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ABSTRACT 

 

Thousands of gene expressions can be monitored using microarray technology in 

a variety of biological circumstances. Microarray data has the number of features is very 

large with respect to their samples and also has the nature of high-dimensionality. Due to 

the high-dimensionality, multiclass and complexity of gene expression data, there are 

many unknown and undiscovered functional relations in the physical delivery system used 

for collecting the data itself. Analyzing a microarray high-dimensional dataset, identifying 

the specific and intriguing genes that are responsible for the cause of cancer is critical. 

Generally, the selected attributes are not normalized in term of representatively per class 

which can impact the process of classification. To make up for the chi-square problem 

which caused the absence of attributes under some classes, an upgrade chi-square 

algorithm is proposed to balance the selection of the number of gene attributes per class. 

The proposed model is implemented using five microarray datasets like Leukemia, four 

classes Tumor and DLBCL cancer. The proposed method calculates the chi square value 

of each gene attributes for each of classes.  Attributes belonging to the same class are 

sorted by Chi-square value and the features with the highest values in each class are 

selected. According to the gene attribute selection threshold value, the top number of 

attributes belong to each class is selected by the ratio values of their gene’s records. After 

choosing the necessary features, the following step of this research is the implementation 

of different scalable classifiers in an efficient way. The useful classifiers Logistic 

Regression (LR), Random Forest and Naïve Bayes are evaluated on the scalable 

framework Spark. The proposed scalable models are tested on a Spark with the outcomes 

analyzed. The collected results show that the execution of scalable framework is much 

more efficient than traditional systems for processing large datasets. To evaluate the 

performance of the proposed system, UpgCHI is compared with three other univariate 

feature selection methods: original Chi-square, Linear Regression and ANOVA. The 

results show that the upgrade chi-square algorithm provides better performance on scalable 

frameworks in terms of classification accuracy, precision, recall and F-1score. 
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CHAPTER 1 

INTRODUCTION 

 

Microarray technology represents a novel and efficient strategy for extracting 

diverse biomedical data suitable for a multitude of applications. The high-throughput 

analysis provides substantial insights into tumor variances among individuals in cancer 

research, with DNA, mRNA expression, and protein expression all being inherent factors. 

To analyze the gene expression levels, extract the right features, and classification of 

microarray data, the system needs more efficient methods, and a suitable platform is 

needed. Microarray data is a type of large-scale data having multiple dimensions and 

features that are greater than the samples. It contains a wide range of information, 

including RNA, DNA, and numerous cancer types. Differentially expressed genes in 

malignancies, pharmacological treatments, virus infection, and animal development have 

all been studied using microarray techniques. Due to the intricacy of differential gene 

expression and high-dimensional throughput sequencing, the physical system contains 

many little-known valuable correlations for data storage. In the field of gene expression 

studies, high-throughput sequencing technologies are crucial. 

The microarray data comprises high-dimensional information and concerning their 

features quantity is much greater than the number of samples which is a main challenge in 

the research area. In these facts, storing, processing, and extracting features and 

classification of the disease is the major challenge in this area. The problem of the 

dimensionality curse is caused by microarray data with high dimensions that lose the 

required data information and happened to noisy data, and unreal correlations. Large 

sample sizes lead to several issues, including high computational cost and algorithmic 

instability [1]. To solve this issue, the genes or features selection techniques are the 

important processes in multiclass and large dimensional microarray data, which are 

procedures such as reducing the high-dimension and selecting appropriate features from 

the training data, and thus the classifier algorithms only look to predict the features and 

analysis of model and this ensures that the learning algorithm (classifiers) concentrates 

exclusively on the attributes of the training data that are pertinent for analysis and future 

prediction. 

This research employs the utilization of distributed frameworks, Spark, to build 

machine-learning algorithms for analyzing high-dimensional microarray datasets. Feature 
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selection processes are started using UpgCHI algorithm employ on Apache spark platform. 

These selections are loaded with multiple machine learning pipeline according their 

microarray data classes on different Spark cluster. By selecting the genes data, this system 

can improve classification accuracy, time consuming and reduce spaces. In feature 

selection functions, the system is designed to extract, transform, and select features from 

various classes of microarray data. The aim is to reduce the computational cost of modeling 

and enhance model performance. In this research, novel filtering methods are introduced 

for high-dimensional classification using microarray gene expression datasets. 

 

1.1 Statement of the Issue 

Large-scale data applications have recently garnered significant attention due to 

the exponential growth in data collection and storage. However, traditional data mining 

techniques are ill-suited to meet the demands of this new landscape, posing challenges in 

extracting information from big data [2]. To address these challenges, researchers have 

explored various open-source frameworks such as MapReduce, Spark, and others to 

develop scalable algorithms capable of handling large-scale data processing [3]. In posing 

and addressing computational challenges, the researchers discovered that intelligent 

procedures have a substantial significance to the development of data science which 

addresses challenges related to imprecision, uncertainty, learning, and evolution [4-12]. 

To examine these datasets, different machine-learning approaches have been 

investigated in the field of bioinformatics [13-17]. On a conventional system with the best 

processing capabilities, these techniques take a long time to evaluate and explore massive 

datasets. To address this issue, the distributed computing concept has been implemented, 

in which multiclass data is analyzed utilizing various parallel processing pipelines such as 

Apache Spark. Because of the massive increase in data collection and storage, big data 

applications have recently become the center of attention.  

Feature selection of multiclass microarray data to deal with the curse of 

dimensionality is a big problem. Small sample size, high dimensions and class imbalance 

are the most typical issues to overcome. Class imbalance can lower the credibility of 

classification accuracy. As the number of classes grows, the classification accuracy looks 

to rapidly deteriorate. One of the key components of microarray is the volume of 

quantitative information where several features are very large for samples. It can cause 

heavy computational costs in terms of space and time complexity and algorithmic 

instability.  
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Proposing UpgCHI algorithm is suitable for feature selection to the multiclass 

framework. To address these challenges, various open-source frameworks such as 

MapReduce, Spark, etc., have been explored for developing scalable algorithms. The 

distributed frameworks such as MapReduce and Spark for the implementation of machine 

learning techniques, are used to analyze the high-dimensional multiclass microarray 

datasets. Hence, the existing methodologies have been implemented on scalable platforms 

Apache Spark to analyze the microarray datasets. 

 

1.2 The Motivation of the Research 

One of the reasons why feature selection is being studied is to produce reliable 

classification or clustering findings for Microarray bioinformatics data. In addition, the 

lack of large-scale parallel processing is a driving force behind the research. Although 

different feature selection techniques exist for other microarray data, there is no parallel 

multiclass data processing accessible for feature selection, particularly for high-

dimensional data. As a result, a novel feature selection approach is proposed for Apache 

Spark that has a huge scalable performance. 

Another point is that the previous studies that can lead to computational imbalance 

because of the case of dimensionality. It is difficult to storage and processing microarray 

data in a set amount of time. Because storing microarray data in a standard database is 

wasteful, a better solution must be found. Feature selection methods are very enormous, 

so need to classify what method is to select the exact features based on the Apache Spark 

framework. Therefore, this research is to use different Apache Spark pipelines with MLlib 

and to develop the machine library in Spark system. 

 

1.3 Objectives of the Research 

The main objective of this study is to use multiple trials to construct a traditional 

machine learning system. Today, the statistical test approach is usually used in feature 

selection of machine learning systems. However, these approaches need to be 

implemented according to their data nature and problem. Feature selection of multiclass 

microarray data is still required to produce better performance model results. This is due 

to a variance of data and an unbalanced problem. By using the UpgCHI method, various 

multiclass data have been tested based on the Apache Spark framework for feature 

selection to get a good result. The following are the other objectives of this research area: 
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(i) To investigate the state-of-the-art approach for feature selection based on 

microarray  

(ii) To develop an innovative approach for feature selection using a distributed 

methodology on the Apache Spark platform 

(iii) To extract the optimal set of highly expressed features (genes) using a feature 

selection strategy leveraging the MapReduce and Spark frameworks. 

(iv) To develop a fast feature selection using Apache Spark to select the dataset in a 

short amount of time. 

(v) To improve the performance of the proposed model 

 

1.4 The Contributions of the Research 

Until recently, there were many feature selection techniques available in machine 

learning systems. There were several thousand genes and this sample data is smaller than 

the feature. The contribution is to build a large-scale parallel pipeline with an upgraded 

chi-square test over Apache Spark. By considering the variance of data and imbalance 

class for the selection of features in multiclass microarray data. This system's contributions 

are these points. Therefore, proposing upgrading the Chi-square algorithm that is suitable 

for feature selection to a multiclass framework. 

To overcome the above challenges, many open-source frameworks like 

MapReduce, Spark, etc. have been considered to develop scalable algorithms. The 

distributed frameworks Spark for the implementation of machine learning techniques, 

which are used to analyze the high-dimensional multiclass microarray datasets. Hence, the 

existing methodologies have been implemented on scalable platforms Apache Spark to 

analyze the microarray datasets. 

1.5 The Organization of The Research  

This research paper begins with an overview of microarray high-dimensional data, 

as well as research obstacles and goals. It is divided into seven chapters, each of which 

depicts contributions specific to multiclass microarray data. The following is a diagram of 

the arrangement of the research. 

In chapter 2, the present research on microarray data classification is reviewed, 

with a focus on two primary domains: (a) feature selection and (b) classification. A table 
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containing a comparison of several methodologies and their corresponding authors is 

offered. After study of literature, the related work is presented. 

Chapter 3, the background theory of feature selection, detailed explain the 

distributed computing of Apache Spark and the nature of microarray data.  

Chapter 4 describes the detailed explanation of filter-based feature selection with 

chi-square, ANOVA and linear regression feature selection over Apache Spark platform 

that used in this research. 

In chapter 5, an UpgCHI based feature selection framework is presented under 

Apache Spark and system architecture are explained in both Spark platform. 

In chapter 6, an UpgCHI test is implemented on scalable frameworks like 

MapReduce and Spark as a feature selection method. The presented UpgCHI method is 

used to identify significant characteristics from diverse microarray multiclass data. Finally, 

the performance of these solutions is evaluated using the Spark pipeline and compared to 

a traditional system. Traditional chi-square method in the machine learning library is used 

to investigate the performance of the classifier, and a comparison is done on the Spark 

platform. 

In chapter 7, the results drawn from the proposed approaches are presented, with a 

focus on accomplishments and limits. In conclusion, the possibilities for future research 

are highlighted. 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter focuses on cutting-edge techniques, such as feature extraction and 

selection, dimensionality reduction, and building the classifier in pattern classification 

systems. This chapter emphasizes the classification of microarray datasets and the research 

done by various authors. The authors picked many criteria for the survey, including feature 

selection and classification methods, as well as the dataset used. According to the findings 

of the survey work on microarray data classification, a large number of academics and 

practitioners used statistical tests as a feature selection method and various machine 

learning algorithms to categorize the dataset.  

In this chapter, many different methods such as the chi-square test, T-test, 

Wilcoxon test, F-test, Signal-to-Noise Ratio (SNR), Information Gain, Fisher Score, and 

Gini Index are applied to select the features. Using several classifiers, the top-rated genes 

are utilized to classify the microarray data like Support Vector Machine (SVM), Naïve 

Bayes (NB), Logistic Regression (LR), K-Nearest Neighbor (KNN), and Probabilistic 

Neural Network (PNN) and then analyzing the result. The remainder of the chapter is laid 

out as follows: a literature review is presented in Section 2.1 and the feature selection using 

scalable ANOVA, Kruskal-Walli’s test, and Friedman test is also described in Section 2.2. 

 

2.1 Literature Review  

This section provides a quick overview of the work done by several authors on 

microarray data. In [18], author Osareh et al. presented the Signal-to-Noise Ratio (SNR) 

feature selection technique to select the genes and classify with Support vector machine 

(SVM), K-nearest neighbor (KNN) and Probabilistic neural network (PNN) are used. In 

[19], Bharathi and Natarajan are considered the implementation with two steps. In the first 

phase, the researchers used a two-way Analysis of Variance (ANOVA) ranking scheme to 

choose several key genes. In the second phase, they used a strong classifier like Support 

Vector Machine to assess the classification ability of all simple combinations of those 

essential genes. With only two genes, this paper was able to achieve great accuracy. 

Tang et al. is presented that the use of a sample profile of gene expression as a 

better indicator for cancer classification should be investigated further in [20]. This paper 

uses the ANOVA test with a Discriminant kernel partial least square (PLS) classifier and 
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instead of partial gene sets, the full gene expression profile for all samples was attempted 

as an alternative. The results indicated a significant improvement in classification accuracy 

when compared to other traditional methods. 

In another study, Mundra et al highlighted the t-statistic into two parts which are 

according to correspond to relevant and irrelevant data points to select the genes for cancer 

classification [21]. Support vectors are used to pick important data points, which are 

subsequently utilized to generate the t-statistic for feature selection. On synthetic and 

benchmark cancer datasets, much superior classification results are produced by 

simultaneously selecting data points and genes. 

Afterward, Huerta performed the gene selection and classification for microarray 

data with a t-test and Linear Discriminant Analysis LDA-GA classifier [22]. The main 

feature of this LDA-based GA algorithm is that it uses not just an LDA classifier in its 

fitness function, but also LDA discriminant coefficients in its specific crossover and 

mutation operators. 

Author Liu et al. offer a new ensemble gene selection approach (EGS) for selecting 

multiple gene subsets for classification, in which the significant degree of each gene is 

quantified using conditional mutual information or its normalized version [23]. After 

distinct gene subsets have been acquired by using different search starting points, they will 

be used to train several base classifiers, which will then be aggregated into a consensus 

classifier using majority voting. 

In the next study, author Zhang et al. is to develop a microarray data classifier. The 

classification process begins with the reduction of microarray data dimension [24]. The 

Wavelet packet transforms and neighborhood rough set (WPT + NRS) and classifier with 

SVM approach is used to reduce the microarray data dimension by decomposing the 

samples until a specific level of decomposition is reached, and then using approximation 

coefficients at those levels as classifier features.  

In the later review, author Abeel et al. analyzed the robustness of a biomarker 

selection algorithm with ensemble SVM-RFE and SVM. SVMs are sophisticated 

classification models that have demonstrated state-of-the-art performance on a variety of 

biological data diagnosis and prognosis applications [25]. 

Thereafter, author Dina et al. proposed a new filter multiple scoring gene selection 

technique MGS-CM. This approach is integrated with three classifiers to create three novel 

classification systems (MGS-SVM, MGS-KNN, and MGS-LDA), all of which have been 
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tested and evaluated on three microarray datasets [26]. The proposed approaches produced 

excellent results and ensured accurate classification of previously unidentified samples. 

Hereafter, author Lee et al. showed a novel hybrid method in microarray data 

analysis for feature selection [27]. This method begins by generating several gene subsets 

using a genetic algorithm with dynamic parameter setting (GADP) and then ranking the 

genes based on their occurrence frequencies in the gene subsets. The chi-square test for 

homogeneity is then used to pick a suitable number of top-ranked genes for data analysis. 

The efficiency of the selected genes is verified using the support vector machine (SVM). 

The performance of the GADP approach is compared to that of existing methods using six 

distinct microarray datasets. 

In the later review, author Mishra et al. provided two approaches to feature 

selection. The genes in microarray data are first clustered using k-means clustering, and 

then SNR ranking is used to extract the top-rated features from each cluster, which are 

then passed to two classifiers for validation: SVM and k-NN [28]. The features (genes) of 

the microarray data set are sorted using solely SNR ranking in the second approach, and 

the highest scoring feature is supplied to the classifier and validated. The result is 

compared to the accuracy of several approaches for leukemia data set with LOOCV 

published in the literature, with only the multiple-filter-multiple wrapper approach giving 

100 percent accuracy in LOOCV with leukemia data set. 

In [29], author Maji et al. introduced a new feature selection approach based on 

rough set theory. It chooses a collection of genes from microarray data based on the 

relevance and significance of the genes. The use of both relevance and importance criteria 

for selecting a reduced gene set with good prediction accuracy is justified using a 

theoretical analysis. The value of rough set theory in calculating gene relevance and 

significance is also demonstrated. Using the prediction accuracy of the K-nearest neighbor 

rule and support vector machine on five cancer and two arthritis microarray data sets, the 

performance of the proposed approach is investigated, as well as a comparison with other 

relevant methods. 

In [30], author Sun et al. proposed a new gene selection method by preserving 

cancer diagnostic and classification intrinsic groupings of interacting genes. The proposed 

method outperforms existing selection methods in terms of classification performance and 

enrichment score, according to experimental results. 

In [31], author Sun et al. also presented a new information-theoretic framework for 

analyzing feature relevance, dependency, and redundancy Then, a dynamic weighting-
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based feature selection technique is proposed, which seeks to keep important inherent 

groups of interdependent features while selecting the most relevant features and 

eliminating redundant features. Experiments on six UCI data sets and four gene microarray 

datasets using three common classifiers like SVM, KNN, and Predictive Analysis of 

Microarray (PAM) are used to validate the efficiency of our technique. 

In [32], author Yeh et al. introduced the OA-SVM wrapper approach, which uses 

an orthogonal array (OA) to provide systematic feature selection criteria and a support 

vector machine (SVM) as the classifier. For the classification task, the suggested OA-SVM 

is used to test eight UCI databases. These studies showed that the proposed OA-SVM for 

feature selection can successfully eliminate irrelevant or redundant features, resulting in 

improved classification accuracy. It aims to remove irrelevant or superfluous features to 

minimize feature dimension and compute complexity while increasing classification 

accuracy. 

In [33], author P. Guo et al. contributed three feature selection methods that were 

used to provide 21 features belonging to 18 genes as possible markers. The final psoriasis 

classification model was created with the new Incremental Feature Selection approach, 

which uses only three characteristics from two distinct genes, IGFL1 and C10orf99. Over 

three distinct validation procedures, this model has shown exceptionally steady prediction 

accuracy (averaged at 99.81 percent). The two marker genes IGFL1 and C10orf99 were 

discovered to be upstream components of the psoriatic pathogenesis growth signal 

transduction pathway. 

In [34], the RotBoost ensemble methodology was used by author Osareh et al. to 

handle the gene categorization problem. This method combines Rotation Forest and 

AdaBoost algorithms, preserving both desirable aspects of an ensemble architecture, 

namely accuracy and diversity. Five alternative feature selection algorithms are evaluated 

to choose a compact subset of informative genes. Other nonensemble/ensemble techniques 

such as Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and 

Bagging are used to evaluate RotBoost's efficiency. The combination of the rapid 

correlation-based feature selection method with the ICA-based RotBoost ensemble is 

highly effective for gene classification, according to experimental results. 

In [35], author Hengpraprohm presented the method for microarray data to classify 

gene expression cancer data. The suggested method combines classification and feature 

selection techniques. The feature selection technique is the signal-to-noise ratio, while the 

classification technique is the Genetic Algorithm (GA) (SNR). The suggested method is 
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tested using Lymphoma and Leukemia datasets, with a 10-fold cross-validation procedure 

utilized to provide the experimental results in terms of classification accuracy. The 

findings reveal that the suggested method outperforms the standard GA-based classifier in 

terms of classification accuracy and several generations required to find solutions. 

Furthermore, the findings are compared to various classification and feature selection 

strategies reported in the literature, and it is discovered that the proposed method produces 

good results, particularly in the Lymphoma dataset. 

When looking back at prior studies, they only employed feature selection to reduce 

the number of characteristics to improve the performance of constructed classifiers. 

Nonetheless, these steps are insufficient to produce a more accurate classification. The 

results of both strategies will be compared in terms of precision, recall, and f-measures. 

Techniques such as Naive Bayesian (NB), Decision Tree and K-Nearest Neighbors 

(KNN), Neural Network (NN), and Support Vector Machine (SVM) have been utilized for 

classification tasks in terms of recall, precision, and f-measure, in addition to the 

aforementioned methods. 

 

2.1.1 Experimental Analysis of Existing Method 

 This phase outlines the proposed method for microarray statistics which is divided 

into several stages: 

1. Emphasizes preprocessing the entered facts using various techniques inclusive of 

lacking information imputation, and normalization. 

2. Feature selection is executed through the usage of numerous methods like T-take 

a look at, F-take a look at, Wilcoxon check, SNR, χ2-take a look at, records benefit, 

Gini Index, and Fisher rating. 

3. Classification is executed using distinct classifiers like Logistic regression (LR), 

Naive Bayes (NB), Support vector Machine (SVM), artificial neural network 

(ANN), Radial basis function network (RBFN), Probabilistic neural network 

(PNN), and K-Nearest neighbor (KNN). 
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Figure 2.1: Step-by-step Microarray Data Classification 

The stages that follow provide a quick overview of the proposed approach. 

1. The collection of Data 

The classification dataset, which serves as a necessary input to the models, is 

gathered from Mendeley Data (this is a cloud base repository) 

2. Data Normalization 

The mean value of the respective feature is used to impute missing data of a feature 

(gene) in microarray data. The Min-Max normalization approach is used to 

normalize the input feature values over the range [0, 1]. 

3. Grouping of Datasets 

The dataset is split into two sections: training and testing. 

4. Feature Selection 

To choose the features with the highest relevance value, different statistical 

methods have been used for reducing the dimensionality problem. 

5. Classifier 

The microarray dataset has been classified using a variety of classifiers. 
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6. Model Validation 

The model is tested using the testing dataset, and the classifier's performance is 

compared to several performance metrics. 

2.2 Related Works 

Many methods have been applied in the field of Microarray data classification to 

identify pertinent attributes and ascertain the ideal number of features from the large initial 

dataset [36].  The enormous dimensionality of microarray data has historically made 

categorizing it difficult [37]. Thanks to advances in microarray data technology, 

researchers can now analyze a single experiment involving over 1000 genes. The 

numerical data in microarray datasets is highly valuable despite being compact, but 

because of its size, it comes with high computing costs and algorithmic instability. 

Numerous issues with gene expression analysis have been identified, such as a small 

sample size, insufficient validation, and a large number of feature genes affected by noise 

and outliers. Gene expression levels are frequently measured using microarray technology, 

and the data obtained from this process is used to diagnose and treat a variety of illnesses. 

Microarray technology emerges as a potent tool for addressing numerous 

biological challenges, holding the potential to unveil a plethora of valuable information. 

While the features within the raw dataset range from 6,000 to 60,000, the number of 

training and testing samples can be modest, sometimes fewer than 100 instances. Given 

that this method doesn't mandate the inclusion of all genes, feature selection becomes 

crucial to isolate the pertinent genes. Faced with high-dimensional complexities such as 

classification [38, 39] or clustering problems, researchers must employ feature selection 

techniques [40] to derive meaningful insights and identify genes with significant biological 

relevance [41]. As not every feature in the dataset contributes to predictive accuracy, 

feature selection is imperative, removing redundant and extraneous characteristics [42]. 

Various machine-learning approaches [43] can be leveraged to evaluate microarray 

datasets. Consequently, the primary objective of this study is to feature selection for 

microarray data [44].  

An improvement on the CHI algorithm that integrates variance and coefficient of 

variation is the Var-CV-CHI algorithm, which was introduced by Liang-jing Cai. The 

purpose of this work is to address the shortcomings of the CHI algorithm by introducing a 

novel technique. Both balanced and unbalanced datasets are used in the experiments, 

which involve text classification in both Chinese and English using two different classifier 
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algorithms (KNN and Naive Bayes). Most importantly, it emphasizes that using the 

suggested algorithm produces significant improvements over results using the original 

CHI algorithm. The strengths of this paper are its remarkable classification efficacy and 

the wider range of experiments it includes than previous studies. But only the distribution 

of feature words is covered in the paper; their semantic information is not taken into 

account [45]. 

The problem of choosing a suitable method in the lack of accepted benchmarks for 

cutting-edge discoveries in science was discussed by the writers. The primary goal of this 

work is to present a noteworthy experimental comparison that assesses the influence of the 

feature selection process on various classification algorithms. To achieve this goal, they 

looked at both novel approaches and ranking-based feature-selection processes, allowing 

for a comprehensive comparison. Results from multiple traditional microarray datasets 

with different attributes and patient counts are presented broadly, providing insight into 

the potential outcomes of these techniques [46]. 

Agnès Bonnet, Sébastien Gadat, and Kim-Anh Lê Cao: The "Optimal Feature 

Weighting" (OFW) method for feature selection in multiclass problems is presented in this 

work. As classifiers, it makes use of one-vs-one Support Vector Machines (SVM) and a 

Classification and Regression Tree (CART) [47]. Based on the Scikit-learn algorithm, the 

authors proposed and evaluated χ2 feature selection over Apache Spark using the 

Databricks platform. This paper aimed to minimize training time, enhance precision, and 

prevent overfitting of the training set. Advanced linear algebra, feature selection, and 

machine learning algorithms over Apache Spark will be studied and implemented in future 

work [48]. 

Fuzzy feature selection based on relevancy, redundancy, and dependence (FFS-

RRD) stands as a novel ensemble feature selection method proposed by Omar A. M. 

Salem, Feng Liu, Yi-Ping Phoebe Chen, and Xi Chen. This approach considers the 

discriminatory capacity of both individual and dependent features to extract all possible 

feature relationships. Through experimental comparison with eight state-of-the-art and 

traditional feature selection techniques, the efficacy of the proposed method is evaluated. 

Results from experiments conducted on 13 benchmark datasets and compared against four 

established classifiers highlight the superior performance and stability of the suggested 

method in terms of classification accuracy [49]. 

Lee and Leu Yungho proposed a novel hybrid strategy for feature selection in 

microarray data analysis. This method uses a genetic algorithm with dynamic parameter 
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setting (GADP) to generate multiple gene subsets, which are then used to rank the genes 

based on their occurrence frequencies in the gene subsets. In order to select a suitable 

number of the top-ranked genes for data processing, the χ2-test for homogeneity is also 

employed in this process. The support vector machine (SVM) should be used to verify the 

selected genes' efficacy. Six different microarray datasets are used to compare the 

performance of the GADP approach to that of the current methods [50]. 

 

2.3 Chapter Summary 

In this chapter, the surge in diseases today has resulted in a significant expansion 

of data volume across various disease categories, leading to substantial human losses. 

Identifying the factors causing a specific class of disease within vast datasets early on is 

crucial. However, existing platforms are inadequate for handling the evolving landscape 

of data analytics. Leveraging the concept of ‘ Big Data’ can help mitigate the complexity 

of classifying diseases into specific categories. Achieving this goal is possible by 

employing technologies like High-Performance Computing (HPC), Hadoop, Spark, etc., 

which reduce the time needed to classify diseases into specific categories. Based on the 

aforementioned research, it is noted that the statistical t-test as a feature selection method 

yields superior outcomes across different classifiers. 
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CHAPTER 3 

BACKGROUND THEORY 

 

This chapter presents an introduction to microarray data and background theory of 

distributed computing. In addition, the framework of Hadoop with MapReduce is also 

discussed. 

 

3.1 Introduction to Microarray Data 

 Numerous websites, such as Kaggle, UCI, Mendeley Dataciteb12, the Global 

Health Observatory Data Repository, and many more, offer microarray datasets. You may 

easily store, share, access, and cite your data from anywhere with Mendeley Data, a safe 

cloud-based data repository. The following datasets were gathered by this approach from 

the Mendeley Data website (Dabba, Tari, & Mokhtari, 2021): lymphoma, lung, breast, 

ovary, and CNS (central nervous system). There are enormous datasets available, with 

most of the features falling between 6000 and 60,000. Table 1 contains details about the 

datasets. Using the microarray dataset, this system may use a range of machine-learning 

algorithms. Microarray data, which is usually a high-dimensional dataset, was used in this 

system. Therefore, let can draw the conclusion that two common aspects of microarray 

data are high-dimensional features and a small number of samples. The classification of 

microarray data presents a significant challenge for machine learning researchers because 

of the small sample sizes and abundance of variables. 

One of the most recent developments in experimental molecular biology is the 

development of microarrays, which enable the simultaneous monitoring of tens of 

thousands of gene expression levels. Gene expression, genome mapping, SNP 

discrimination, transcription factor activity, toxicity, pathogen detection, and many other 

areas of study have all benefited from the use of arrays. Because there are more features 

in the dataset than there are occurrences, there may be an increased risk of overfitting in 

machine learning models. When a model learns to perform extraordinarily well on training 

data but finds it difficult to generalize to new, unknown data, it is said to be overfitting. 

This is because the model has successfully learned patterns and noise unique to the training 

set. Excessive feature counts in comparison to instance counts may make overfitting more 

likely. Each dataset's extensive feature collection probably reflects the complexity and 
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diversity of the data being examined. Every feature in the data is an attribute or trait that 

could help with the current classification or prediction task.  

In certain sectors, working large datasets containing dozens or even millions of 

features are commonplace, especially in subjects like image analysis, high-dimensional 

data analysis, and genomics. Measurements, gene expressions, picture pixels, or any other 

pertinent data that might have useful patterns could be included in these features. 

Overfitting is more likely to occur when working with datasets that have a high 

dimensionality (many features) and a small number of examples. The reason for this is that 

the model might identify noise or erroneous correlations in the data, which would result in 

unduly complicated models that would not adapt well to fresh data. The Feature Selection 

method, which prioritizes feature selection strategies to identify and keep only the most 

relevant and informative features, is used to prevent overfitting in datasets with a large 

number of features relative to occurrences. Removing superfluous or unnecessary 

characteristics helps simplify the model and lower the chance of overfitting. 

Table 3.1 Sample Microarray Dataset Details 

 

Diffuse 

LargeB-Cell 

Lymphoma 

(DLBCL) 

Leukemia Leukemia Brain Tumor Brain Tumor 

# Genes 5469 7129 7129 5920 5920 

#Classes 2 3 4 4 5 

#Instances 77 72 72 50 90 

#Instances 

per Class 
58/19 38/9/25  38/21/10/3 20/10/10/4/6  60/10/10/4/6  

Class 

Names 

B 

lymphocytes 

or B cells 

B-cell acute  

lymphoblastic 

leukemia, 

T-cell acute 

lymphoblastic 

leukemia and 

Aacute 

myeloid 

leukemia 

acute lymphoblastic 

leukaemia (ALL), 

chronic lymphocytic 

leukaemia (CLL), 

acute myeloid 

leukaemia (AML) 

and chronic 

myeloid leukaemia 

(CML).  

Astrocytoma, 

Diffuse 

Astrocytoma 

(grade II), 

Anaplastic 

Astrocytoma 

(grade III), 

Glioblastoma 

Multiforme 

(grade IV), 

 

Astrocytoma, 

Pilocytic 

Astrocytoma 

(grade I), 

Diffuse 

Astrocytoma 

(grade II), 

Anaplastic 

Astrocytoma 

(grade III), 

Glioblastoma 

Multiforme 

(grade IV) 
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3.2 The Distributed Computing 

Distributed computing techniques such as grid and cluster computing have been 

used for many years to improve the efficiency of a wide range of data-intensive 

applications. While many of these methods are based on a message-passing paradigm, 

shared-memory models are used by systems that use parallel algorithms, including 

graphics processing units (GPUs). For these computers to function properly, they need an 

interface that makes it easy to access shared file systems and communicate with other 

machines in the grid or cluster. For these systems, network capacity frequently becomes a 

constraint. Bringing "compute to data," as opposed to the traditional strategy of "taking 

data to the compute," is the basic premise of distributed systems. This change turns out to 

be quite cost-effective, particularly when data sizes are above a certain threshold since it 

is generally less expensive to move "compute to data" than it is to move "data to compute." 

 

3.2.1 The Framework of Hadoop 

 Hadoop, an open-source software framework, facilitates the storage and processing 

of extensive datasets across distributed clusters of commodity hardware [51]. Its 

architecture is devised to distribute data storage across all nodes (servers) within a cluster 

by partitioning files into smaller units known as blocks. This approach allows each node 

to prioritize processing data available locally, thus minimizing network transmissions. 

Furthermore, Hadoop offers a cost-effective and scalable infrastructure capable of 

seamlessly expanding from a single server to thousands of servers. Its design incorporates 

mechanisms for identifying and managing failures at the application layer, ensuring 

continued service even in error-prone environments. The Hadoop framework comprises 

three core components, which are maintained and overseen by the Apache Software 

Foundation. These components include: 

 

3.2.1.1 The Hadoop Distributed File System (HDFS) 

Unlike relational databases, this distributed file system with Java support maintains 

many kinds of data in an unstructured manner. Although it is similar to current distributed 

systems, it has notable differences. Because of its architecture, it can be quickly recovered 

from failures and is deployable on cheap hardware. The system, which consists of several 

data nodes and a name node, functions as follows: Without keeping the actual files, the 

name node keeps track of all the files in the file system and keeps an eye on where they 

are being stored throughout the cluster. Additionally, files stored in a data node are 
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replicated across other data nodes, facilitating swift recovery in case of node failures. Upon 

file writing, the name node updates the directory tree and dispatches the file to a data node, 

which then replicates it across other data nodes for redundancy [52]. Refer to Figure 3.1 

for an illustration of HDFS architecture. 

 

 

Figure 3.1 Architecture of Hadoop Distributed File System 

 

3.2.1.2 The Yet Another Resource Negotiator (YARN) 

This is a framework for resource management that allows distributed applications to 

schedule and manage resource requests. YARN integrates node manager agents, which 

keep an eye on processing activities in specific cluster nodes, with a central resource 

manager, which controls how applications use Hadoop system resources. When a node 

malfunctions, the task is rescheduled to another node [53]. 

 

3.2.1.3 The MapReduce 

This programming model was created by Google to process big datasets across 

clusters of commodity hardware in a distributed fashion [54]. Three steps are involved: 

▪ Map step: Every node uses local data to apply the “{map()" function, and then 

writes the output—along with a key value—to temporary storage. 

▪ Shuffle step: the nodes reorganize the data according to the output keys (generated 

by the map function) so that all of the data associated with a single key are found 

on the same node. 

▪ Reduce step: All output data groups are processed in parallel by each node, per 

key, and the output is subsequently written to the HDFS. 
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Figure 3.2 MapReduce Architecture 

 

In addition to these core components, the Hadoop ecosystem includes a wide range 

of related projects and tools that extend its capabilities for various use cases and scenarios. 

Some of the notable projects in the Hadoop ecosystem include: 

▪ Apache Hive: A data warehouse infrastructure built on top of Hadoop for querying 

and analyzing large datasets using a SQL-like language called HiveQL. 

▪ Apache Pig: A high-level platform for creating MapReduce programs using a 

scripting language called Pig Latin. 

▪ Apache HBase: A distributed, scalable, and NoSQL database that provides real-

time read/write access to large datasets. 

▪ Apache Spark: A fast and general-purpose cluster computing system that provides 

in-memory data processing capabilities and a more expressive programming model 

than MapReduce. 

▪ Apache Kafka: A distributed streaming platform used for building real-time data 

pipelines and streaming applications. 

▪ Apache Sqoop: A tool designed for efficiently transferring bulk data between 

Hadoop and structured data stores such as relational databases. 

▪ Apache Flume: A distributed, reliable, and available system for efficiently 

collecting, aggregating, and moving large amounts of log data from various sources 

to Hadoop. 
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Overall, Hadoop's flexible architecture, fault-tolerant design, and scalability make 

it a powerful framework for processing and analyzing big data across distributed 

computing environments. As organizations continue to grapple with ever-increasing 

volumes of data, Hadoop remains a fundamental tool for unlocking insights and driving 

innovation in the field of data analytics. 

3.2.2 Spark Architecture and Resilient Distributed Dataset 

Apache Spark is a general-purpose, fast cluster computing framework designed for 

processing massive amounts of data. It is an extension of the widely used MapReduce data 

flow model, designed to support interactive and iterative computation more effectively. 

These types of computation are highly challenging to implement with Hadoop 

MapReduce. Spark was created especially for use cases where a working set of data is 

used repeatedly in parallel processes.  

3.2.2.1 The Architecture of Spark 

Spark, an open-source processing engine, leverages a directed acyclic graph along 

with its proprietary data structure, Resilient Distributed Dataset (RDD), to deliver 

accelerated speed and advanced analytics capabilities [55]. Integrated atop existing 

Hadoop infrastructure, Spark extends and enriches its functionality. Its architecture 

comprises a single driver program and numerous worker nodes. The driver system 

undertakes the creation of RDDs and Spark Context objects, while the worker nodes 

engage in parallel RDD transformations. RDD supports two primary operations: 

Transformation and Action. Spark offers flexibility by accommodating various cluster 

managers such as YARN and MESOS, in addition to its standalone cluster manager. Refer 

to Figure 3.3 for an illustration of Spark architecture, which includes the Cluster manager, 

Driver node, and Worker nodes. The components of Spark are delineated as follows: 
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Figure 3.3 An Architecture of Apache Spark 

Spark's architecture is based on a master-worker model and consists of several key 

components: 

1. Driver Program: The driver program is the main control program that coordinates 

the execution of Spark applications. It contains the user's SparkContext, which 

represents the connection to the Spark cluster and coordinates the execution of 

various operations on the cluster. 

2. Cluster Manager: Spark can run on various cluster managers like Apache Mesos, 

Hadoop YARN, or its built-in standalone cluster manager. The cluster manager 

allocates resources across applications and manages the execution of tasks on 

worker nodes. 

3. Worker Nodes: Worker nodes are the machines in the cluster that execute the 

actual Spark tasks. Each worker node runs an executor process, which is 

responsible for executing tasks and storing data in memory or on disk. 

4. Executor: Executors are worker processes responsible for executing tasks on a 

particular node in the cluster. They load data into memory, execute transformations 

and actions, and return results to the driver program. 

5. RDDs (Resilient Distributed Datasets): RDDs are the fundamental abstraction in 

Spark that represents distributed collections of data. RDDs are immutable, 

partitioned collections of objects that can be processed in parallel across a cluster. 

RDDs support two types of operations: transformations, which create a new RDD 

from an existing one, and actions, which return results to the driver program. 
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3.2.2.2 Implementation on Spark 

In Spark, every task consists of a series of operators that work with a set of data. 

By using these operators, a Directed Acyclic Graph (DAG) can be created. This DAG is 

optimized by combining and rearranging operators as needed and whenever it is feasible. 

Spark's code base is compact, and the system is separated into multiple layers that operate 

independently of one another. Every layer has certain responsibilities. 

1. Spark employs a modified Scala interpreter as its first layer for code interpretation. 

2. Upon user input in the Spark console, which triggers RDD creation and operator 

application, Spark generates an operator graph. 

3. When executing an action such as 'collect', Spark activates the DAG Scheduler, which 

receives the graph submission. This scheduler dissects the operator graph into distinct map 

and reduce stages. 

4. Stages are comprised of tasks corresponding to partitions of input data. The DAG 

scheduler optimizes the graph through operator pipelining, consolidating multiple map 

operators into a single stage. This optimization greatly influences Spark's performance, 

yielding a set of optimized stages. 

5. Following classification into Map or Reduce stages, as discussed in Hadoop, the stages 

are relayed to the Task Scheduler. The Task Scheduler, functioning independently of stage 

dependencies, initiates task launches through the cluster manager (Spark 

Standalone/YARN/MESOS). 

6. Tasks are executed on the Slave by the Worker. Each job prompts the initiation of a new 

Java Virtual Machine (JVM). The Worker possesses awareness limited to the code it 

receives for execution. 
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Figure 3.4 Apache Spark Architecture in Feature Selection 

3.2.2.3 Resilient Distributed Dataset (RDD) 

RDD is the core data structure in Spark, providing fault-tolerant distributed data 

storage and processing capabilities. RDDs offer the following key features: 

▪ Immutable: RDDs are immutable, meaning that once created, they cannot be 

modified. However, transformations can be applied to create new RDDs derived 

from existing ones. 

▪ Partitioned: RDDs are divided into logical partitions, which are distributed across 

nodes in the cluster. Partitions are the unit of parallelism, allowing Spark to process 

data in parallel across multiple nodes. 

▪ Resilient: RDDs are resilient to failure, meaning that if a partition of an RDD is 

lost due to a node failure, Spark can reconstruct the lost partition by recomputing 

it from the original data lineage. 

▪ Lazily Evaluated: Transformations on RDDs are lazily evaluated, meaning that 

Spark does not compute the results immediately. Instead, transformations are 

recorded as a lineage of transformations, and Spark optimizes the execution plan 

before executing the computation. 

▪ Fault-Tolerant: RDDs provide fault tolerance through lineage information. Spark 

tracks the lineage of each RDD, enabling it to reconstruct lost partitions in the event 

of node failures. 

In summary, Apache Spark's architecture is designed to provide high performance, 

fault tolerance, and scalability for distributed data processing applications. The RDD 

abstraction forms the foundation of Spark's processing model, enabling efficient and 

resilient distributed data processing across large clusters of machines. With its powerful 
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abstractions and flexible programming interface, Spark has become a popular choice for 

building a wide range of big data applications and analytics pipelines. 

 

Figure 3.5 Resilient Distributed Dataset in Apache Spark  

3.3 Machine Learning 

Machine learning, an offshoot of computer science, emerged from the study of 

pattern recognition and computational learning theory within artificial intelligence. It 

delves into crafting and analyzing algorithms capable of learning from data and making 

predictions. These algorithms construct models based on sample inputs to facilitate data-

driven forecasts or decisions, diverging from rigid program instructions. Machine learning 

intersects closely with computational statistics, a field specializing in prediction-making, 

and draws heavily from mathematical optimization for methodological and practical 

applications. 

In computing, machine learning finds utility across tasks where explicit algorithm 

design and programming prove impractical. Its applications span various domains, 

including spam filtering, optical character recognition (OCR), search engines, and 

computer vision. Though sometimes equated with data mining, machine learning typically 

emphasizes predictive analytics over exploratory data analysis. Notably, machine learning 

and pattern recognition are perceived as complementary aspects of the same field. In 

industrial settings, machine learning methodologies may be termed predictive analytics or 

predictive modeling. 

During training, a portion of the data is reserved for evaluation to assess the model's 

accuracy when presented with new data, resulting in a versatile model adaptable to diverse 

datasets. Researchers highlight three primary functions of machine learning systems: 

descriptive, wherein the system interprets data to explain past occurrences; predictive, 

wherein it anticipates future events based on data; and prescriptive, wherein it offers 

suggestions for action based on data analysis. 
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                                                Figure 3.6 The Machine Learning Process 

 

3.3.1 Different Types of Machine Learning 

Classical machine learning is commonly classified based on how algorithms 

enhance their predictive accuracy, employing four fundamental approaches: supervised 

learning, unsupervised learning, semi-supervised learning, and reinforcement learning. 

The selection of algorithmic methods by data scientists depends on the nature of the data 

they aim to predict. 

▪ Supervised learning involves data scientists providing algorithms with labeled 

training data, specifying both input and output variables for correlation assessment. 

▪ Unsupervised learning entails algorithms training on unlabeled data, scanning 

through datasets to identify meaningful connections. The data used for training and 

the predictions/recommendations generated are predetermined. 

▪ Semi-supervised learning combines aspects of supervised and unsupervised 

learning, wherein algorithms are predominantly fed labeled training data but are 

also allowed to explore the dataset independently to develop their understanding. 

▪ Reinforcement learning is employed by data scientists to teach machines multi-

step processes governed by well-defined rules. Algorithms are programmed to 

execute tasks and receive positive or negative cues as they progress, albeit largely 

determining their course of action autonomously. 



26 

 

 

Figure 3.7 The Machine Learning Techniques 

 

3.3.2 Machine Learning Processes in Data Analytics 

The machine learning process encompasses a series of steps aimed at developing 

predictive models and extracting insights from data. This process involves data 

preparation, model selection, training, evaluation, and deployment. Below is an overview 

of the machine learning process with explanations for each stage: 

1. Problem Definition and Data Collection: 

▪ Define the problem to be solved and establish clear objectives. Determine 

whether the problem is classification, regression, clustering, or another type of 

task. 

▪ Collect relevant data from various sources, ensuring it's representative, accurate, 

and sufficient for the intended analysis. 

2. Data Preprocessing and Exploration: 

▪ Clean the data by handling missing values, outliers, and inconsistencies. Perform 

data normalization or standardization to ensure consistency in scale and 

distribution. 

▪ Explore the dataset through descriptive statistics, visualizations, and correlation 

analyses to understand the relationships between variables and identify patterns. 

3. Feature Engineering and Selection: 

▪ Engineer new features or transform existing ones to capture relevant information 

and improve model performance. 

▪ Select the most informative features using techniques such as filter methods, 

wrapper methods, or embedded methods to reduce dimensionality and 

computational complexity. 
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4. Model Selection and Training: 

▪ Choose appropriate machine learning algorithms based on the problem type, 

dataset characteristics, and performance requirements. 

▪ Split the dataset into training, validation, and test sets to train and evaluate the 

model. Apply techniques like cross-validation to assess model performance 

robustness. 

▪ Train the selected models using the training data, adjusting hyperparameters and 

optimization strategies to minimize error and improve generalization. 

5. Model Evaluation and Performance Metrics: 

▪ Evaluate model performance using appropriate metrics such as accuracy, precision, 

recall, F1-score, mean squared error (MSE), or area under the ROC curve (AUC). 

▪ Compare the performance of different models and select the one that best meets 

the defined objectives and requirements. 

6. Model Interpretability and Explainability: 

▪ Interpret model predictions and understand the factors influencing the outcomes. 

Utilize techniques such as feature importance analysis, SHAP (SHapley Additive 

explanations), or LIME (Local Interpretable Model-agnostic Explanations) for 

model explainability. 

▪ Ensure that the model's decisions align with domain knowledge and stakeholder 

expectations, enhancing trust and transparency. 

7. Hyperparameter Tuning and Optimization: 

▪ Fine-tune model hyperparameters using techniques like grid search, random 

search, or Bayesian optimization to improve performance and generalization. 

▪ Optimize model architecture, regularization parameters, learning rates, and other 

hyperparameters to achieve better convergence and prevent overfitting. 

8. Model Deployment and Monitoring: 

▪ Deploy the trained model into production environments, integrating it with 

existing systems or applications for real-time inference or batch processing. 

▪ Monitor model performance and drift over time, retraining or updating the model 

as necessary to maintain accuracy and relevance. 

▪ Implement robust logging, error handling, and version control mechanisms to 

ensure scalability, reliability, and maintainability of deployed models. 
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9. Iterative Improvement and Feedback Loop: 

▪ Continuously monitor and evaluate model performance in production, soliciting 

feedback from users and stakeholders to identify areas for improvement. 

▪ Iterate through the machine learning process, incorporating new data, refining 

models, and adapting strategies to evolving requirements and business objectives. 

By following these steps, organizations can leverage the power of machine learning 

to extract valuable insights, automate decision-making processes, and drive innovation 

across various domains and industries. 

 

3.4 Feature Selection 

The process of selecting a subset of pertinent features or variables from the original 

set to be used in the construction of a model is known as feature selection, variable 

selection, or attribute selection. There are frequently more features than needed in real-

world datasets, and some of them might not have a major impact on the model's ability to 

predict outcomes. Overfitting, noise introduction, and increased computational complexity 

can all result from these superfluous or redundant features. Feature selection tries to 

increase interpretability, decrease training time, boost the performance of the model, and 

enable better generalization to unknown data by limiting the selection to the most 

informative features. 

The importance of feature selection in machine learning cannot be overstated. Here 

are some key reasons why feature selection is essential: 

▪ Improved Model Performance: By focusing only on relevant features, feature 

selection helps improve the predictive accuracy and generalization capability of 

machine learning models. 

▪ Reduced Overfitting: Including irrelevant features can cause the model to overfit 

to the training data, resulting in poor performance on unseen data. Feature selection 

mitigates overfitting by eliminating unnecessary complexity from the model. 

▪ Enhanced Interpretability: Models with fewer features are easier to interpret and 

understand. Feature selection enables the identification of the most influential 

variables, leading to better insights into the underlying relationships in the data. 

▪ Computational Efficiency: Reducing the number of features can significantly 

decrease the computational resources required for model training and inference, 

making the process more efficient. 
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3.4.1 Filter Methods 

 Filter methods evaluate the relevance of features based on their intrinsic properties, 

independent of the chosen machine learning algorithm. These methods typically involve 

statistical tests or heuristics to rank features according to their relevance to the target 

variable. Commonly used filter methods include: 

▪ Univariate Feature Selection: This method evaluates each feature independently 

based on statistical tests such as chi-square test, ANOVA, or mutual information. 

Features with the highest scores are selected for further analysis. 

▪ Correlation-Based Feature Selection: Correlation analysis measures the linear 

relationship between features and the target variable. Features with high correlation 

coefficients with the target variable are retained, while highly correlated features 

with each other are removed to reduce redundancy. 

▪ Information Gain and Entropy: Information gain measures the reduction in 

uncertainty about the target variable after observing a feature. Features with high 

information gain are considered more relevant for classification tasks. 

 

3.4.2 Wrapper Method 

 Wrapper methods select features by directly evaluating the performance of a 

machine learning algorithm using subsets of features. These methods typically involve a 

search strategy to explore different feature subsets and evaluate their performance. 

Common wrapper methods include: 

▪ Forward Selection: Forward selection starts with an empty set of features and 

iteratively adds features that improve the model's performance the most until no 

further improvement is observed. 

▪ Backward Elimination: Backward elimination begins with the full set of features 

and removes the least significant feature in each iteration until the model's 

performance deteriorates. 

▪ Recursive Feature Elimination (RFE): RFE recursively removes the least 

important features based on their coefficients or feature importance scores until the 

desired number of features is reached. 
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3.4.3 Embedded Method 

Embedded methods integrate feature selection into the model training process, 

where feature selection occurs simultaneously with model training. These methods 

typically use regularization techniques to penalize the coefficients of irrelevant features or 

incorporate feature selection as part of the model architecture. Common embedded 

methods include: 

▪ Lasso (Least Absolute Shrinkage and Selection Operator): Lasso regression 

penalizes the absolute size of the regression coefficients, effectively shrinking 

coefficients of irrelevant features to zero and performing feature selection 

automatically. 

▪ Elastic Net: Elastic Net combines the penalties of lasso and ridge regression, 

allowing for feature selection while handling multicollinearity among features. 

▪ Tree-Based Methods: Decision tree algorithms such as Random Forest and 

Gradient Boosting automatically perform feature selection by selecting the most 

discriminative features at each node of the tree. 

 

3.5 Evaluation Metrics for Feature Selection 

Evaluation metrics serve as numerical measures utilized to evaluate the 

performance and efficiency of a statistical or machine-learning model. They offer valuable 

insights into the model's performance and aid in comparing various models or algorithms. 

Assessing a machine learning model involves evaluating its predictive accuracy, ability to 

generalize, and overall quality. Evaluation metrics offer objective standards to gauge these 

characteristics. The selection of evaluation metrics varies based on the problem domain, 

data type, and desired outcomes. Evaluating the effectiveness of feature selection methods 

requires appropriate performance metrics that reflect the model's predictive accuracy, 

complexity, and generalization capability. Common evaluation metrics for feature 

selection include: 

▪ Accuracy: The proportion of correctly classified instances in the dataset. 

▪ Precision: The ratio of true positive instances to the total number of instances 

predicted as positive. 

▪ Recall (Sensitivity): The ratio of true positive instances to the total number of 

actual positive instances. 
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▪ F1 Score: The harmonic means of precision and recall, balancing between 

precision and recall. 

▪ Area Under the Receiver Operating Characteristic Curve (AUC-ROC): 

Measures the trade-off between true positive rate and false positive rate across 

different threshold values. 

 

3.6 Chapter Summary 

 Through this chapter, a range of statistical tests utilizing MapReduce and Spark 

frameworks are applied to pinpoint pertinent features from high-dimensional microarray 

data. The efficacy of these techniques is scrutinized atop a Hadoop cluster and juxtaposed 

with conventional systems. The identified features serve as building blocks for 

constructing an effective model to classify microarray data, a topic elaborated upon in 

subsequent chapters. 
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CHAPTER 4 

FEATURE SELECTION OF MICROARRAY DATA USING FILTER-BASED 

METHODS 

 

This chapter describes several filter-based feature selection techniques on scalable 

clusters. The techniques can handle and analyze distributed high-dimensional big data. 

These datasets are subjected to filter-based methods to identify pertinent features, which 

are then used for additional analysis. 

 

4.1 Feature Selection on Microarray Data 

The identification of informative genes responsible for cancer has been greatly 

aided in recent years by the DNA microarray technique. The curse of dimensionality 

problem, which reduces the value of information from a dataset and causes computational 

instability, is the main disadvantage of microarray data analysis. Consequently, a crucial 

first step in the process of effectively classifying cancer microarray datasets is the selection 

and extraction of pertinent features or genes [55]. 

Numerous researchers and practitioners have proposed numerous feature (gene) 

selection/extraction techniques in the literature [56]. In the meantime, assaying thousands 

or millions of genes at once has been made possible by recent advancements in microarray 

chip technology, producing a massive amount of data. Nevertheless, processing the data 

with standard computational power on a conventional system—where the data are stored 

on a standalone machine—is challenging. 

Due to the massive increase in data generation and storage that has occurred in 

recent years, big data applications have drawn more and more attention. The challenge of 

extracting information from the large data pool arises from the fact that existing data 

mining techniques are not tailored to the new space and time constraints. Many paradigms, 

including MapReduce, Spark, and others, have been taken into consideration for creating 

scalable algorithms in order to address these issues. In the field of data science 

development, researchers have developed a wide range of pertinent, intelligent techniques 

that address imprecision, uncertainty, learning, and evolution in the formulation and 

resolution of computational problems [57]. 

Liang-jing Cai introduced the Var-CV-CHI algorithm, which builds upon the CHI 

algorithm by incorporating variance and coefficient of variation [58]. This study presents 
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a new approach to rectify the shortcomings of the CHI algorithm. The research 

encompasses experiments in text classification across two languages (Chinese and 

English), employing two distinct classifier algorithms (KNN and Naive Bayes), and 

analyzing two types of data distributions (balanced and unbalanced datasets). Importantly, 

it underscores significant enhancements in results when applying the proposed algorithm 

compared to those obtained using the original CHI algorithm. Noteworthy strengths of this 

research include its outstanding classification efficacy and its comprehensive range of 

experiments compared to previous studies. However, a limitation of this paper is its 

exclusive emphasis on the distribution of feature words, neglecting their semantic 

information. 

The authors tackled the difficulty of choosing the right technique when there are 

no set standards for the latest scientific discoveries in the field. Their main goal was to 

conduct a robust experimental comparison to assess how feature selection procedures 

affect different classification algorithms. To achieve this, they explored both ranking-

based feature-selection methods and innovative strategies, allowing for a comprehensive 

comparison. They presented thorough results from various conventional microarray 

datasets, covering a range of attributes and patient counts, which provide insights into the 

achievable outcomes through these methods [59]. 

The authors presented a χ2 feature selection method implemented with Apache 

Spark, utilizing a Scikit-learn algorithm, and evaluated its effectiveness on the Databricks 

platform [60]. The objective of this study is to reduce training time, improve accuracy, and 

address overfitting in the training data. Future endeavors will focus on exploring and 

integrating advanced linear algebra, feature selection techniques, and machine learning 

algorithms into the Apache Spark platform. 

S. Bahassine introduced an improved method for Arabic text classification by 

employing Chi-square feature selection (ImpCHI) to enhance classification performance. 

In Arabic text classification, the abundance of relevant terms for each class is well 

understood, thus the Chi-square value is computed for each term across all classes [61]. 

The ImpCHI algorithm aims to achieve a balanced selection of attributes for each class. 

This paper's forthcoming research aims to investigate extending the concept of attribute 

balance across classes to other feature selection algorithms. In image analysis, a blood 

cancer image dataset consisting of 231 images was utilized. The DE-SVM classification 

exhibited an impressive accuracy of 98.55%, surpassing the conventional SVM's accuracy 
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of 86.96%. Moreover, while the regular NB achieved an accuracy of 95.6%, the DE-NB 

achieved a perfect accuracy score of 100%. 

The statistical tests like t-tests, analysis of variance (ANOVA), analysis of 

covariance, Wilcoxon ranked sum test, linear regression, and generalized linear models 

such as binary logistic regression and chi-square test can be considered for features 

selection, but only three tests chi-square, ANOVA, and linear regression test are 

considered due to following advantages. 

▪ For multiclass problem, t-test and Wilcoxon ranked sum test cannot be applied. 

▪ For both two group and multiple group studies, its flexibility in handling data, its 

robustness with regard to data distribution, its ease of computation, the detailed 

information that can be derived from the test, and its use in studies for which 

parametric assumptions cannot be met. 

As a result, just three tests—the chi-square, ANOVA, and linear regression tests—

are taken into account when selecting features, meeting all the criteria for this research 

project. 

 

4.2 Filter-based Feature Selection 

Feature selection plays a crucial role in improving the machine-learning process 

and increasing the predictive power of algorithms. It involves selecting the most important 

variables while eliminating redundant and irrelevant features. The objectives of feature 

selection include improving prediction performance, providing faster and more cost-

effective predictors, and gaining a better understanding of the underlying data-generating 

process. Filter-based feature selection, such as the Chi-Square, ANOVA, and linear 

regression method used in this study, analyzes the variance of gene expressions. 

 

4.2.1 Chi-square Feature Selection 

Feature selection is integral to enhancing the machine-learning process and 

bolstering the predictive capabilities of algorithms. This process entails identifying the 

most pertinent variables while discarding redundant and extraneous features. The aims of 

feature selection encompass enhancing prediction accuracy, furnishing swifter and more 

cost-effective predictors, and deepening comprehension of the underlying data-generating 

mechanisms. 

In this study, filter-based feature selection, exemplified by the Chi-Square method, 

scrutinizes the variance of gene expressions. The Chi-square test, a statistical tool, 
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evaluates the independence of two events and is applicable to intricate contingency tables 

with multiple classes. It boasts robustness, dispensing with the need for uniform variances 

across study groups, and adeptly addressing class imbalances in microarray data. 

Moreover, it serves to assess the independence of gene variables [62]. 

The methodology includes the following steps: 

▪ Given the data of two variables, it can get observed count O and expected count E. 

 

 

Equation (4.1) 

 

▪ TCi is the total number of values belonging to the class index i (Ci), Tti is the total 

number of values belonging to the attribute at index i (ti) and i is 1 to the number 

of distinct instances. 

▪ The modified expected value formula is calculated by multiplying the weight for 

individual classes as follows: 

 

 
Equation (4.2) 

 

▪ Chi-Square measures how expected count E and observed count O deviate from 

each other. 

 

 

Equation (4.3) 

 

▪ Oi is the actual count of the instance at index i. 

▪ Test can also be applied to a complex contingency table with several classes and 

as such is a very useful test in research work. 

▪ To predict the class information for each sample in the test data, the chi-square 

value calculates the scores of this sample. 

▪ To test the case that the calculated chi-square value is acceptable or not, calculated 

as follows. 

▪ Calculate the Degree of freedom (Df) and N is the total number of instances 

 Df =N-1 Equation (4.4) 
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4.2.2 ANOVA Feature Selection 

ANOVA (Analysis of Variance) feature selection is a statistical method commonly 

used in machine learning and data analysis to select the most relevant features from a 

dataset. ANOVA is particularly useful when dealing with continuous input variables and 

a categorical target variable [63]. 

Here's how ANOVA feature selection works: 

1. Calculate F-Scores: ANOVA computes the F-score for each feature by analyzing the 

variance between the means of different groups and the variance within each group. It 

essentially compares the variation between group means to the variation within groups. A 

higher F-score indicates that the means of the groups are significantly different, suggesting 

that the feature is more relevant for predicting the target variable. 

2. Rank Features: After calculating the F-scores for all features, they are ranked based on 

their scores. Features with higher F-scores are considered more relevant for predicting the 

target variable, while features with lower F-scores are considered less relevant. 

3. Select Features: Based on a predefined threshold or criteria, a subset of features is 

selected for further analysis or model building. The threshold can be determined based on 

domain knowledge, experimentation, or using techniques such as cross-validation. 

4. Build Model: Once the relevant features are selected, they can be used to build machine 

learning models for prediction, classification, or any other task. 

ANOVA feature selection is advantageous because it considers the relationship 

between the input features and the target variable in terms of group means. It helps to 

identify the features that contribute the most to explaining the variance in the target 

variable and can lead to more efficient and accurate models by focusing on the most 

informative features. However, it's important to keep in mind that ANOVA feature 

selection assumes linear relationships between features and the target variable and may 

not perform optimally in all scenarios. Additionally, it may not capture complex 

interactions between features. 

 

4.2.3 Linear Regression Feature Selection 

Linear regression feature selection is a technique used to select the most relevant 

features from a dataset when building a linear regression model. The goal is to identify the 

subset of features that have the most significant impact on the prediction of the target 

variable [64]. 

Here's how linear regression feature selection works: 
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1. Fit Linear Regression Model: The process starts by fitting a linear regression model 

using all available features in the dataset. This initial model serves as a baseline for 

comparison. 

2. Evaluate Feature Importance: After fitting the model, the importance of each feature 

is assessed. This can be done using various statistical metrics such as p-values, 

coefficients, or hypothesis tests. 

▪ P-values: The p-value associated with each feature indicates the probability of 

observing the data given that the null hypothesis is true (i.e., the coefficient of the 

feature is zero). Lower p-values suggest that the feature is more statistically 

significant. 

▪ Coefficients: The coefficients of the features in the linear regression equation 

represent the magnitude of their influence on the target variable. Larger 

coefficients indicate stronger associations with the target variable.    

3. Select Features: Based on the evaluation of feature importance, features with high 

statistical significance or large coefficients are selected for inclusion in the final model. 

Alternatively, features with low importance may be removed from the model to improve 

simplicity and reduce overfitting. 

4. Refine Model: Once the subset of features is selected, the linear regression model is re-

fitted using only the selected features. This refined model is then evaluated to ensure that 

it meets the desired performance criteria. 

Linear regression feature selection is advantageous because it provides insights 

into the relationships between features and the target variable in a linear context. It helps 

to identify the most relevant features for prediction and can improve model interpretability 

by focusing on the most influential variables.  

However, linear regression feature selection may not capture complex nonlinear 

relationships between features and the target variable. In such cases, more advanced 

techniques like polynomial regression or machine learning algorithms may be more 

appropriate. Additionally, the selection of features based solely on statistical significance 

may overlook important interactions or correlations between variables. Therefore, it's 

essential to consider the specific characteristics of the dataset and the goals of the analysis 

when choosing a feature selection approach. 
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4.3 Classification Methods for Feature Selection 

In most real-world classification tasks, supervised learning is necessary, where a 

lack of knowledge about the underlying probabilities of classes and their conditional 

probabilities. Each instance in such scenarios comes with a class label. Often, in these real-

world settings have a limited understanding of relevant features. Hence, to reflect the 

domain accurately, numerous potential features are introduced. Consequently, irrelevant 

or redundant features may exist alongside the target concept. A relevant feature is one that 

is neither irrelevant nor redundant to the target concept. An irrelevant feature may not be 

directly linked to the target concept but influences the learning process, while a redundant 

feature does not contribute new information to the target concept. In many classification 

problems, constructing effective classifiers becomes challenging without eliminating these 

undesirable features, primarily due to the vast size of the data. Reducing the number of 

irrelevant or redundant features can significantly decrease the runtime of learning 

algorithms and result in a more generalized classifier. This process aids in gaining a deeper 

understanding of the fundamental concept behind real-world classification problems [64]. 

The framework for general feature selection in classification is illustrated in Figure 

4.1. Feature selection primarily impacts the training phase of classification. Instead of 

feeding all features directly to the learning algorithm after feature generation, feature 

selection for classification involves initially choosing a subset of features and then passing 

the data with the selected features to the learning algorithm. The feature selection process 

can operate independently of the learning algorithm, such as with filter models, or it can 

iteratively assess the quality of selected features using the performance of the learning 

algorithms, as seen in wrapper models. Once the final set of features is determined, a 

classifier is trained for the prediction phase. 

Classifier algorithms serve to assign labels or categories to input data based on the 

patterns and relationships learned from the training dataset. Each classifier has its unique 

characteristics and mechanisms for feature selection. Let's delve into the feature selection 

methods for Support Vector Machines (SVM), Random Forest, Logistic Regression, k-

Nearest Neighbors (k-NN), Decision Trees, and Naive Bayes: 

1. Support Vector Machines (SVM) 

SVMs inherently perform feature selection by identifying the optimal hyperplane 

that maximizes the margin between different classes. Features that lie close to the decision 

boundary (support vectors) are crucial for defining the boundary and are thus selected. 
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SVMs can handle high-dimensional feature spaces effectively, making them robust to 

datasets with many features. 

2. Random Forest 

Random Forest employs feature selection as part of its ensemble learning process. 

During training, each decision tree in the forest is built using a subset of randomly selected 

features. Features that contribute the most to reducing impurity or increasing information 

gain at each split are favored. After training, feature importance can be computed based 

on how frequently they are used across all trees in the forest. 

3. Logistic Regression 

In Logistic Regression, feature selection is often done by analyzing the coefficients 

associated with each feature. Features with larger coefficients (in absolute terms) are 

considered more important in predicting the target variable. Regularization techniques 

such as L1 (Lasso) regularization can be employed to penalize the model for the inclusion 

of irrelevant features, effectively promoting feature selection during training. 

4. K-Nearest Neighbors (k-NN) 

K-NN does not inherently perform feature selection as part of its algorithm. 

However, feature selection techniques can be applied before using k-NN. For instance, 

feature selection methods like filter methods (e.g., correlation analysis) or wrapper 

methods (e.g., recursive feature elimination) can be employed to select the most relevant 

features before training the k-NN classifier. 

5. Decision Trees 

Decision Trees select features based on their ability to split the dataset into subsets 

that are more homogeneous concerning the target variable. Features that result in the 

greatest reduction in impurity (e.g., Gini impurity, entropy) are preferred for splitting. 

Decision Trees inherently perform feature selection during the tree-building process by 

selecting the most discriminative features at each node. 

6. Naive Bayes 

Naive Bayes classifiers assume that features are conditionally independent given 

the class label. As such, feature selection is less critical in Naive Bayes compared to other 

classifiers. However, in practice, feature selection techniques can still be applied to 

improve model performance and reduce computational complexity. Features that are 

strongly correlated with the class label are typically retained in Naive Bayes models. 

Overall, while some classifiers inherently incorporate feature selection 

mechanisms (e.g., SVMs, Decision Trees, Random Forests), others require preprocessing 
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steps or additional techniques to select the most relevant features before training the model. 

The choice of feature selection method depends on the specific characteristics of the 

dataset and the performance requirements of the classification task. 

 

Figure 4.1 Feature Selection for Classification Framework  

 

4.3.1 Classification over Apache Spark Framework 

 Apache Spark MLlib is a powerful machine learning library that provides scalable 

and distributed algorithms for various tasks, including classification. Apache Spark MLlib 

is a distributed machine learning library built on top of the Apache Spark platform. It 

provides a rich set of algorithms and utilities for scalable machine learning tasks, enabling 

users to leverage the distributed computing capabilities of Spark for large-scale data 

processing. Classification is a supervised learning task where the goal is to predict the 

categorical label of input data based on its features. It is widely used in various domains 

such as finance, healthcare, and marketing for tasks like spam detection, sentiment 

analysis, and customer segmentation [65]. 

 To perform classification over Apache Spark using MLlib (Spark's machine 

learning library), user can use various algorithms such as Logistic Regression, Decision 

Trees, Random Forests, Gradient Boosted Trees, Support Vector Machines (SVM), and 

Naive Bayes. 

▪ Logistic Regression Classifier: One well-liked technique for categorical response 

prediction is logistic regression. This particular instance of a Generalized Linear 

model forecasts the likelihood of the results. Binomial logistic regression and 

multinomial logistic regression are two methods of employing logistic regression 

in spark.ml to predict binary outcomes and multiclass outcomes, respectively. 

Logistic regression is used in Spark ML to predict multiclass outcomes using 
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multinomial logistic regression, or binary outcomes using binomial logistic 

regression. Multinomial logistic (softmax) regression facilitates multiclass 

classification. The conditional probabilities of the result classes, where k is a 

member of the set ( 1, 2,..., K), are modeled by the softmax function. These 

classifiers use a multinomial response model with an elastic-net penalty to reduce 

overfitting and minimize the weighted negative log-likelihood. Spark MLlib 

produces zero coefficients for constant nonzero columns when fitting a logistic 

regression model without an intercept on a dataset containing such columns. 

▪ Decision Tree Classifier: A well-liked family of techniques for regression and 

classification are decision trees. Further details regarding the implementation of 

spark.ml are available in the decision tree section. Decision trees and related 

ensembles are popular methods for machine learning applications such as 

regression and classification. Decision trees are frequently employed because they 

can handle categorical features, capture non-linearities and feature interactions, 

extend to the multiclass classification scenario, and do not require feature scaling. 

Tree ensembles, which include boosting and random forests, are the best 

algorithms for problems involving classification and regression. The spark.ml 

implementation supports decision trees for binary and multiclass classification, 

regression, and both using continuous and categorical variables. The solution 

allows for distributed training over millions or even billions of instances by 

partitioning the data into rows. 

▪ Random Forest Classifier: Random forests consist of ensembles of decision trees, 

representing one of the most successful machine learning models for both 

classification and regression tasks. By combining numerous decision trees, random 

forests effectively mitigate the risk of overfitting. Similar to decision trees, random 

forests accommodate categorical features, extend to multiclass classification 

scenarios, eliminate the need for feature scaling, and capture non-linear 

relationships and feature interactions. In Spark MLlib, random forests are 

supported for binary and multiclass classification, as well as for regression tasks, 

encompassing both continuous and categorical features. The implementation of 

random forests in Spark MLlib is built upon the existing decision tree 

infrastructure. For further details on trees, please refer to the decision tree guide. 

▪ Naive Bayes Classifiers: represent a family of straightforward probabilistic 

classifiers, operating on the principles of Bayes' theorem while assuming strong 
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(naive) independence between each pair of features. Naive Bayes classifiers offer 

efficient training capabilities, requiring only a single pass over the training dataset 

to compute the conditional probability distribution of each feature given each label. 

During prediction, these classifiers apply Bayes' theorem to calculate the 

conditional probability distribution of each label given an observation. Many Naive 

Bayes classifier types are supported by MLlib, including Gaussian Naive Bayes, 

Bernoulli Naive Bayes, Multinomial Naive Bayes, and Complement Naive Bayes. 

For document classification problems, the Multinomial, Complement, and 

Bernoulli models are frequently used in terms of input data. Here, every 

observation usually stands for a document, and every feature for a phrase. For 

Multinomial or Complement Naive Bayes, the value of a feature might be the term 

frequency; for Bernoulli Naive Bayes, it could be a binary indication indicating if 

the term appears in the document. Multinomial and Bernoulli models require non-

negative feature values. The model type can be specified using an optional 

parameter, with "multinomial" being the default choice. Sparse vectors are usually 

preferred for input feature vectors in document classification tasks. Given that the 

training data is used only once, caching it is unnecessary. 

 

4.4 Chapter Summary 

Spark has several benefits, which is the reason why different Spark-based 

classifiers are taken into consideration for high-dimensional data categorization in 

microarrays. This chapter presented the background theory of feature selection methods 

(ANOVA, Linear Regression, and Chi-square) and classification methods like (Logistic 

Regression, Random Forest, and Naïve Bayes).  
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CHAPTER 5 

AN Upg-CHI BASED FEATURE SELECTION FRAMEWORK UNDER 

APACHE SPARK 

 

Previous studies primarily focused on employing different filtering techniques to 

classify microarray data, often targeting a limited number of categories, usually only two 

or three. Microarray data encompass different diagnostic classifications, and achieving 

optimal performance metrics such as accuracy, precision, recall, and F1-score is desirable, 

especially when handling multiple classes, including Colon Tumor with two classes, 

Leukemia with three classes, Brain Tumor with four classes, and Brain Tumor with five 

classes. The challenge of feature selection in multiclass microarray data, aimed at 

addressing the curse of big dimensionality, presents a significant obstacle. Issues such as 

small record sizes, elevated proportions of dimension, and disparity in class are common 

hurdles. In microarray data, the distribution of relevant genes among classes is unknown, 

leading to class imbalance problems that can undermine accuracy in classification. The 

accuracy of classification tends to decrease quickly as the number of classes rises. A 

fundamental aspect of microarray data is the substantial volume of quantitative 

information, resulting in a large number of features relative to samples, which can lead to 

considerable computational costs in terms of algorithmic instability.  

Dealing with the vast amount of record data poses a significant hurdle in gene 

classification. To deal with this matter, a method of selection feature is employed to weed 

out redundant traits and select the most relevant ones. This system introduces the algorithm 

of UpgCHI, an enhancement of the algorithm Chi-square test tailored for multiclass feature 

selection. UpgCHI is designed to tackle the difficulty of each class's undiscovered gene 

significance, improving upon the primary Chi-square method. The research leverages 

scalable platforms like Apache Spark for the analysis of microarray and established 

techniques implements with framework of Spark. Distributed and scalable frameworks 

like MapReduce and spark are utilized to implement machine learning techniques to 

examine multiclass microarray datasets with high dimensions. Consequently, the current 

approaches for analyzing microarray datasets have been modified for use with scalable 

platforms such as Apache Spark. [66].  
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5.1 Upgrade Chi-Square (UpgCHI) Method 

In contrast to the conventional method chi-square, the proposed upgraded method 

chi-square algorithm in this system calculates the chi-square values for each class 

simultaneously. The chi-square values are calculated for each class in the microarray data 

where the gene expressions are unknown. A group of entity that are in the identical class 

are used to select the features with the highest chi-square values. The count is reached up 

to the user-specified threshold, and the top attributes are selected for each class according 

to ratio.  

UpgCHI Test Algorithm 

Input:  

   n = user threshold count 

   class_number = number of classes 

   attributes_per_class = number of attributes for each class 

Output:  

    Selected_features = [] 

Step1: Define the hypothesis: 

-Null Hypothesis (H0): Two variables are independent.  

-Alternate Hypothesis (H1): Two variables are not independent. 

For i = 1 to class_number: 

        Alist[i] = [] 

        For k = 1 to attributes_per_class: 

               Step 2: Build a contingency table for each attribute. 

                 contingency_table = build_contingency_table (class_i_attribute_k) 

                Step 3: Calculate the expected value (Ei) for each instance. 

               Ei = expected_value(contingency_table) according to equation (5.1) 

 

     *
:  

1

TtiE Tci no of classesi
Tcik

               Equation (5.1) 

 Step 4: Calculate the chi-square value of each instance according to 

equation (5.2). 

            chi_square_value = calculate_chi-square (contingency_table, Ei) 
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2:  tan ( )
_

1

no of ins ces O Ei iChi Square
i Ei

                                    Equation (5.2) 

       Step 5: Accept or Reject H0 df = degree_of_freedom(contingency_table) 

with alpha = 0.05 according to     equation (5.3) 

                                                          

                               Df  = N-1             Equation (5.3) 

          if chi_square_value >= chi_square_value_from_distribution_table (df, alpha): 

           Reject the null hypothesis, accept the attribute, and save it. 

            Alist[i]. append ((class_i_attribute_k, chi_square_value)) 

# Step 6: Select the top n attributes for class i. 

    Alist[i]. sort (key=lambda x: x [1], reverse=True) # Sort by chi-square value. 

    Alist[i] = Alist[i] [: n]  # Select the top n attributes 

# Step 7: Select the final features by using SelectByRatio. 

Selected_features = SelectByRatio (Alist, n) 

# SelectByRatio function. 

def SelectByRatio(Alist, n): 

    final_selected_features = [] 

    ratios = [] 

    for i in range (1, class_number + 1): 

        class_id = i 

        num_attributes = len(Alist[i]) 

        total_instances = sum([len(a) for a in Alist]) 

        ratio = (total_instances / num_attributes) * 100 

        ratios.append((class_id, ratio)) 

    # Sort the ratios in descending order 

    ratios.sort(key=lambda x: x[1], reverse=True) 

    z = 0 

    while len(final_selected_features) <= n: 

        final_selected_features.append(Alist[z][0]) 

        z += 1 

    return final_selected_features   
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5.2 Proposed System Architecture 

The UpgCHI method operates on microarray data in which the starting expression 

of genes is unknown. Instead of directly using gene expressions, it computes the chi values 

for each class. The primary objective of the upgraded algorithm chi-square is to identify 

the most significant attributes. This is accomplished by computing the Chi-square value 

for every data point in every class. For every class c, the greatest Chi-square value 

(represented as max (Chi-square (i, c))) is kept as a chosen characteristic. Then, according 

to their Chi-square values, these chosen traits are arranged within each class. A set of top 

attributes is formed by selecting the top attributes, or those with the most significant values 

in each class. 

A certain ratio value establishes how many top qualities are assigned to each class. 

The number of instances in each class is multiplied by 100 to determine this ratio, which 

is then divided by the total number of instances. Up to the user-specified threshold count, 

the algorithm keeps choosing characteristics for each class based on their ratio values. This 

method effectively finds and saves the most important characteristics for examination. 

The uneven distribution of features among classes in microarray data is a common 

problem that can seriously hinder the classification process. Difficulties with classification 

may arise from improper normalization of the chosen attributes concerning their accurate 

representation per class. The upgrade chi algorithm is used to lessen this problem. By 

balancing the attribute selection between classes, this method lessens the detrimental 

effects of attribute dispersion and promotes a more accurate and effective classification 

procedure. 

The proposed system employs filter-based chi-square feature selection techniques, 

with a specific focus on implementing the UpgCHI algorithm tailored for multiclass 

microarray data. UpgCHI has proven its robustness in accommodating varied data 

distributions, rendering it applicable across diverse scenarios. The system capitalizes on 

UpgCHI's strengths, offering computational efficiency, comprehensive test result insights, 

and adaptability to data from both binary and multiclass studies. 
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Figure 5.1 Proposed System Workflow Utilizing UpgCHI Test for Feature Selection 
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5.3 System Architecture on Apache Spark 

The past few years have seen a significant increase in data collection and storage, 

which has turned attention towards Big Data applications. However, current data mining 

approaches are unable to keep up with the demands of rising space and time requirements, 

making it extremely difficult to extract significant information from this data. Novel 

paradigms are being investigated to create scalable algorithms to address these difficulties. 

This entails first identifying significant characteristics using feature selection techniques 

such as ANOVA, Chi-square, Linear Regression, and improved chi-square test (explained 

in Chapter 4) before taking into account several scalable classifiers for microarray dataset 

classification. By adjusting the high-dimensional data on a Hadoop cluster's data size, 

these methods' scalability is assessed. 

The suggested algorithms' performance is assessed on Spark utilizing one master 

(driver) system and three slave (worker) nodes in terms of both execution time and 

accuracy. Next, a comparison is made between these outcomes and the outcomes from a 

traditional system. This chapter's main goal is to build a model that analyzes microarray 

data effectively. Based on performance metrics like recall, precision, F-Measure, accuracy, 

and time, the model's efficiency is evaluated. In short, the model should produce results 

with great accuracy and less time limitations. The classifier is enabled to perform as a 

scalable algorithm by utilizing the Spark framework, which operates in a distributed and 

scalable manner, to accomplish this goal. 

This chapter offers and examines several classifiers built on the Spark framework, 

such as Random Forest (RF), Logistic Regression (LR), and Naive Bayes (NB). These 

classifiers are tested against a range of high-dimensional microarray datasets, and their 

performance is carefully assessed. 
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                Figure 5.2 Workflow of Proposed System Implemented on Apache Spark 

 

An estimator is an abstract description of any algorithm that is fitted or trained on 

data, such as a learning algorithm. As estimators, consider algorithms such as Logistic 

Regression. A variety of estimators are supported by Spark MLlib, such as the classifiers 

for logistic regression, decision trees, random forests, gradient-boosted trees, multilayer 

perceptron, linear support vector machines, One-vs-Rest (also called One-vs-All), Naive 

Bayes, and factorization machines. In this system, the three classifiers that are preferred to 

be used as estimators are Logistic Regression, Random Forest, and Naïve Bayes. 

Logistic regression shows up as a flexible method for outcome prediction in the 

Spark ML setting. With binomial logistic regression or multinomial logistic regression, it 

makes it easier to predict binary outcomes or multiclass outcomes. Spark ML uses 

multinomial predictions for logistic (softmax) regression in classification jobs with several 

classes. Using the softmax function, this strategy involves modeling probabilities 

conditioned on outcome classes (k ∈ 1, 2, ..., K). Using a multinomial response model, the 

optimization approach involves minimizing the weighted negative log-likelihood. To 

avoid overfitting and improve the model's generalization skills, an elastic-net penalty is 

also used. 

Random Forests are effective ensemble learning approaches because they use 

many decision trees to reduce the danger of overfitting. Random forests can handle 

multiclass classification, much as individual decision trees, which means feature scaling 

is not necessary. They are excellent at capturing intricate feature interactions and 

relationships. Random forests can be used in regression tasks and binary and multiclass 

classification tasks with Spark MLlib, which supports features in both continuous and 

categorical domains. Random Forests efficiently lower variance by combining predictions 
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from several trees, which improves performance on test data. Combining the forecasts 

from different trees makes the model more reliable and precise. 

A type of straightforward probabilistic multiclass classifier known as a Naive 

Bayes classifier uses the Bayes theorem and assumes high (naive) independence between 

each pair of features. When trained with insufficient data, Naive Bayes classifiers perform 

better than other models. They are known for their quick processing, which greatly reduces 

the amount of time needed for both training and prediction. The performance metrics for 

the Spark-based logistic regression, Random Forest, and Naive Bayes classifier in the 

provided dataset are recall, precision, F-measure, and accuracy. 

 

5.4 Chapter Summary 

This chapter presented a number of classifiers that use the Spark framework to 

categorize big microarray datasets. The suggested approach works in a distributed manner 

on scalable clusters, improving efficiency with growing data volumes. The outcomes show 

that higher accuracy is attained by using the upgraded chi-square (UpgCHI) feature 

selection method. 
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CHAPTER 6 

UPGRADE CHI-SQUARE FEATURE SELECTION AND SYSTEM 

IMPLEMENTATION 

 

This chapter describes several scalable classifiers to classify high-dimensional 

data. The suggested classifiers can be integrated into any scalable cluster and operate in a 

distributed fashion. As the number of nodes in the cluster rises, the suggested classifiers 

become more scalable. To confirm the classifiers' scalability, a distributed and scalable 

framework named Spark is used on the Hadoop cluster's surface. The performance of these 

proposed classifiers is investigated with high-dimensional microarray data of different 

sizes. 

 

6.1 Introduction of Proposed Works 

Due to the massive rise in data collection and storage that has occurred over the 

past few years, big data applications have recently drawn more and more attention. The 

increasing space and time constraints make it difficult to extract information from these 

data using the data mining techniques that are already in use [2]. Scalable algorithms have 

been developed using the new paradigms in an attempt to overcome these obstacles. 

A variety of scalable classifiers are taken into consideration to categorize the 

microarray datasets once the pertinent features have been chosen using feature selection 

techniques like ANOVA, Linear Regression, original chi test, and updated chi tests (as 

covered in Chapter 4). By altering the high-dimensional data on a Hadoop cluster's data 

size, the algorithms' scalability is evaluated. Three slave (worker) nodes and one master 

(driver) system are used to test the suggested algorithms' accuracy and execution times on 

Spark. The results are compared to those of a conventional system. 

The primary goal of this chapter is to develop a model that performs an effective 

analysis of the microarray data. Recall, precision, F-Measure, accuracy, and other 

performance metrics are used to gauge how effective the model is.  The distributed and 

scalable Spark framework is used to accomplish this purpose. Additionally, it gives the 

classifier knowledge of how to function as a scalable algorithm.  

This chapter proposes several classifiers based on the Spark framework, including 

Naive Bayes, Logistic Regression, and Random Forest. The performance of the suggested 

classifiers is evaluated using a range of high-dimensional microarray datasets. 
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6.2 Results and Interpretation 

This section examines the outcomes that the suggested algorithms produced using 

a variety of microarray datasets as input. Following feature selection, the datasets have 

been classified into the relevant classes using the suggested classification algorithm, which 

uses both a MapReduce and a Spark-based classifier. However, determining the ideal 

number of features needed for classification is challenging unless one has some prior 

knowledge about the dataset. The forward feature selection approach, which uses the 

highest-rated features that correspond to escalating p-values, is taken into consideration as 

a solution to this issue. The microarray dataset is classified using various subsets of the 

highest-ranked features using Spark-based classifiers, and the appropriate classification 

accuracies are calculated. 

To validate the classifier, 5-fold cross-validation is applied to the training dataset. 

The performance of the final model is then evaluated using the testing dataset. The training 

dataset is used to train the model, and the testing dataset is used to gauge the model's 

performance. The model is trained using 5-fold cross-validation by varying λ and the 

overall performance is assessed. The overall execution details and processing efficiency 

of the Logistic Regression classifier using different four feature selector techniques are 

shown in Figure 6.1. The other Random Forest and Naïve Bayes classifiers are worked 

with 5-fold cross-validation and calculated the average classification accuracy. In addition, 

the other datasets are worked with 5-fold cross-validation by varying λ and the overall 

performance is assessed. 

The classifier performance on different cluster nodes is investigated using a variety 

of case studies that employ varying datasets; these case studies are covered in the 

subsections that follow. 
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Figure 6.1 Testing Accuracy Results of Logistic Regression Classifier with 100 Features using 

DLBCL Two Classes Dataset 

6.2.1 Result of DLBCL Two Classes Dataset 

The dataset for breast cancer contains 77 samples and 5469 attributes. The 

performance study of several classifiers derived from various feature selection techniques 

is displayed in the following table. Figures 6.2 through 6.4 show the average classification 

accuracy of Logistic Regression, Random Forest, and Naïve Bayes classifier with 100 to 

500 feature selection using ANOVA, Linear Regression, Chi-Square, and UpgCHI feature 

selectors. 

 

Table 6.1 Performance Results for Logistic Regression Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.67 0.67 0.65 

Linear Regression 0.7 0.7 0.7 

Chi-square 0.69 0.61 0.65 

UpgCHI 0.82 0.7 0.74 

 

Table 6.2 Performance Results for Random Forest Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.57 0.58 0.57 

Linear Regression 0.71 0.71 0.7 

Chi-square 0.67 0.62 0.63 

UpgCHI 0.78 0.72 0.74 
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Table 6.3 Performance Results for Naïve Bayes Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.81 0.7 0.71 

Linear Regression 0.80 0.63 0.67 

Chi-square 0.54 0.51 0.53 

UpgCHI 0.82 0.72 0.74 

 

 

Figure 6.2 Testing Accuracy Results of Logistic Regression Classifier with Different Set of Features 

using DLBCL Two Classes Dataset 

Figure 6.2 shows the accuracy results of four feature selection methods: UpgCHI, 

Chi-square, Linear Regression, and ANOVA with 100 to 500 features using a Logistic 

Regression classifier on the DLBCL Dataset.  

 

Figure 6.3 Testing Accuracy Results of Random Forest Classifier with Different Set of Features 

using DLBCL Two Classes Dataset 
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The accuracy results of four feature selection methods: UpgCHI, Chi-square, 

Linear Regression, and ANOVA with 100 to 500 features using Random Forest classifier 

on DLBCL Dataset are shown in Figure 6.3. 

 

Figure 6.4 Testing Accuracy Results of Naïve Bayes Classifier with Different Set of Features using 

DLBCL Two Classes Dataset 

The feature selector: UpgCHI, Chi-square, Linear Regression, and ANOVA with 

100 to 500 features using Naïve Bayes classifier on DLBCL Dataset shown in Figure 6.4. 

 

Figure 6.5 Testing Accuracy Results of Logistic Regression, Random Forest, Naïve Bayes Classifier 

with Various Feature Sets using DLBCL Dataset 
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Figure 6.5 shows the accuracy results of Logistic Regression, Random Forest, and 

Naïve Bayes classifier with various feature sets using DLBCL Dataset. The UpgCHI 

feature selection method with 300 features set and Random Forest classifier is suitable 

with an accuracy of 88%.  

 

Figure 6.6 Testing Average Accuracy of LR, RF and NB classifier with Various Feature Selection 

Methods using DLBCL Dataset 

Figure 6.6 shows the average accuracy results of Logistic Regression, Random 

Forest, and Naïve Bayes classifier with various feature sets using DLBCL Dataset. The 

UpgCHI feature selection method with the Random Forest classifier achieved an accuracy 

of 77%. 

6.2.2 Result of Leukemia Three Classes Dataset 

The dataset for breast cancer contains 72 samples and 7129 attributes. The 

performance study of several classifiers derived from various feature selection techniques 

is displayed in the following table. Figures 6.7 through 6.9 show the average classification 

accuracy of Logistic Regression, Random Forest, and Naïve Bayes classifier with 100 to 

500 feature selection using ANOVA, Linear Regression, Chi-Square, and UpgCHI feature 

selectors. 
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Table 6.4 Performance Results for Logistic Regression Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.63 0.6 0.63 

Linear Regression 0.65 0.6 0.61 

Chi-square 0.89 0.8 0.85 

UpgCHI 0.92 0.91 0.91 

 

Table 6.5 Performance Results for Random Forest Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.54 0.5 0.54 

Linear Regression 0.76 0.7 0.72 

Chi-square 0.73 0.68 0.7 

UpgCHI 0.75 0.7 0.73 

 

Table 6.6 Performance Results for Naïve Bayes Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.68 0.63 0.64 

Linear Regression 0.8 0.7 0.74 

Chi-square 0.84 0.73 0.78 

UpgCHI 0.9 0.81 0.85 

 

 

Figure 6.7 Testing Accuracy Results of Logistic Regression Classifier with Different Set of Features 

using Leukemia Three Classes Dataset 
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Figure 6.7 shows the accuracy results of four feature selection methods: UpgCHI, 

Chi-square, Linear Regression, and ANOVA with 100 to 500 features using the Logistic 

Regression classifier on the Leukemia Dataset. 

 

Figure 6.8 Testing Accuracy Results of Random Forest Classifier with Different Set of Features 

using Leukemia Three Classes Dataset 

The accuracy results of four feature selection methods: UpgCHI, Chi-square, 

Linear Regression, and ANOVA with 100 to 500 features using Random Forest classifier 

on DLBCL Dataset are shown in Figure 6.8. 

 

Figure 6.9 Testing Accuracy Results of Naive Bayes Classifier with Different Sets of Features using 

Leukemia Three Classes Dataset 
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The feature selector: UpgCHI, Chi-square, Linear Regression, and ANOVA with 

100 to 500 features using Naïve Bayes classifier on the Leukemia Dataset shown in Figure 

6.9. 

 

Figure 6.10 Testing Accuracy Results of Logistic Regression, Random Forest, Naïve Bayes Classifier 

with Various Feature Sets using Leukemia Dataset 

Figure 6.10 shows the accuracy results of Logistic Regression, Random Forest, and 

Naïve Bayes classifier with various feature sets using DLBCL Dataset. The UpgCHI 

feature selection method with 200 features set and a Logistic Regression classifier is 

suitable with an accuracy of 95%. 

 

Figure 6.11 Testing Accuracy of LR, RF, and NB classifier with Various Feature Selection Methods 

using Leukemia Three Classes Dataset 
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Figure 6.11 shows the average accuracy results of the Logistic Regression, 

Random Forest, and Naïve Bayes classifier with various feature sets using the Leukemia 

three classes dataset. The UpgCHI feature selection method with the Logistic Regression 

classifier achieved an accuracy of 85%. 

6.2.3 Result of Brain Tumor Four Classes Dataset 

The Brain Tumor dataset has 50 samples and 10367 attributes. The performance 

measure of the different classifiers derived from various feature selection techniques is 

displayed in the following Tables. The classifier's accuracy either stays steady after 

reaching its peak or starts to decline. To circumvent the issue of the curse of 

dimensionality, the microarray datasets are analyzed through the usage of different 

classifiers, and the classifier's various performance parameters are assessed. 

 

Table 6.7 Performance Results for Logistic Regression Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.47 0.42 0.43 

Linear Regression 0.34 0.3 0.34 

Chi-square 0.5 0.3 0.36 

UpgCHI 0.64 0.6 0.61 

 

Table 6.8 Performance Results for Random Forest Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.55 0.44 0.44 

Linear Regression 0.53 0.53 0.53 

Chi-square 0.46 0.35 0.37 

UpgCHI 0.57 0.51 0.52 

 

Table 6.9 Performance Results for Naïve Bayes Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.37 0.3 0.33 

Linear Regression 0.47 0.39 0.41 

Chi-square 0.44 0.5 0.49 

UpgCHI 0.57 0.5 0.54 
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Figure 6.12 Testing Accuracy Results of Logistic Regression Classifier with Different Set of 

Features using Brain Tumor Four Classes Dataset 

 

Figure 6.12 shows the accuracy results of four feature selection methods: UpgCHI, 

Chi-square, Linear Regression, and ANOVA with 100 to 500 features using a Logistic 

Regression classifier on the Brain Tumor Dataset. 

 

 

 

Figure 6.13 Testing Accuracy Results of Random Forest Classifier with Different Set of Features 

using Brain Tumor Four Classes Dataset 
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The accuracy results of four feature selection methods: UpgCHI, Chi-square, 

Linear Regression, and ANOVA with 100 to 500 features using the Random Forest 

classifier on the Brain Tumor Dataset are shown in Figure 6.13. 

 

 

Figure 6.14 Testing Accuracy Results of Naive Bayes Classifier with Different Set of Features using 

Brain Tumor Four Classes Dataset 

The accuracy results of four feature selection methods: UpgCHI, Chi-square, 

Linear Regression, and ANOVA with 100 to 500 features using the Naïve Bayes classifier 

on the Brain Tumor Dataset are shown in Figure 6.14. 

 

Figure 6.15 Testing Accuracy Results of Logistic Regression, Random Forest, Naïve Bayes Classifier 

with Various Feature Set using Brain Tumor Dataset 
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Figure 6.15 shows the accuracy results of Logistic Regression, Random Forest, and 

Naïve Bayes classifier with various feature sets using Brain Tumor Dataset. The UpgCHI 

feature selection method with 400 features set and a Logistic classifier is suitable with an 

accuracy of 74%. 

 

Figure 6.16 Testing Accuracy of LR, RF, and NB classifier with Various Feature Selection Methods 

using Brain Tumor Four Classes Dataset 

Figure 6.16 shows the average accuracy results of Logistic Regression, Random 

Forest, and Naïve Bayes classifier with various feature sets using DLBCL Dataset. The 

UpgCHI feature selection method with a Logistic classifier achieved an accuracy of 64%. 

6.2.4 Result of Leukemia Four Classes Dataset 

The dataset for breast cancer contains 72 samples and 7129 attributes. The 

performance study of several classifiers derived from various feature selection techniques 

is displayed in the following table. Figures 6.17 through 6.19 show that the average 

classification accuracy of Logistic Regression, Random Forest and Naïve Bayes classifier 

with 100 to 500 feature selection using ANOVA, Linear Regression, Chi-Square and 

UpgCHI feature selectors. 

 

Table 6.10 Performance Results for Logistic Regression Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.69 0.76 0.72 

Linear Regression 0.77 0.8 0.77 

Chi-square 0.68 0.66 0.61 

UpgCHI 0.9 0.94 0.97 
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Table 6.11 Performance Results for Logistic Regression Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.5 0.52 0.51 

Linear Regression 0.61 0.6 0.6 

Chi-square 0.4 0.41 0.4 

UpgCHI 0.9 0.88 0.88 

 

Table 6.12 Performance Results for Naïve Bayes Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.55 0.64 0.59 

Linear Regression 0.71 0.73 0.71 

Chi-square 0.51 0.5 0.48 

UpgCHI 0.97 0.83 0.87 

 

 

   Figure 6.17 Testing Accuracy Results of Logistic Regression Classifier with Different Set of 

Features using Leukemia Four Classes Dataset 

Figure 6.17 shows the accuracy results of four feature selection methods: UpgCHI, 

Chi-square, Linear Regression, and ANOVA with 100 to 500 features using the Logistic 

Regression classifier on the Leukemia Dataset. 
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Figure 6.18 Testing Accuracy Results of Random Forest Classifier with Different Set of Features 

using Leukemia Four Classes Dataset 

The accuracy results of four feature selection methods: UpgCHI, Chi-square, 

Linear Regression, and ANOVA with 100 to 500 features using the Random Forest 

classifier on the Leukemia Dataset are shown in Figure 6.18. 

 

Figure 6.19 Testing Accuracy Results of Naive Bayes Classifier with Different Set of Features using 

Leukemia Four Classes Dataset 

The accuracy results of four feature selection methods: UpgCHI, Chi-square, 

Linear Regression, and ANOVA with 100 to 500 features using the Naïve Bayes classifier 

on the Leukemia Dataset are shown in Figure 6.19. 
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  Figure 6.20 Testing Accuracy Results of Logistic Regression, Random Forest, Naïve Bayes Classifier 

with Various Feature Sets using Leukemia Dataset 

Figure 6.20 shows the accuracy results of Logistic Regression, Random Forest, and 

Naïve Bayes classifier with various feature sets using DLBCL Dataset. The UpgCHI 

feature selection method with 300 feature sets and Random Forest classifier is more 

suitable with an accuracy of 95%. 

 

Figure 6.21 Testing Accuracy of LR, RF, and NB Classifier with Various Feature Selection Methods 

using Leukemia Four Classes Dataset 
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Figure 6.21 shows the average accuracy results of Logistic Regression, Random 

Forest, and Naïve Bayes classifier with various feature sets using the Leukemia Dataset. 

The UpgCHI feature selection method with the Logistic Regression classifier achieved an 

accuracy of 88%. 

6.2.5 Result of Brain Tumor Five Classes Dataset 

There are 5920 attributes and 90 samples in the Brain Tumor dataset. The 

performance measure of the different classifiers derived from various feature selection 

techniques is displayed in the following Tables. The performance study of several 

classifiers derived from various feature selection techniques is displayed in the following 

table. Figures 6.22 through 6.24 show the average classification accuracy of Logistic 

Regression, Random Forest, and Naïve Bayes classifier with 100 to 500 feature selection 

using ANOVA, Linear Regression, Chi-Square, and UpgCHI feature selectors. 

Table 6.13 Performance Results for Logistic Regression Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.36 0.31 0.34 

Linear Regression 0.5 0.3 0.3 

Chi-square 0.45 0.36 0.39 

UpgCHI 0.56 0.5 0.53 

 

Table 6.14 Performance Results for Random Forest Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.35 0.32 0.34 

Linear Regression 0.4 0.3 0.3 

Chi-square 0.56 0.54 0.53 

UpgCHI 0.7 0.55 0.61 

 

Table 6.15 Performance Results for Naïve Bayes Classifier 

Algorithms Precision Recall F1-score 

ANOVA 0.41 0.36 0.38 

Linear Regression 0.36 0.34 0.34 

Chi-square 0.58 0.54 0.57 

UpgCHI 0.68 0.62 0.63 
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Figure 6.22 Testing Accuracy Results of Logistic Regression Classifier with Different Set of Features 

using Brain Tumor Five Classes Dataset 

The accuracy results of four feature selection methods: UpgCHI, Chi-square, 

Linear Regression and ANOVA with 100 to 500 features using Logistic Regression 

classifier on Brain Tumor Dataset are shown in Figure 6.22. 

 

Figure 6.23 Testing Accuracy Results of Random Forest Classifier with Different Set of Features 

using Brain Tumor Five Classes Dataset 

 

The accuracy results of four feature selection methods: UpgCHI, Chi-square, 

Linear Regression, and ANOVA with 100 to 500 features using the Random Forest 

classifier on the Brain Tumor Dataset are shown in Figure 6.23. 
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Figure 6.24 Testing Accuracy Results of Naive Bayes Classifier with Different Set of Features using 

Brain Tumor Five Classes Dataset 

The accuracy results of four feature selection methods: UpgCHI, Chi-square, 

Linear Regression and ANOVA with 100 to 500 features using Naïve Bayes classifier on 

Brain Tumor Dataset are shown in Figure 6.24. 

 

  Figure 6.25 Testing Accuracy Results of Logistic Regression, Random Forest, Naïve Bayes Classifier 

with Various Feature Sets using Brain Tumor Dataset 
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Figure 6.25 shows the accuracy results of Logistic Regression, Random Forest, and 

Naïve Bayes classifier with various feature sets using Brain Tumor Dataset. The UpgCHI 

feature selection method with 300 features set and a Logistic Regression classifier is 

suitable with an accuracy of 78%. 

 

Figure 6.26 Testing Accuracy of LR, RF and NB classifier with Various Feature Selection Methods 

using Brain Tumor Five Classes Dataset 

 

Figure 6.26 shows the average accuracy results of Logistic Regression, Random 

Forest, and Naïve Bayes classifier with various feature sets using Brain Tumor Dataset. 

The UpgCHI feature selection method with the Logistic Regression classifier achieved an 

accuracy of 67%. 

Feature selection models based on statistical tests and a classifier can obtain 

comparative results for classification of microarray datasets, to categorize the cancer-

causing genes into their respective classes. A comparative analysis is carried out to choose 

a feature selection model with a classifier that provides better classification accuracy. the 

comparative analysis of classification accuracy of the proposed Logistic Regression, 

Random Forest, and Naïve Bayes classifier with different feature selection models using 

various microarray datasets. From the obtained results, it can be inferred that among the 

various feature selection models used in permutation with a Logistic Regression classifier, 

UpgCHI provides better accuracy in the case of Leukemia four class datasets are shown in 

Figure 6.27. 
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Figure 6.27 Classification accuracy of Logistic Regression, Random Forest and Naïve Bayes 

classifier with ANOVA, Linear Regression, Chi-square and UpgCHI Feature Selection Methods 

using Different Microarray Datasets 

 

6.3 Chapter Summary 

 In this chapter, various types of feature selection methods based on Spark 

frameworks are implemented to select the relevant features from the microarray high-

dimensional data. The performance of the classifier for various datasets is evaluated by 

varying the number of features. The results show that the UpgCHI algorithm provides 

better performance on scalable frameworks in terms of classification accuracy, precision, 

recall and F-1score. 

 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Brain
Tumor

5Classes

Brain
Tumor

4Classes

Leukemia
4Classes

Leukemia
3Classes

DLBCL
2Classes

Classification Accuracy of Logistic Regression, Random Forest and Naïve Bayes Classifier 

with ANOVA, Linear Regression, Chi-square and Upgrade Chi-square Feature Selection 

Methods using Different Microarray Datasets

ANOVA OrgCHI Linear
Regression

UpgCHI



72 

 

CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

This research analyzes the multiclass microarray gene data sets in the bioinformatic 

areas with the two-phase procedure that includes feature selection and classification. The 

proposed UpgCHI algorithm has emphasized the first step of feature selection and 

implemented using five microarray datasets like DLBCL two classes, Leukemia three 

classes, Brain Tumor four classes and Brain Tumor five classes. An upgraded chi-square 

selects the top number of attributes belonging to each class by the ratio values of their 

gene’s records. So, the proposed algorithm has solved the problem of class imbalance and 

improved the accuracy of multiclass microarray gene analysis. In the second phase, three 

classifiers: Logistic Regression (LR), Random Forest, and Naïve Bayes are used to classify 

the multi-class of microarray data on the scalable framework Spark. To evaluate the 

proposed system, different numbers of attributes (100, 200, 300, 400, and 500) are selected 

using different using different multiclass microarray datasets. The proposed system is 

evaluated based on the proposed UpgCHI feature selection method with three classifiers 

using five multiclass microarray datasets.  

When the Logistic Regression classifier is implemented by using the DLBCL two 

classes dataset, the top 100, 200, 300, 400, and 500 gene features are the best selections to 

achieve high accuracy of 70%, 75%, 81%, 76%, and 80% respectively. When the Random 

Forest classifier is implemented by using DLBCL two classes dataset, the top 100, 200, 

300, 400, and 500 gene features are the best selections to achieve high accuracy of 69%, 

81%, 88%, 65%, and 80% respectively. When the Naïve Bayes classifier is implemented 

by using DLBCL two classes dataset, the top 100, 200, 300, 400, and 500 gene features 

are the best selections to achieve high accuracy of 75%, 75%, 50%, 65%, and 70% 

respectively. According to DLBCL two classes of datasets with Random Forest classifier, 

when UpgCHI is used as a feature selection method, where the top 300 features are 

sufficient to achieve a high accuracy of 88%. 

When the Logistic Regression classifier is implemented by using the Leukemia 

three classes dataset, the top 100, 200, 300, 400, and 500 gene features are the best 

selections to achieve high accuracy of 83%, 95%, 76%, 85%, and 88% respectively. When 

the Random Forest classifier is implemented by using Leukemia three classes dataset, the 

top 100, 200, 300, 400, and 500 gene features are the best selections to achieve high 
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accuracy of 86%, 89%, 76%, 79%, and 88% respectively. When the Naïve Bayes classifier 

is implemented by using the Leukemia three classes dataset, the top 100, 200, 300, 400, 

and 500 gene features are the best selections to achieve high accuracy of 48%, 68%, 81%, 

57%, and 88% respectively. According to Leukemia three classes of datasets with Logistic 

Regression classifier, when UpgCHI is used as a feature selection method, where the top 

200 features are sufficient to achieve a high accuracy of 95%. 

When the Logistic Regression classifier is implemented by using Brain Tumor four 

classes dataset, the top 100, 200, 300, 400, and 500 gene features are the best selections to 

achieve high accuracy of 70%, 46%, 68%, 74%, and 64% respectively. When the Random 

Forest classifier is implemented by using Brain Tumor four classes dataset, the top 100, 

200, 300, 400, and 500 gene features are the best selections to achieve high accuracy of 

70%, 62%, 68%, 56%, and 56% respectively. When the Naïve Bayes classifier is 

implemented by using the Brain Tumor four classes dataset, the top 100, 200, 300, 400, 

and 500 gene features are the best selections to achieve high accuracy of 65%, 31%, 56%, 

48%, and 40% respectively. According to Brain Tumor four classes of datasets with 

Logistic Regression classifier, when UpgCHI is used as a feature selection method, where 

the top 400 features are sufficient to achieve a high accuracy of 74%. 

When the Logistic Regression classifier is implemented by using Leukemia four 

classes dataset, the top 100, 200, 300, 400, and 500 gene features are the best selections to 

achieve high accuracy of 94%, 87%, 90%, 85%, and 88% respectively. When the Random 

Forest classifier is implemented by using Leukemia four classes dataset, the top 100, 200, 

300, 400, and 500 gene features are the best selections to achieve high accuracy of 83%, 

87%, 95%, 78%, and 76% respectively. When the Naïve Bayes classifier is implemented 

by using the Leukemia four classes dataset, the top 100, 200, 300, 400, and 500 gene 

features are the best selections to achieve high accuracy of 89%, 87%, 90%, 85%, and 71% 

respectively. According to Leukemia four classes datasets with Random Forest classifier, 

when UpgCHI is used as a feature selection method, where top 300 features are sufficient 

to achieve a high accuracy of 95%. 

When the Logistic Regression classifier is implemented by using Brain Tumor five 

classes dataset, the top 100, 200, 300, 400, and 500 gene features are the best selections to 

achieve high accuracy of 63%, 67%, 78%, 74%, and 54% respectively. When the Random 

Forest classifier is implemented by using Brain Tumor five classes dataset, the top 100, 

200, 300, 400, and 500 gene features are the best selections to achieve high accuracy of 

46%, 71%, 48%, 56%, and 56% respectively. When the Naïve Bayes classifier is 
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implemented by using Brain Tumor five classes dataset, the top 100, 200, 300, 400, and 

500 gene features are the best selections to achieve high accuracy of 42%, 54%, 48%, 48%, 

and 40% respectively. According to Brain Tumor five classes of datasets with Logistic 

Regression classifier, when UpgCHI is used as a feature selection method, where the top 

300 features are sufficient to achieve a high accuracy of 78%. 

A comparative analysis is carried out to choose a feature selection model with a 

classifier that provides a better classification accuracy of the UpgCHI method with an 

accuracy of 88% and the other methods of original chi-square with 57%, ANOVA with 

69%, and Linear Regression with 62%. From the obtained results, it can be inferred that 

among the various feature selection models used with the Logistic Regression classifier, 

UpgCHI provides better accuracy in the case of the Leukemia four classes dataset. 

 

7.1 Advantages and Limitations of the System 

One of the advantages is that the microarray contains a huge amount of 

information. As the data size of microarray becomes huge in nature, various machine 

learning techniques on scalable platforms are employed to analyze this data efficiently. 

The processing efficiencies of these models on Spark are much greater than that on 

conventional systems. It is also observed that the overall accuracy (average) of these 

proposed methods on Spark is increased by approximately 88% than the conventional 

system. Therefore, the efficiency of processing the dataset using Spark is increased by 

approximately 88%.  

However, complicated illnesses like breast cancer continue to pose the biggest risk 

to human survival. The expansion of statistical techniques and microarray data sets has 

opened up new avenues for the diagnosis, prognosis, and management of many illnesses. 

Microarray data analysis relies on two fundamental technologies: feature selection and 

classification. They are both essential for identifying genes and diagnosing illnesses. 

Restricted to the features of microarray data, numerous conventional approaches in this 

domain still require additional study to address their shortcomings.  

The primary features of microarray data, along with their key problems for 

researchers conducting microarray data analysis, include small sample size, high 

complexity, and class imbalance. Because each array will yield enormous amounts of data, 

analyzing the findings takes a long time. The outcomes might not always be measurable 

and can be too difficult to understand.  Reproducible outcomes are not always achieved. 

The cost of the technology is prohibitive. Relative concentration is indirectly measured by 
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the arrays. It is frequently challenging to design arrays so that homologous DNA/RNA 

sequences do not bind to the same probe on the array, particularly for complicated 

mammalian genomes. In this system, the limitation is to analyze only the two to five 

classes of microarray data. 

7.2 Future Work 

 Using a distributed and scalable framework, this research analyzes microarray 

high-dimensional data, opening up some intriguing research avenues. It is well recognized 

that one of the main problems with analyzing high-dimensional data is the curse of 

dimensionality. 

 Consequently, a variety of feature selection/extraction techniques can be used to 

process high-dimensional big data using scalable frameworks like Spark. After selecting 

and extracting features, different machine learning classifiers based on deep learning, 

neuro-fuzzy techniques, classifier ensembles, kernel methods, decision trees, etc., can be 

applied to the same Spark framework and their effectiveness can be evaluated to classify 

the high-dimensional big data. Real-time analytics can also be added to the task via Storm 

or Spark streaming. 
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