recognition rate. This work uses 39-dimensional Mel Frequency Cepstral Coefficients 

(MFCCs) extracting every 10 ms in the frame size for 25 ms long by using the 

Hamming window. Delta feature is also used to improve accuracy and robustness in 

identification. Low level spectral feature like MFCC is easier to extract and more 

potent than high-level feature such as pitch involving more speaker related 

information. But high-level feature extraction process is more complicated and time 

consuming than low level features.  

The acoustic speaker models based on GMM-UBM and TDNN are 

constructed as back-end analysis of speaker identification system. These are built 

based on three different training data: original, scrutinized and white noise-added 

datasets in training phase to prove that the benefits of scrutinizing methods and the 

drawbacks of the disturbance of noise. GMM-UBM is the parametric model which 

gives the probability distribution of feature vectors extracted from the different 

speakers and the background model is generated by using speech samples from all of 

these different speakers. The model corresponding to each of the individual speaker is 

obtained by adapting the parameters with the use of Maximum A Posteriori (MAP). 

GMM parameters are trained by using Expectation-Maximization (EM) algorithm. In 

UBM training, a diagonal covariance model is firstly trained. Iterative training of EM 

is run with fixed means and mixture weights to obtain full covariance model. The 

speaker models are built by changing the parameters like the number of Gausian 

components and dimensions. 

Time delay neural network (TDNN) uses a feed forward architecture being 

proven to be powerful in handling the context information of speech signal and 

modeling the phonetic content directly. The network processes the input from the 

narrow contexts to the speech signal in the first layer. The deeper layers will handle 

the input by splicing the output of the hidden activations from the preceding layer in 

order to learn wider temporal dependencies. Subsampling technique is applied to save 

time consuming in model training with the advantages of decreasing the numbers of 
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parameters and increasing the computational efficiency. In order to teach frame-level 

speaker features that will appropriately convey the data to the model, this approach 

employs five time delay layers. The speaker models are built by using different slicing 

parameters to investigate which network context impacts the model efficiency.  

After the acoustic speaker models have been constructed, the recognizing 

accuracy of the speaker models is assessed in the testing phase. The input test speech 

is firstly preprocessed and then extracted the MFCC feature corresponding to the test 

utterance by using the same processes as training phase. For recognizing the speaker 

identity, the test speech feature vector is classified with the speaker models 

constructed in the training phase by computing the log likelihood score for the test 

speech whether the two vectors (target and test) are or are not generated by the same 

speaker. Probabilistic linear discriminant analysis (PLDA) is used for scoring in 

speaker identification based on feature vectors. 

5.3 Summary 

This chapter presents what is speaker identification system, the basic 

structures of speaker recognition system: speaker verification, speaker identification 

and speaker diarization with pictorial representations. The design and implementation 

of proposed architecture of this work are explained in detail together with clear 

understanding of pictorial representation.  
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CHAPTER 6 

PERFORMANCE ANALYSIS FOR SPEAKER IDENTIFICATION 

 

This chapter presents the experimental setup regarding with building acoustic 

models, the promising results derived from assessing the performance of the acoustic 

speaker models and showing the improvement of recognizing quality by scrutinized 

dataset comparing with original and white noise-added datasets on Burmese speaker 

identification. Building or training the acoustic models is one of the important phases 

of backend analysis in speaker recognition system employed after the feature 

extraction step. This is the process of making the system know the speakers and deals 

with collecting data from the utterances of people to be identified. Only the speaker 

models are constructed, the performance of speaker identification system can be 

assessed by comparing the incoming test sample with these speaker models. If the 

good speaker model is built, the rest of the processes in speaker identification become 

extremely easy. The evaluation of automatic speaker identification performance is 

done according to changing the number of Gaussian components and feature vectors’ 

dimensions on GMM-UBM and tuning the network input contexts parameters on 

TDNN with different datasets.  

6.1 Building Speaker Models 

In the world of science, human mimics always understood by computer. The 

idea for making speaker identification system is to be convenient for humans to 

interact with the computer by speech or vocalization rather than other instructions. 

Individualized voice recognition alone is a feature that is still relatively unfinished. 

Accents and dialects are vast and varied, making it a continual challenge to perfect the 

technology. There are many speaker identification research carrying out by many 

researchers for their respective languages and the performance of these systems has 

been enhanced by investigating the particular properties of the target language and 

applying the new architecture.  

The speaker models are constructed by using the corresponding extracted 

feature vectors and are stored these models in the training database with 

corresponding speaker ID which is unique. The system recognizes whether the 

incoming test sample is from the same speaker the acoustic models were trained on. 
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The two types of training models that can be used for automatic speaker identification 

are parametric and nonparametric models. 

6.1.1 Parametric Models 

These models have a particular structure characterized by a set of parameters. 

By defining the structure, the form of the model has been specified and limited to a 

specific requirement. This ensures that it makes an efficient use of the data in 

estimating the model parameters. The other advantage in using parametric model is 

that the changes in the parameters can be easily determined by the changes in the data 

[52]. Literature shows that many researchers have implemented parametric models in 

the text independent speaker recognition system [32, 52-55]. Some of parametric 

models are Gaussian Mixture Models (GMM), Hidden Markov Model (HMM), and 

Neural Networks (NN). Text independent speaker recognition with Gaussian Mixture 

Model was proposed by Reynolds [32]. GMM is most commonly used parametric 

model for training purposes [52] and the implementation of Neural Networks was 

proposed by Seddik, Rahmouni and Sayadi in [55]. These two types of parametric 

models are used to increase robustness and performance of the designed approach in 

this work.  

6.1.2 Nonparametric Models 

Nonparametric models differ from the parametric models like the way in 

which the space is dichotomized. Only the minimal assumptions regarding the 

probability density functions are made. Dynamic Time Warping (DTW) is an example 

for nonparametric models. Vector Quantization is used for text independent speaker 

recognition whereas Dynamic Time Warping is used for text dependent speaker 

recognition. Vector Quantization was first applied to speaker recognition by [56]. A 

description and a comparison of VQ model with HMM for text independent speaker 

recognition system is given by Matsui and Furui [57]. 

6.2 Building Acoustic Speaker Models 

Acoustic modeling is an essential part of automatic speaker identification 

system. The acoustic models are built on Gaussian Mixture Model-Universal 

Background Model (GMM-UBM) and Time Delay Neural Network (TDNN) in this 
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work. If the efficient acoustic modeling approach can be applied, the higher 

recognition rate can be achieved. The conventional GMM-UBM also shows the 

significant improvements while Time Delay Neural Network (TDNN) has given the 

state-of-the-art performance results. TDNN can model the context information at each 

layer of network and capture long term temporal dependencies. Two different acoustic 

models (GMM-UBM and TDNN) are implemented to show that changing the number 

of Gaussian components and dimensions on GMM-UBM and tuning the network 

input contexts on TDNN layers can affect to the speaker models’ performance. And 

the experiments are implemented on three different training data: original, scrutinized 

and white noise-added data and show that the quality of data can also affect the 

recognizing rate. 

6.2.1 Experimental Setup 

The experimental setup for speech dataset used in this work is deal with in this 

section in detail. The speech utterances are collected from Web-based news: 

broadcasting news, delivered speech and talks and daily conversational dialogues 

were also recorded ourselves. Because the speakers in the data gathered from Web 

resources are knowledgeable and skilled, it is accurate and has a clear tone. Web-

based speech collection from 111 speakers includes both local and international news 

about politics, health, sports, education, crime, business news, and weather, among 

other topics. In data preparation, the wave files in the datasets are already formatted 

with a frequency rate of 16 kHz in 16-bits, mono PCM. The recorded data with 

microphone and telephone are collected with 31 Lab members and 36 internships 

students and 31 persons from others. The length of each daily conversational dialogue 

spoken in restaurants, hotels, parks and traveling is shorter than the Web-based news. 

The detailed statistics of the training data and test sets are described sharply in Table 

6.1. 

6.2.2 GMM-UBM based Acoustic Model 

This section presents building the acoustic model based on GMM-UBM, the 

probability distribution model. It is considered as a generative model and focused on 

representing the total distribution of the speaker data. The parameters are estimated 

with Maximum likelihood or Maximum A-Posteriori criteria. Competition with other 
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models comes through likelihood ratio. The probabilistic models like GMM yield 

better performance results for training both text dependent and text independent 

speaker recognition applications [32]. Due to the probabilistic property of a GMM, it 

can also be applied to speaker recognition applications in the presence of different 

noises increasing the channel robustness. Mixtures of Gaussians can be used to more 

correctly mimic the acoustic fluctuations caused by environmental noise, accent, 

pronunciation variation, speaker factor and other factors.  

Table 6.1 Detail Statistics of Speech Datasets 

 

Because Gaussian components can express some general speaker dependent 

spectral forms, Gaussian mixture modeling (GMM) is a classic parametric method 

Category Description 

Collecting speech 
News, Talks, Delivered Speech, Daily Conversational Data 

Recorded with Telephone and Microphone 

Sampling 16 kHz, 16-bits, mono PCM 

Utterance’s length Ranging from 3 seconds to 45 seconds each 

Dataset Size 97 hrs (white noise) 96 hrs (original) 120 hrs (scrutinized) 

Training 

hr:min:sec 86:12:26 85:53:13 107:02:16 

Utts. 51,976 

Validation 
hr:min:sec 07:37:28 07:17:37 09:05:28 

Utts. 4,256 

OpenTestSet 

hr:min:sec 03:38:48 03:28:42 04:20:12 

Utts. 1,782 

ClosedTestSet 

hr:min:sec 03:21:21 03:11:13 03:58:22 

Utts. 1,782 

Speakers 

(20 ~ 70 yrs.) 

Male 89 
209 

Female 120 



  

79 
 

that works best for modeling speaker identities. Since the Gaussian classifier uses a 

similar technique to the long-term average of spectral data for describing a speaker’s 

average vocal tract shape, it has been successfully used in various text independent 

speaker identification applications [58].  

6.2.2.1 Evaluation with the Number of Gaussian Components and i-Vector 

Dimensions 

Gaussian Mixture Model (GMM) is a probabilistic model which is signified as 

a biased amount of Gaussian element densities and used to model the distribution of 

the acoustic characteristics of speech. Universal background model (UBM) is the 

GMM trained on a large background set in which speaker and channel variability are 

adequately represented. The number of Gaussian components and i-vector dimensions 

used in building GMM-UBM based acoustic models can reduce the error rate and 

improve the recognizing rate. Experiments are implemented to analyze the best 

parameters of Gaussian components and i-vector dimensions to enhance the system 

performance. Table 6.2 shows the different parameters used in building GMM-UBM 

based acoustic models. 

 

Table 6.2 Parameters used in GMM-UBM 

GMM-UBM 

Models 

Number of Gaussian 

Components 

Number of i-Vector 

Dimensions 

ModelI 400 200 

ModelII 300 150 

ModelIII 250 125 

ModelIV 200 100 

ModelV 100 50 

 

6.2.2.2 Experimental Results 

The evaluation results on different speaker models of GMM-UBM with data 

augmentation and without data augmentation methods are represented in this section 

to prove that data augmentation methods can also enhance the system performance. 

Table 6.3 and Figure 6.1 represents the equal error rate (EER) of different GMM-
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UBM based speaker models with (withAug) and without (noAug) data augmentation 

methods. According to the outcomes as shown in Table 6.3 and Figure 6.1, increasing 

the number of Gaussian Components and i-vector dimensions reduce the error rate 

and lead to better detecting accuracy together with and without data augmentation 

methods. 

 

Table 6.3 EER (%) on GMM-UBM based Acoustic Models with and without 

Data Augmentation 

GMM-UBM 

Models 

Equal Error Rate (%) 

white noise original scrutinized 

noAug withAug noAug withAug noAug withAug 

ModelI 1.433 1.316 0.6347 0.6344 0.6109 0.5639 

ModelII 1.598 1.551 0.7284 0.6579 0.6344 0.6109 

ModelIII 1.715 1.48 0.7989 0.7281 0.7804 0.7049 

ModelIV 2.209 1.668 0.9868 0.8224 0.8929 0.7754 

ModelV 4.018 2.961 2.138 1.809 1.903 1.527 

 

 

 

Figure 6.1 EER (%) on GMM-UBM based Acoustic Models with and 

without Data Augmentation 

 

Table 6.4 and Figure 6.2 represents the detecting accuracy in percentage 

(recognizing rate of speaker models) of different GMM-UBM based speaker models 
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with (withAug) and without (noAug) data augmentation methods in open test set 

evaluation. 

 

Table 6.4 Detecting Accuracy (%) of GMM-UBM based Acoustic Models with 

and without Data Augmentation on OpenTestSet 

GMM-UBM 

Models 

Detecting Accuracy (%) 

white noise original scrutinized 

noAug withAug noAug withAug noAug withAug 

ModelI 90.00 92.98 97.08 97.41 97.69 98.03 

ModelII 88.37 91.18 96.29 97.3 96.57 97.52 

ModelIII 88.69 90.00 95.84 96.51 96.29 96.74 

ModelIV 84.83 89.33 94.21 95.95 95.84 96.29 

ModelV 77.82 80.57 87.98 90.9 90.34 91.85 

 

 

Figure 6.2 Detecting Accuracy (%) of GMM-UBM based Acoustic Models with 

and without Data Augmentation on OpenTestSet 

 

Table 6.5 and Figure 6.3 represent the detecting accuracy in percentage 

(recognizing rate of speaker models) of different GMM-UBM based speaker models 

with (withAug) and without (noAug) data augmentation methods in closed test set 

evaluation. 
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Table 6.5 Detecting Accuracy (%) of GMM-UBM based Acoustic Models with 

and without Data Augmentation on ClosedTestSet 

GMM-UBM 

Models 

Detecting Accuracy (%) 

white noise original scrutinized 

noAug withAug noAug withAug noAug withAug 

ModelI 91.35 92.98 97.36 97.86 98.61 98.81 

ModelII 89.89 92.41 97.08 97.52 97.13 97.69 

ModelIII 89.33 91.01 96.06 96.68 97.02 97.3 

ModelIV 88 88.04 95.33 96.79 96.01 97.13 

ModelV 78.6 82.42 89.21 91.46 90.67 92.19 

 

 

 
Figure 6.3 Detecting Accuracy (%) of GMM-UBM based Acoustic Models 

with and without Data Augmentation on ClosedTestSet 

6.2.3 Time Delay Neural Network based Acoustic Model 

Neural Networks require many speech data in convergence of model training. 

As a result, it consumes a lot of time in model training. This work explores the ways 

to improve the modeling capabilities of Time delay neural network (TDNN). It is 

designed to express a relation among inputs in time and utilized to model long-term 

dependencies. It also has strong probability in context modeling. TDNN consists of 

frame level layers, statistics pooling that estimates mean and standard deviation over 

input frame features, segment level layers and a final softmax layer where outputs 

correspond to speaker probabilities explained in detail at Chapter 3.  
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6.2.3.1 Evaluation with Different Network Contexts 

TDNN architecture is tied across time steps to decrease parameters and learn 

shift invariant feature transforms and to increase the computational efficiency. 

Splicing continuous windows of frames into typical TDNNs results in overlap and 

redundancy, which makes model training time-consuming. In order to overcome the 

performance of the original data, this study employs the subsampling strategy to 

increase efficiency while permitting the cracks between feature frames at each layer 

and to shorten the training time complexity of the model. Table 6.6 shows the 

different parameters tuning of layer-wise network context with subsampling technique 

for use in building TDNN based acoustic models. In this table, the splicing 

configuration {-2, 2} means that splice the input at present period subtract 2 and the 

current time step add 2. 

  

Table 6.6 Layer-wise Context Parameter Tuning Settings of TDNN  

TDNN Models Network Context 

Layer-wise Context 

1 2 3 4 5 

TDNNI [-7, 7] [-2, 2] {-2, 2} {-3, 3} {0} {0} 

TDNNII [-8, 8] [-2, 2] {-1, 1} {-2, 2} {-3, 3} {0} 

TDNNIII [-9, 7] [-2, 2] {-2, 2} {-5, 3} {0} {0} 

TDNNIV [-10, 6] [-2, 2] {-2, 2} {-6, 2} {0} {0} 

TDNNV [-10, 8] [-2, 2] {-1, 1} {-2, 2} {-5, 3} {0} 

TDNNVI [-11, 6] [-2, 2] {-2, 2} {-7, 2} {0} {0} 

TDNNVII [-11, 7] [-2, 2] {-1, 1} {-2, 2} {-6, 2} {0} 

TDNNVIII [-12, 7] [-2, 2] {-1, 1} {-2, 2} {-7, 2} {0} 

 

6.2.3.2 Experimental Results 

The experimental results on different speaker models of TDNN with data 

augmentation and without data augmentation methods are represented in this section 

to show that data augmentation methods can also upgrade the system performance. 

Table 6.7 and Figure 6.4 represents the equal error rate (EER) of different TDNN 

based speaker models with (withAug) and without (noAug) data augmentation 
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methods. According to the results as shown in Table 6.7 and Figure 6.4, the slicing 

parameters for 5-time delay layers: {t-2, t-1, t, t+1, t+2}, {t-1, t, t+1}, {t-2, t, t+2}, {t-

3, t, t+3}, {t} give the optimal result in EER and lead to better detecting accuracy 

together with and without data augmentation methods. 

 

Table 6.7 EER (%) on TDNN based Acoustic Models using Subsampling 

Technique with and without Data Augmentation 

TDNN 

Models 

Equal Error Rate (%) 

white noise original scrutinized 

noAug withAug noAug withAug noAug withAug 

TDNNI 2.198 1.025 1.292 0.9164 1.245 0.8459 

TDNNII 2.151 1.626 1.222 0.8929 1.198 0.7989 

TDNNIII 2.292 1.955 1.339 0.9398 1.316 0.8134 

TDNNIV 2.339 1.931 1.392 0.9164 1.292 0.8271 

TDNNV 2.222 1.696 1.269 0.9263 1.241 0.8929 

TDNNVI 2.292 1.649 1.363 0.9868 1.316 0.8224 

TDNNVII 2.198 1.767 1.682 0.9633 1.269 0.8929 

TDNNVIII 2.175 1.814 1.523 0.9868 1.245 0.9164 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 EER (%) on TDNN based Acoustic Models using Subsampling 

Technique with and without Data Augmentation 
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Table 6.8 and Figure 6.5 represent the detecting accuracy in percentage 

(recognizing rate of speaker models) of different TDNN based speaker models with 

(withAug) and without (noAug) data augmentation methods in open test set 

evaluation by using subsampling technique. 

 

Table 6.8 Detecting Accuracy (%) of TDNN based Acoustic Models with and 

without Data Augmentation on OpenTestSet using Subsampling Technique 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Detecting Accuracy (%) of TDNN based Acoustic Models with and 

without Data Augmentation on OpenTestSet using Subsampling Technique 

TDNN 

Models 

Detecting Accuracy (%) 

white noise original scrutinized 

noAug withAug noAug withAug noAug withAug 

TDNNI 87.59 95.95 96.06 98.25 96.4 98.54 

TDNNII 87.59 95.9 96.91 98.03 97.13 98.88 

TDNNIII 87.53 94.6 96.29 97.92 96.63 98.48 

TDNNIV 86.35 95.28 96.7 97.97 96.35 98.59 

TDNNV 87.7 95.56 95.9 97.75 96.85 98.37 

TDNNVI 85.73 95.5 96.35 97.69 96.85 98.59 

TDNNVII 88.04 95.5 96.01 97.86 96.57 98.7 

TDNNVIII 88.15 94.38 96.57 97.97 96.63 98.59 

80

85

90

95

100

n
o
A

u
g

w
it

h
A

u
g

n
o
A

u
g

w
it

h
A

u
g

n
o
A

u
g

w
it

h
A

u
g

n
o
A

u
g

w
it

h
A

u
g

n
o
A

u
g

w
it

h
A

u
g

n
o
A

u
g

w
it

h
A

u
g

n
o
A

u
g

w
it

h
A

u
g

n
o
A

u
g

w
it

h
A

u
g

TDNN I TDNN II TDNN III TDNN IV TDNN V TDNN VI TDNN

VII

TDNN

VIII

A
cc

u
ra

cy
 (

%
)

Detecting Accuracy of OpenTestSet in TDNN Based Acoustic Models

Whitenoise Original Scrutinized



  

86 
 

Table 6.9 and Figure 6.6 represent the detecting accuracy in percentage 

(recognizing rate of speaker models) of different TDNN based speaker models with 

(withAug) and without (noAug) data augmentation methods in closed test set 

evaluation by using subsampling technique. 

 

Table 6.9 Detecting Accuracy (%) of TDNN based Acoustic Models with and 

without Data Augmentation on ClosedTestSet using Subsampling Technique 

 

 

 
 

Figure 6.6 Detecting Accuracy (%) of TDNN based Acoustic Models with and 

without Data Augmentation on ClosedTestSet using Subsampling Technique 
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Detecting Accuracy of ClosedTestSet in TDNN Based Acoustic Models

Whitenoise Original Scrutinized

TDNN Models 

Detecting Accuracy (%) 

white noise original scrutinized 

noAug withAug noAug withAug noAug withAug 

TDNNI 92.08 97.02 96.51 98.78 97.08 98.82 

TDNNII 92.08 96.12 97.02 98.59 97.86 98.91 

TDNNIII 90.51 95.84 96.96 98.42 97.52 98.61 

TDNNIV 90.17 96.46 96.86 98.48 97.02 98.82 

TDNNV 92.19 96.57 97.02 98.37 97.24 98.48 

TDNNVI 89.55 96.12 96.57 98.69 97.52 98.82 

TDNNVII 91.8 96.73 97.13 98.59 97.47 98.87 

TDNNVIII 92.53 96.06 97.02 98.42 97.47 98.72 
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6.3 Discussion on Different Acoustic Models and Test Cases 

Based on the experimental results of three acoustic models on different 

training datasets, some analysis and discussion are presented in this section. 

According to the aspects of training datasets, adding white noise to the original data 

does not give the effectiveness in building the acoustic models. It can cause not only 

hindering the clarity of sound upon each speech utterances but also degrading the 

recognizing performance without knowing clearly who the speakers are. However, the 

dataset created with proposed scrutinized methods leads to better the recognizing 

performance than the original dataset. Moreover, the pace and clarity of sound to all 

utterances are smoothed and has clear understanding of what they are saying. It is 

evident that the suggested data inspection method produces findings that are 

equivalent for each speaker type, each of which has a lower error rate. This may also 

give the benefits to the automatic speech recognition. 

By discussing from the aspects of data augmentation, it makes the training 

powerful and increases the diversity of training data having doubling the size of 

original dataset. If the experimental results of speaker models using data 

augmentation techniques compares with the experimental results of speaker models 

without data augmentation techniques, the models comprising with data augmentation 

techniques give better results than that of comprising without data augmentation 

techniques. Therefore, the benefits not only getting the variety of training data but 

also getting system robustness obtain from augmenting the training data.  

On the other hand of the aspects of speaker models, the different parameter 

tunings used in acoustic models’ trainings give the effectiveness of not only reducing 

the error rate but only increasing the identifying rate. The experimental results of 

speaker models using data augmentation are discussed and analyzed in this section. 

In GMM-UBM based acoustic models using data augmentation, 400 Gaussian 

components and 200 i-vector dimensions reduce the identifying error rate and 

increase the detecting accuracy of every speaker’s identity in both test cases 

(OpenTestSet and ClosedTestSet). This is because it is a classical parametric method 

expressing the speaker related data in total distribution with the capability of 

representing the spectral shapes in Gaussian components in which speaker and 

channel variability are adequately represented. Therefore, building the speaker 
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acoustic models with 400 Gaussian components and 200 i-vector dimensions upgrade 

the system performance leading to reducing the error rate and enhancing the accuracy 

on all of training datasets.  

According to the experiments, increasing the number of Gaussian components 

and i-vector dimensions causes the speaker models leading to better performance. By 

comparing the relative improvements between original and scrutinized datasets, the 

speaker models using data augmentation constructed with 400 Gaussian components 

and 200 i-vector dimensions give the best relative improvement up to over 12 % 

although the improvements on each respective model increase. The results of equal 

error rate of speaker models with 100 Gaussian components and 50 i-vector 

dimensions as shown in Table 6.3 are the highest on all of speaker models although 

these yield the highest relative improvement among different parameter tunings.  

In TDNN based acoustic models using data augmentation, the speaker models 

with [-8, 8] layer-wise network input context decreases the identifying error rate and 

improves the detecting accuracy of every speaker’s identity in both test cases 

(OpenTestSet and ClosedTestSet). This is because the information from relatively 

narrow contexts is processed by the initial transforms of a TDNN and the hidden 

activations from a wider context are processed by the deeper layers. In a typical 

TDNN, hidden activations are computed at all-time steps in which large overlap 

between input contexts computed at adjacent time frames will cause redundant 

computation. Minimum overlaps between input contexts can be achieved through the 

carefully designed hierarchical structure. Instead of simply splicing together 

continuous temporal window of frames at each layer of network, subsampling 

technique is used in this work. It allows gaps between the frames in a window and 

thus substantially reduces the overall computation. And this process helps save 

computation, reduce the model size and speed up the training time significantly. 

According to the experiments, the network contexts of [t-7, t+7], [t-9, t+7], [t-

10, t+6] and [t-11, t+6] containing two fully connected layers in upper layers 4 and 5 

obviously decreases the error rate value with relative improvement up to over 19 % 

when comparing the results of the original data with scrutinized data. The network 

contexts of [t-8, t+8], [t-10, t+8], [t-11, t+7] and [t-12, t+7] which contains only one 

fully connected layer before producing the output decrease the error rate with relative 
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improvement over 7 % in [t-11, t+7], [t-12, t+7] and only nearly 4 % in [t-10, t+8]. 

This is because the hidden layer 4 of [t-10, t+8], [t-11, t+7] and [t-12, t+7] takes the 

time step of the upper and lower bound very far causing loss the specific information 

of speakers. Among them, the reason of why the network context of [t-8, t+8] as the 

optimal network context is chosen is that it reduces the EER not only in scrutinized 

dataset but also in original dataset obviously. Moreover, as the input, the network 

context in layer 4 takes the adjacent frames on narrow temporal contexts from the 

lower layer 3. Therefore, building the speaker acoustic models with [-8, 8] layer-wise 

network input context enhances the system performance leading to reducing the error 

rate and increasing the accuracy on both test cases. The error rate of network context 

[-8, 8] scrutinized dataset is the best rate in comparing with the results of other 

acoustic models. It can be obviously seen that the error rate of scrutinized dataset 

decreases on every speaker model whether with or without augmentation methods but 

the error rate of [-8, 8] context of scrutinized dataset is the best rate in comparing with 

the results of other network contexts. 

In comparing the detecting accuracy of both testsets (OpenTestSet and 

ClosedTestSet), the accuracy of ClosedTestSet is higher than that of OpenTestSet on 

all of speaker models. This is because there are no spoken utterances of OpenTestSet 

in training datasets although the spoken utterances of ClosedTestSet are already 

contained in training datasets. It leads this dissertation to text independent Burmese 

speaker identification in open-set case. 

6.4 Summary 

This chapter presents the experimental setup regarding with building acoustic 

models, the discussion and analysis of promising results derived from assessing the 

performance of the acoustic speaker models and showing the improvement of 

recognizing quality by scrutinized dataset comparing with original and white noise-

added dataset on Burmese speaker identification. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORKS 

 

Summarization of the dissertation, its advantages and limitations of proposed 

system are described and future works will be discussed in this chapter. 

7.1 Dissertation Summary 

There are many state-of-the-art technologies applied to automatic speaker 

recognition. It can be done by traditional GMM-UBM and more advanced by Neural 

Networks especially TDNN. From the aspects of training data, data augmenting and 

scrutinizing methods are investigated and analyzed for more performance in this 

dissertation. 

The objective of this research is to build the Burmese speech dataset first for 

applying to speaker identification, to augment with MUSAN dataset for sufficient 

amount of training data and to investigate the speech quality by using scrutinized 

techniques for the capability of identifying the speakers. Over 96 hours of speech 

dataset are created as one of main contributions. The scrutinized speech dataset (over 

120 hours) is built for better performance by using these over 96 hours of original 

collected speech data because getting and building high quality speech dataset is 

important for speaker recognition research especially in low-resourced tonal language 

like Burmese. It is created by using two data scrutinizing methods: increasing the 

speech intensity in SNRs to 10 dB and downing the tempo factor 0.2 times without 

affecting the pitch of utterances. The dataset with white noise-added is also created 

for highlighting any kind of noise hiders the performance of systems. Performance 

has been assessed with GMM-UBM and TDNN recognizers modeled using MFCC 

feature to prove the robustness of scrutinized training dataset and the weakness of 

white noise-added training datasets comparing with the original dataset. Moreover, 

the effectiveness of parameters like number of components, and i-vector dimensions 

in GMM-UBM and layer-wise context parameter tuning in TDNN used for building 

the acoustic speaker models was analyzed on corresponding different training models.  

This dissertation summarizes how to collect the speech data, the effectiveness 

of scrutinized data for capability of identifying the speakers and the impacts of 
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reducing error rate and increasing detecting accuracy on various speaker models built 

with different training data. The exploration of TDNN is the first work applying in 

speaker identification especially for Burmese language. 

7.2 Advantages and Limitations 

Speaker identification is still becoming as the increased attention from 

researchers in the domain of speech processing concerning information security for 

many years. According to the research findings and experimental outcomes, the 

proposed augmenting and scrutinizing methods enhance the system performance. 

Scrutinizing speech datasets will be very beneficial for future research on speaker 

identification and will allow for the addition of more speech data. This can help to 

provide the safety access to call centers in financial sectors, some access control in the 

industrial sector and to improve in biometrics applications like fingerprint, face, iris, 

palm and vein, and heartbeat. Scrutinizing data helps to obtain both numerous and 

high-quality data for low-resourced languages like Burmese. Because the stability of 

the identification process is insufficient, improved recognition also depends on the 

duration, speech frequency range, recording environment, accent, and physical state 

of the speakers. As a drawback of this work, the recording environment and type of 

headphone is important for testing in real time. If the quality of headphone is not good 

and the recording environment is noisy, the incoming test utterance cannot produce 

the speaker identity correctly. 

7.3 Future Works 

The results show that, with corresponding relative improvements, the 

performance of models using the scrutinized speech dataset beats that of models using 

the original collected speech dataset in acoustic speaker modeling. By further 

optimization, these examining techniques will be used to other research, such as the 

study of speaker identification. The hybrid system of automatic speech recognition 

and speaker recognition will be implemented as extensions of the identified words 

what the speaker says. End to end learning approach will be pursued in speech 

recognition as future work for more improving the performance of speaker 

identification.  
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LIST OF ACRONYMS 

Acc Detecting Accuracy 

ASR Automatic Speech Recognition 

BBC British Broadcasting Corporation 

CER Crossover Error Rate 

dB Decibel 

DCT Discrete Cosine Transform 

DET Detection Error Tradeoff 

DFT Discrete Fourier Transform 

DNNs Deep Neural Networks 

DVB Democratic Voice of Burma 

EER Equal Error Rate 

EM Expectation-Maximization 

FA False Acceptance  

FAR False Acceptance Rate 

FFT Fast Fourier Transform 

FR False Rejection 

FRR False Rejection Rate 

GMMs Gaussian Mixture Models 

GMM-UBM Gaussian Mixture Model-Universal Background Model 

GPUs Global Processing Units 

HCI Human-Computer Interaction 

HMMs Hidden Markov Models 

HZCRR High Zero Crossing Rate Ratio 

JFA Joint Factor Analysis 
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kHz Kilo Hertz 

LDA Linear Discriminant Analysis 

LSTER Low Short Time Energy Ratio 

LVCSR Large Vocabulary Continuous Speech Recognition 

MAP Maximum A Posteriori 

MFCC Mel Frequency Cepstral Coefficient 

minDCFs Minimum Detection Cost Functions 

MLP Multi-Layer Perceptron 

MRTV Myanmar Radio and Television 

MUSAN Music, Speech and Noise Corpus 

NIST National Institute of Standards and Technology 

NTT Nippon Telegraph and Telephone 

OpenSLR Open Speech and Language Resources 

PCM Pulse Code Modulation 

pdf Probability Density Function 

PLDA Probabilistic Linear Discriminant Analysis 

PLP Perceptual Linear Prediction 

ReLUs Rectified Linear Units 

RFA Radio Free Asia 

RIRs Room Impulse Responses 

RVB reverberation 

RWCP-SSD Real World Computing Partnership-Sound Scene Database 

SNRs Signal to Noise Ratios 

SP speed perturbation 

SRE Speaker Recognition Evaluation 
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STFT Short-Time Fourier Transform 

sup-GMM Supervised GMM 

SVM Support Vector Machine 

TAR True Acceptance Rate 

TDNNs Time Delay Neural Networks 

TTS Total Test Speech Samples 

TV Television 

UBM Universal Background Model 

VAD Voice Activity Detection 

VOA Voice of America 

VQ Vector Quantization 

WDS Wrong Detected Samples 

WER word error rate 

YOHO YOHO Speaker Verification Dataset 

ZCR Zero Crossing Rate 
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APPENDIX 

 

APPENDIX: Developing GMM-UBM based Automatic Speaker Identification 

KaldiASR toolkit is used to implement the Burmese speaker identification. 

Data preparation, feature extraction, building acoustic speaker models, creating trial 

files, and identification process by using this toolkit are presented in this appendix. 

 

1. Data Preparation 

Data preparation is a preliminary and necessary step to set up the Burmese 

speaker system with the speech corpus. This section describes details how to prepare 

the data for training, development and test sets for Burmese language. Prepared data 

are stored in the “data” directory containing information about the specific of the 

audio files. 

1.1 Data Preparation (“data” directory) 

In the “data” part for training, validation and test sets data, audio files’ path 

related to utterances (wav.scp), speaker and utterance mappings: utt2spk and spk2utt 

are necessary to prepare manually. 

(a) wav.scp 

This file connects every utterance (sentence said by one person during 

particular recording session) with an audio file related to this utterance. 

Pattern: ộÕÔÔÅÒÁÎÃÅ)$Ớ  ộÆÕÌÌÐͅÁÔÈÔͅÏͅÁÕÄÉÏÆͅÉÌÅỚ 

 

 

 

 

 

 

(b) utt2spk 

The “utt2spk” file tells the system which utterance belongs to a particular 

speaker.  

v2# head -5 data/train/wav.scp 

mm-winlailaiphyu_10001 /root/kaldi/data/train/mm-winlailaiphyu_10001.wav 

mm-winlailaiphyu_10002 /root/kaldi/data/train/mm-winlailaiphyu_10002.wav 

mm-winlailaiphyu_10003 /root/kaldi/data/train/mm-winlailaiphyu_10003.wav 

mm-winlailaiphyu_10004 /root/kaldi/data/train/mm-winlailaiphyu_10004.wav 

mm-winlailaiphyu_10005 /root/kaldi/data/train/mm-winlailaiphyu_10005.wav 
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Pattern: ộÕÔÔÅÒÁÎÃÅ)$Ớ ộÓÐÅÁËÅÒ)$Ớ 

 

 

 

 

 

 

 

(c) spk2utt 

The “spk2utt” file tells the system which utterances speak by a particular 

speaker. It can be produced with the following command by using the “utt2spk” file. 

 

 

Pattern: ộÓÐÅÁËÅÒ)$Ớ            ộÕÔÔÅÒÁÎÃÅ)$Ớ 

 

 

 

 

 

2. Data Augmentation 

Data augmentation is used for the purpose of increasing the training data size 

by creating new and different data from existing data artificially. Additive noise and 

reverberation to original training data are employed. Firstly, convolving simulated 

room impulse responses (RIRs) with audio is applied to add the echo to the speech 

data artificially by using the following command. 

 

 

The data files under “data/train” are used to produce the output of the audio 

files’ path related to utterances (wav.scp), speaker and utterance mappings: utt2spk 

and spk2utt. 

 

(a) wav.scp 

This file connects every utterance (sentence said by one person during 

particular recording session) with an audio file related to this utterance. 

v2# head -5 data/train/utt2spk 

mm-winlailaiphyu_10001 mm-winlailaiphyu 

mm-winlailaiphyu_10002 mm-winlailaiphyu 

mm-winlailaiphyu_10003 mm-winlailaiphyu 

mm-winlailaiphyu_10004 mm-winlailaiphyu 

mm-winlailaiphyu_10005 mm-winlailaiphyu 

 

 

v2# head -1 data/train/spk2utt 

mm-winlailaiphyu mm-winlailaiphyu_10001  mm-winlailaiphyu_10002 mm-

winlailaiphyu_10003  mm-winlailaiphyu_10004  mm-winlailaiphyu_10005  

      

utils/utt2spk_to_spk2utt.pl data/train/utt2spk > data/train/spk2utt 

 

steps/data/reverberate_data_dir.py data/train data/train_reverb 
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Pattern: ộÕÔÔÅÒÁÎÃÅ)$Ớ  ộÆÕÌÌÐͅÁÔÈÔͅÏͅÁÕÄÉÏÆͅÉÌÅỚ 

 

 

 

 

 

 

 

 

 

 

 

 

(b) utt2spk 

The “utt2spk” file tells the system which utterance belongs to a particular 

speaker.  

Pattern: ộÕÔÔÅÒÁÎÃÅ)$Ớ ộÓÐÅÁËÅÒ)$Ớ 

 

 

 

 

 

 

 

(c) spk2utt 

The “spk2utt” file tells the system which utterances speak by a particular 

speaker. It can be produced with the following command by using the “utt2spk” file. 

 

 

Pattern: ộÓÐÅÁËÅÒ)$Ớ            ộÕÔÔÅÒÁÎÃÅ)$Ớ 

 

 

 

v2# head -3 data/train_reverb/wav.scp 

mm-winlailaiphyu_10001-reverb cat /root/kaldi/data/train/mm-winlailaiphyu_10001.wav | wav-

reverberate --shift-output=true --impulse-response="sox 

RIRS_NOISES/simulated_rirs/mediumroom/Room072/Room072-00084.wav -r 16000 -t wav - |" 

- - | 

mm-winlailaiphyu_10002-reverb cat /root/kaldi/data/train/mm-winlailaiphyu_10002.wav | wav-

reverberate --shift-output=true --impulse-response="sox 

RIRS_NOISES/simulated_rirs/mediumroom/Room036/Room036-00041.wav -r 16000 -t wav - |" 

- - | 

mm-winlailaiphyu_10003-reverb cat /root/kaldi/data/train/mm-winlailaiphyu_10003.wav | wav-

reverberate --shift-output=true --impulse-response="sox 

RIRS_NOISES/simulated_rirs/mediumroom/Room091/Room091-00020.wav -r 16000 -t wav - |" 

- - | 

 

v2# head -5 data/train_reverb/utt2spk 

mm-winlailaiphyu_10001-reverb mm-winlailaiphyu 

mm-winlailaiphyu_10002-reverb mm-winlailaiphyu 

mm-winlailaiphyu_10003-reverb mm-winlailaiphyu 

mm-winlailaiphyu_10004-reverb mm-winlailaiphyu 

mm-winlailaiphyu_10005-reverb mm-winlailaiphyu 

utils/utt2spk_to_spk2utt.pl data/train_reverb/utt2spk > data/ train_reverb /spk2utt 

 

v2# head -1 data/train_reverb/spk2utt 

mm-winlailaiphyu mm-winlailaiphyu_10001-reverb mm-winlailaiphyu_10002-reverb mm-

winlailaiphyu_10003-reverb mm-winlailaiphyu_10004-reverb mm-winlailaiphyu_10005-reverb
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MUSAN: Music, Speech and Noise corpus is used for augmenting the existing 

training data consisting of over 900 noises, 60 hours of speech and 42 hours of music 

by using the following command to obtain the MUSAN corpus which consists of 

music, speech and noise suitable for augmentation.  

 

 

MUSAN corpus is used to produce the outputs of the audio files’ path related 

to utterances (wav.scp), speaker and utterance mappings: utt2spk and spk2utt. The 

data folders: speech, noise, and music under MUSAN corpus are used to produce the 

corresponding output folders: “data/musan_noise”, “data/musan_speech”, and 

“data/musan_music”. The output under “data/musan_noise” is represented as an 

example output. 

(a) wav.scp 

Pattern: ộÕÔÔÅÒÁÎÃÅ)$Ớ  ộÆÕÌÌÐͅÁÔÈÔͅÏͅÁÕÄÉÏÆͅÉÌÅỚ 

 

 

 

 

 

(b) utt2spk and spk2utt 

The “utt2spk” and “spk2utt” are the same files because the data files are the 

individually separated files. 

Pattern: ộÕÔÔÅÒÁÎÃÅ)$Ớ ộÓÐÅÁËÅÒ)$Ớ 

 

 

 

 

 

 

steps/data/make_musan.sh path_to_MUSAN_corpus data 

 

v2# head -5 data/musan_noise/wav.scp 

noise-free-sound-0000 /root/kaldi/egs/sitw/musan/noise/free-sound/noise-free-sound-0000.wav 

noise-free-sound-0001 /root/kaldi/egs/sitw/musan/noise/free-sound/noise-free-sound-0001.wav 

noise-free-sound-0002 /root/kaldi/egs/sitw/musan/noise/free-sound/noise-free-sound-0002.wav 

noise-free-sound-0003 /root/kaldi/egs/sitw/musan/noise/free-sound/noise-free-sound-0003.wav 

noise-free-sound-0004 /root/kaldi/egs/sitw/musan/noise/free-sound/noise-free-sound-0004.wav 

v2# head -5 data/musan_noise/utt2spk 

v2# head -5 data/musan_noise/spk2utt 

noise-free-sound-0000 noise-free-sound-0000 

noise-free-sound-0001 noise-free-sound-0001 

noise-free-sound-0002 noise-free-sound-0002 

noise-free-sound-0003 noise-free-sound-0003 

noise-free-sound-0004 noise-free-sound-0004 
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After that, the data folders: “data/musan_noise”, “data/musan_speech”, and 

“data/musan_music” are used to produce the corresponding augmented output folders: 

“data/train_noise”, “data/ train _music”, and “data/ train _babble” with these 

commands. 

 

 

 

 

 

The output under “data/train_noise” is represented as an example output. 

(a) wav.scp 

Pattern: ộÕÔÔÅÒÁÎÃÅ)$Ớ  ộÆÕÌÌÐͅÁÔÈÔͅÏͅÁÕÄÉÏÆͅÉÌÅỚ 

 

 

 

 

 

 

 

 

 

(b) utt2spk 

The “utt2spk” file tells the system which utterance belongs to a particular 

speaker.  

Pattern: ộÕÔÔÅÒÁÎÃÅ)$Ớ ộÓÐÅÁËÅÒ)$Ớ 

 

 

 

 

 

 

steps/data/augment_data_dir.py “data/musan_speech” data/train data/train_babble 

 

steps/data/augment_data_dir.py “data/musan_noise” data/train data/train_noise 

 
steps/data/augment_data_dir.py “data/musan_music” data/train data/train_music 

 

v2# head -3 data/train_noise/wav.scp 

mm-winlailaiphyu_10001-noise wav-reverberate --shift-output=true --additive-

signals='/root/kaldi/egs/sitw/musan/noise/free-sound/noise-free-sound-0643.wav' --start-times='0' 

--snrs='15' / home/winlai/Data/train/mm-winlailaiphyu_10001.wav - | 

mm-winlailaiphyu_10002-noise wav-reverberate --shift-output=true --additive-

signals='/root/kaldi/egs/sitw/musan/noise/sound-bible/noise-sound-bible-0036.wav' --start-

times='0' --snrs='5' /home/winlai/Data/train/mm-winlailaiphyu_10002.wav - | 

mm-winlailaiphyu_10003-noise wav-reverberate --shift-output=true --additive-

signals='/root/kaldi/egs/sitw/musan/noise/free-sound/noise-free-sound-0734.wav' --start-times='0' 

--snrs='0' /home/winlai/Data/train/mm-winlailaiphyu_10003.wav - | 

v2# head -5 data/train_ noise/utt2spk 

mm-winlailaiphyu_10001-noise mm-winlailaiphyu 

mm-winlailaiphyu_10002-noise mm-winlailaiphyu 

mm-winlailaiphyu_10003-noise mm-winlailaiphyu 

mm-winlailaiphyu_10004-noise mm-winlailaiphyu 

mm-winlailaiphyu_10005-noise mm-winlailaiphyu  
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(c) spk2utt 

The “spk2utt” file tells the system which utterances speak by a particular 

speaker. It can be produced with the following command by using the “utt2spk” file. 

 

 

Pattern: ộÓÐÅÁËÅÒ)$Ớ            ộÕÔÔÅÒÁÎÃÅ)$Ớ 

 

 

 

 

The training data naming “data/train_reverb”, “data/train_noise”, 

“data/train_music”, and “data/train_babble” has four times than that of original 

training data. These are obtained from reverberating the training data and augmenting 

the training data with MUSAN corpus. And then, these four augmented data files are 

combined into the folder name “data/aug” by using the following command. 

 

 

 

 

3. Feature Extraction 

Feature extraction step is performed after preparing the data. In this work, 

MFCC feature extraction technique is used. The “feats.scp” file is made by the 

following command. This command is only for the MFCC feature extraction method. 

It will create “feats.scp” in “data/train/feats.scp” with corresponding archives in a 

folder called “mfccvad” and written log files to exp/make_mfcc. 

 

 

The data files under “data/aug” are also used to extract the feature like 

extracting the feature and detecting silent and non-silent speech frames from the data 

under “data/train”. After that, these data under the folders “data/train” and “data/aug” 

are combined using the following command to form “data/combinetrain”. 

 

 

steps/make_mfcc.sh data/train exp/make_mfcc/ ./mfccvad 

 

utils/combine_data.sh data/aug data/train_reverb data/train_noise data/train_music 

data/train_babble 

 

utils/utt2spk_to_spk2utt.pl data/train_reverb/utt2spk > data/ train_reverb /spk2utt 

 

v2# head -1 data/train_reverb/spk2utt 

mm-winlailaiphyu mm-winlailaiphyu_10001-noise mm-winlailaiphyu_10002-noise mm-

winlailaiphyu_10003-noise mm-winlailaiphyu_10004-noise mm-winlailaiphyu_10005-noise 

    

utils/combine_data.sh data/combinetrain data/train data/aug 
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For voice activity detection, the “vad.scp” file is made by the following 

command. It will create “vad.scp” in “data/train/vad.scp” with corresponding archives 

in a folder called “mfccvad” and written log files to exp/make_vad. For “data/aug”, 

only “data/train/vad.scp” file is used without creating the separated “vad.scp” file. 

 

 

The example output of MFCC feature format in Kaldi is as follows. 

Pattern: ộÕÔÔÅÒÁÎÃÅ)$Ớ ộÅØÔÅÎÄÅÄÆͅÉÌÅÎÁÍÅÏͅÆͅ-&##ͅÆÅÁÔÕÒÅÓỚ 

 

 

 

 

 

 

 

 

The example output of VAD value in Kaldi format is as follows. 

Pattern: ộÕÔÔÅÒÁÎÃÅ)$Ớ ộÅØÔÅÎÄÅÄÆͅÉÌÅÎÁÍÅÏͅÆͅ6!$ͅÆÅÁÔÕÒÅÓỚ 

 

 

 

 

 

4. Training GMM-UBM based Acoustic Model 

Gaussian Mixture Model_Universal Background Model (GMM_UBM) based 

system is trained on top of MFCC features to build the acoustic speaker models with 

v2# head -5 data/combinetrain/feats.scp 

mm-winlailaiphyu_10001  /root/kaldi/egs/sitw/v2/mfccvad/raw_mfcc_combinetrain.1.ark: 

955828779 

 

mm-winlailaiphyu_10002  /root/kaldi/egs/sitw/v2/mfccvad/raw_mfcc_combinetrain.1.ark: 

955833143 

 

mm-winlailaiphyu_10003  /root/kaldi/egs/sitw/v2/mfccvad/raw_mfcc_combinetrain.1.ark: 

955843897 

 

mm-winlailaiphyu_10004  /root/kaldi/egs/sitw/v2/mfccvad/raw_mfcc_combinetrain.1.ark: 

955851171 

 

mm-winlailaiphyu_10005 /root/kaldi/egs/sitw/v2/mfccvad/raw_mfcc_combinetrain.1.ark: 

955868615 

v2# head -5 data/combinetrain /vad.scp 

mm-winlailaiphyu_10001  /root/kaldi/egs/sitw/v2/mfccvad/vad_combinetrain.1.ark: 127133025 

 

mm-winlailaiphyu_10002  /root/kaldi/egs/sitw/v2/mfccvad/ vad_combinetrain.1.ark: 127133602 

 

mm-winlailaiphyu_10003 /root/kaldi/egs/sitw/v2/mfccvad/ vad_combinetrain.1.ark: 127135031 

 

mm-winlailaiphyu_10004 /root/kaldi/egs/sitw/v2/mfccvad/ vad_combinetrain.1.ark: 127135996 

 

mm-winlailaiphyu_10005 /root/kaldi/egs/sitw/v2/mfccvad/ vad_combinetrain.1.ark: 127138317 

 

sid/compute_vad_decision.sh data/train exp/make_vad/ ./mfccvad 
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parameter tuning like changing the number of components and dimensions in this 

work. It includes the following steps. 

4.1 Training Diagonal UBM 

Firstly, the data under “data/combinetrain” are used to train the diagonal 

UBM. The number of components and dimensions can be able to change to produce 

the diagonal UBM. As an example, 400 Gaussian components and 200 i-vector 

dimensions are used to produce “final.dubm” by using the following command.  

 

 

After running, the output diagonal background model is produced under 

“exp/diag_ubm_400” as final.dubm. 

4.2 Training Full UBM 

The diagonal background model, “final.dubm” under “exp/diag_ubm_400” is 

used for training full UBM by the following command. 

 

 

The output model full UBM is produced under “exp/full_ubm_400” as 

final.ubm. This background model is used to construct i-vector extractor. 

4.3 Constructing i-Vector Extractor 

The data under “data/combinetrain” and “final.ubm” under 

“exp/full_ubm_400” are used to construct i-vector extractor with this command to 

produce the extractor “final.ie” storing under “exp/extractor”. 

 

 

4.4 Extracting i-Vector 

Extracting i-vector corresponding to each utterance is performed by i-vector 

extractor located in “exp/extractor” to produce “ivector.scp”, “ivector.ark”, 

“spk_ivector.scp” and “spk_ivector.ark” with the following command. “ivector.ark”, 

and “spk_ivector.ark” are the archive files. 

sid/train_diag_ubm.sh data/combinetrain 400 exp/diag_ubm_400 

 

sid/train_full_ubm.sh data/combinetrain  exp/diag_ubm_400 exp/full_ubm_400 

sid/train_ivector_extractor.sh exp/full_ubm_400/final.ubm data/combinetrain exp/extractor 
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The process of extracting i-vector is stored as the log file under 

“exp/ivectors_combinetrain/log”. The example output of “ivector.scp” is as follows. 

Pattern: ộÕÔÔÅÒÁÎÃÅ)$Ớ ộÌÏÃÁÔÉÏÎÏͅÆͅÉÖÅÃÔÏÒÖͅÁÌÕÅÓỚ 

 

 

 

 

The example output of “spk_ivector.scp” is as follows. 

Pattern: ộÓÐÅÁËÅÒ)$Ớ ộÌÏÃÁÔÉÏÎÏͅÆͅÅÁÃÈÓͅÐÅÁËÅÒÉͅÖÅÃÔÏÒÖͅÁÌÕÅỚ 

 

 

 

 

 

The same process as extracting i-vectors of “data/combinetrain” is also used to 

extract i-vector for validation and testset. The output i-vectors are stored in the 

corresponding folders “exp/ivectors_dev” and “exp/ivectors_testset” respectively.  

 

5. Training Time Delay Neural Network based Acoustic Model 

KaldiASR toolkit is used to implement TDNN based Burmese speaker 

identification. Time Delay Neural Network (TDNN) based system is used to build the 

acoustic speaker models with changing different network contexts. Eight different 

acoustic models are constructed based on network contexts with MFCC feature in this 

work. It includes the following steps. 

 

sid/extract_ivectors.sh exp/extractor data/combinetrain exp/ivectors_combinetrain 

v2# head -5 exp/ivector_combinetrain/ivector.scp 

mm-winlailaiphyu_10001-babble exp/ivectors_combined/ivector.1.ark:176015995 

mm-winlailaiphyu_10002 exp/ivectors_combined/ivector.1.ark:176018089 

mm-winlailaiphyu_10002-music exp/ivectors_combined/ivector.1.ark:176020164 

mm-winlailaiphyu_10003 exp/ivectors_combined/ivector.1.ark:176022233 

 

v2# head -5 exp/ivector_combinetrain/spk_ivector.scp 

mm-winlailaiphyu exp/ivectors_combined/spk_ivector.ark:128618 

mm-wintwarhlaing exp/ivectors_combined/spk_ivector.ark:129445 

mm-yadanaroo exp/ivectors_combined/spk_ivector.ark:130268 

mm-yaminthu exp/ivectors_combined/spk_ivector.ark:131090 

mm-yekhaungmyintmg exp/ivectors_combined/spk_ivector.ark:131919 
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5.1 Extracting x-Vector 

The required files are prepared for embedding x-vectors of “combinetrain”, 

“validation”, and “testset” with this command. The required output files are stored in 

“exp/xvector_nnet_1a/egs” for further use in extracting x-vectors. 

 

 

 

Once trained, the 512-dimensional activations of the penultimate full 

connected layer are extracted as an x-vector with the following command to produce 

“xvector.scp”, “spk_xvector.scp” and “spk_xvector.ark”. 

 

 

 

The process of extracting x-vector is stored as the log file under 

“exp/xvectors_combinetrain/log”. The example output of “xvector.scp” is as follows. 

Pattern: ộÕÔÔÅÒÁÎÃÅ)$Ớ ộÌÏÃÁÔÉÏÎÏͅÆͅØÖÅÃÔÏÒÖͅÁÌÕÅÓỚ 

 

 

 

 

 

The example output of “spk_xvector.scp” is as follows. 

Pattern: ộÓÐÅÁËÅÒ)$Ớ ộÌÏÃÁÔÉÏÎÏͅÆͅÅÁÃÈÓͅÐÅÁËÅÒØͅÖÅÃÔÏÒÖͅÁÌÕÅỚ 

 

 

 

 

local/nnet3/xvector/run_xvector.sh data/combinetrain exp/xvector_nnet_1a 

exp/xvector_nnet_1a/egs 

sid/nnet3/xvector/extract_xvectors.sh exp/xvector_nnet_1a data/combinetrain 

exp/xvector_nnet_1a/xvector_combinetrain 

v2# head -5 exp/xvector_nnet_1a/xvector_combinetrain/xvector.scp 

mm-winlailaiphyu_10001 exp/xvector_nnet_1a/xvectors_combinetrain/xvector.1.ark:176975619 

mm-winlailaiphyu_10002 exp/xvector_nnet_1a/xvectors_combinetrain/xvector.1.ark:176979788 

mm-winlailaiphyu_10003 exp/xvector_nnet_1a/xvectors_combinetrain/xvector.1.ark:176983956 

mm-winlailaiphyu_10004 exp/xvector_nnet_1a/xvectors_combinetrain/xvector.1.ark:176990213 

mm-winlailaiphyu_10005 exp/xvector_nnet_1a/xvectors_combinetrain/xvector.1.ark:176992294 

v2# head -5 exp/xvector_nnet_1a/xvector_combinetrain/spk_xvector.scp 

mm-winlailaiphyu exp/xvector_nnet_1a/xvectors_combinetrain/spk_xvector.ark:323306 

mm-wintwarhlaing exp/xvector_nnet_1a/xvectors_combinetrain/spk_xvector.ark:325381 

mm-yadanaroo exp/xvector_nnet_1a/xvectors_combinetrain/spk_xvector.ark:327452 

mm-yaminthu exp/xvector_nnet_1a/xvectors_combinetrain/spk_xvector.ark:329522 

mm-yekhaungmyintmg exp/xvector_nnet_1a/xvectors_combinetrain/spk_xvector.ark:331599 
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The same process as extracting x-vectors of “data/combinetrain” is also used 

to extract x-vector for validation and testset. The output x-vectors are stored in the 

corresponding folders “exp/xvectors_dev” and “exp/xvectors_testset” respectively. 

 

6. Creating Trial Files 

The mapping of speaker and utterance determining whether target speaker or 

not is created by using “spk_ivector.scp” in “exp/ivectors_combinetrain” and 

“ivector.scp” in “exp/ivectors_dev” for further use in assessing the model 

performance in terms of Equal Error Rate (EER). The trial file for testset is also 

created for assessing the testset performance. The example output of “trial” is as 

follows: 

Pattern: ộÓÐÅÁËÅÒ)$Ớ ộÕÔÔ)$Ớ  ộÔÁÒÇÅÔ ÏÒ ÎÏÎÔÁÒÇÅÔỚ 

 

 

 

 

Creating trial files for TDNN based system are the same task as in GMM-

UBM based system. 

 

 

7. Training Probabilistic Linear Discriminant Analysis (PLDA) 

Probabilistic linear discriminant analysis (PLDA) is used to produce the 

PLDA model for scoring in both GMM-UBM and TDNN. 

7.1 PLDA for GMM-UBM based Acoustic Model 

The PLDA model is trained by using “data/combinetrain/spk2utt” and 

“exp/ivectors_combinetrain/ivector.scp” with the command “ivector_compute_plda”. 

The process of generating PLDA is stored in the log file named “plda.log” under 

“exp/ivectors_combinetrain/log”. 

 

 

v2# head -5 exp/trial 

mm-winlailaiphyu mm-winlailaiphyu_10183 target 

mm-wintwarhlaing mm-winlailaiphyu_10183 nontarget 

mm-yadanaroo mm-winlailaiphyu_10183 nontarget 

mm-yaminthu mm-winlailaiphyu_10183 nontarget 

mm-yekhaungmyintmg mm-winlailaiphyu_10183 nontarget 
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7.2 PLDA for TDNN based Acoustic Model 

Before PLDA model is trained, linear discriminant analysis (LDA) is firstly 

applied to decrease the dimensionality prior to PLDA. The dimension of LDA is 

reduced to 128 and it is firstly generated by the command “ivector_compute_lda” 

with the use of “exp/xvector_nnet_1a/xvectors_combinetrain/xvector.scp” and 

“data/combinetrain/utt2spk”. The output is produced in the Microsoft access table 

format named “exp/xvector_nnet_1a/xvectors_combinetrain/transform.mat”. The 

process of applying LDA is stored as the log file named “lda.log” under 

“exp/xvector_nnet_1a/xvectors_combinetrain /log”. 

The PLDA model is trained with the command “ivector_compute_plda” by 

using “data/combinetrain/spk2utt”, “exp/xvectors_combinetrain/xvector.scp” and 

“exp/xvector_nnet_1a/xvectors_combinetrain/transform.mat”. The process of 

generating PLDA is stored in the log file named “plda.log” under 

“exp/xvectors_combinetrain/log”. 

 

8. Computing Scores 

For assessing the acoustic speaker models’ performance, the corresponding 

PLDA scores for each speaker is evaluated.  

8.1 Computing Scores for GMM-UBM based Acoustic Model 

After generating PLDA for use where compute the identification score for 

each speaker, the acoustic model performance is assessed with the command 

“ivector_plda_scoring”. The files:“exp/ivectors_validation/num_utts.ark”, 

“exp/ivectors_combinetrian/plda”, “exp/ivectors_combinetrian/spk_ivector.ark”, 

“exp/ivectors_validation/ivector.scp” and validation trial file under “exp/” are 

required to generate the validation scores. The process of generating scores is stored 

as the log file named “validation_scoring.log” under “exp/scores/log” and the output 

score is stored in “exp/scores/validation_scores”. 

8.2 Computing Scores for TDNN based Acoustic Model 

The acoustic model performance is assessed with the command 

“ivector_plda_scoring” after generating PLDA for computing the speakers’ 
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identification scores. The process of generating scores is stored as the log file named 

“validation_scoring.log” under “exp/scores/log”. The output score is stored in 

“exp/scores/validation_scores”. The files: “exp/ivectors_validation/num_utts.ark”, 

“exp/ivectors_combinetrian/spk_ivector.ark”, “exp/ivectors_combinetrian/plda”,  

“exp/ivectors_validation/ivector.scp” and validation trial file under “exp/” are 

required to generate the validation scores. The example format of score files is as 

follows: 

Pattern: ộÓÐÅÁËÅÒ)$Ớ ộÕÔÔ)$Ớ  ộÐÌÄÁÓͅÃÏÒÅÓỚ 

 

 

 

 

9. Assessing the Acoustic Model Performance 

EER is calculated using “compute_eer” command with the call 

“local/prepare_for_eer.py” by taking the corresponding trial and score files. The EER 

performance is evaluated by this command. The less the output EER value, the better 

the model performance. 

 

 

 

10. Assessing the Testset Performance 

The automatic evaluation of detecting accuracy is used for assessing the testset 

performance with the following command. The output value is stored in 

“exp/DetectedTestsetAccuracy”. The more the accuracy value, the better the testset 

accuracy. 

 

v2# head -5 exp/validation_scores 

mm-winlailaiphyu mm-winlailaiphyu_10181 24.15842 

mm-wintwarhlaing mm-winlailaiphyu_10181 -39.32951 

mm-yadanaroo mm-winlailaiphyu_10181 -3.227915 

mm-yaminthu mm-winlailaiphyu_10181 -35.46188 

mm-yekhaungmyintmg mm-winlailaiphyu_10181 -46.10092 

‘compute_eer < (local/prepare_for_eer.py $validationtrials exp/scores/validation_scores)’ 

./calculate_accuracy_for_testset.py exp/scores/testset_scores exp/DetectedTestsetResults 


