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ABSTRACT 

 
This dissertation focuses on enhancing Myanmar Information Retrieval (IR) 

system to generate more natural text for a given input text. Typical IR systems have 

two main components: text query (user needs or preferences) and text documents 

(related to text query). Both text query and documents are important for the clarity 

and effectiveness of the IR system. Therefore, this research is emphasized on both text 

query and documents in Myanmar IR system.  

In the contemporary era dominated by Information Technology (IT), search 

engines such as Google have become ubiquitous tools for individuals seeking access 

to a vast array of information. These platforms serve as indispensable resources, 

enabling users to effortlessly locate and acquire knowledge on a myriad of topics 

according to their needs and interests. Searching for News in English or Myanmar has 

become incredibly convenient, requiring a minimal effort to access a wealth of 

information.  

The structure of IR has been altered dramatically by the inclusion of neural 

models, facilitating a more refined analysis of textual data.  The textual data for 

Myanmar News dataset has been prepared in this research. In this research, the 

Myanmar News dataset was collected from Myanmar News website. In this dataset, 

each document contains two parts: title and contents.  

The evaluations on different neural ranking models were conducted and so the 

results are thoroughly analyzed and discussed. A comprehensive analysis has started, 

with immersion in the use of various neural ranking models to comprehend intricate 

semantic connections, ultimately enhancing the effectiveness of IR systems.  Pivotal 

neural ranking models such as DRMM, MP, Duet, KNRM, PACRR, CONV-KNRM, 

MZ-CONV-KNRM, which have left a profound impact on the field, are delved deep 

into, investigating their implications for enhancing the precision and efficiency of 

retrieval systems.  

Another evaluation was done using a fine-tuning approach with the pre-trained 

model, Vanilla-BERT. The superior performance of this model compared to baseline 

methods, showcasing improvements in MAP, MRR, P@1 and P@3 overall retrieval 

performance.  The implications of these findings extend to retrieve the similarity score 

results, highlighting the potential for enhanced IR capabilities.  
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CHAPTER 1 

INTRODUCTION 

 
Text Information Retrieval (IR) systems aim to retrieve text documents that 

can satisfy the information requirements of their users, usually conveyed through 

textual queries. Over time, this inherently ambiguous description has been 

standardized and defined based on the particular characteristics of documents, 

information requirements, and users. The essence of the formalization revolves 

around the notion of a document's relevance concerning a query and the methods for 

assessing relevance. Over time, numerous ranking models have been suggested to 

gauge the relevance of documents in response to a query. These models rely on the 

data presented by the queries and documents, which are utilized to generate 'relevance 

signals'. Numerous ranking models have emerged over time, spanning from Boolean 

models to probabilistic and statistical language models. These 'bag of words' models 

utilize the presence or frequency of query terms in documents to deduce their 

relevance to a query, utilizing manually created functions to aggregate these instances, 

such as Best Matching 25 (BM25).  

As the Internet and social platforms have become more prevalent, additional 

sources of relevance information about documents have been recognized. Machine 

learning techniques have demonstrated their effectiveness in handling the multitude of 

relevance signals. Their utilization to prioritize documents based on relevance 

estimates relative to a query has led to the development involving numerous 

Learning-To-Rank (LTR) models. Relevance signals serve as input features in LTR 

models, and they are frequently crafted manually, which can be a time-consuming 

endeavor. Inspired by their advancements in various computer vision and Natural 

Language Processing (NLP) tasks, neural networks currently stand as the state-of-the-

art method for ranking documents in terms of query relevance.  

Neural Information Retrieval (Neural IR) is centered on the retrieval of text 

documents that meet the information requirements of users, utilizing deep neural 

networks. In Neural IR, neural networks are commonly employed in two distinct 

manners: first, to acquire the ranking functions that amalgamate relevance signals for 

arranging documents, and second, to acquire abstract representations of documents 

and queries to encapsulate their relevance information.  
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Below, an overview of the latest methodologies in Neural IR is presented 

below the chapter 2. Considering the rapidly evolving nature of research in this field, 

it is acknowledged that the coverage may not encompass every aspect of Neural IR. 

However, a structured introduction to the key concepts and current systems within the 

field are aimed to be offered.  

In the contemporary era, an age dominated by information is inhabited, where 

an unprecedented volume of data is generated by individuals, reaching into the 

quintillions of bytes on a daily basis. Within the domain of IR systems, serve as 

efficient tools designed to swiftly retrieve necessary information from vast and 

extensive data collections. IR systems have seamlessly integrated into the fabric of 

daily existence, with ubiquitous search engines like Google processing billions of 

searches daily. Virtually every Myanmar News website incorporates a search bar, 

allowing individuals to effortlessly locate articles, products, individuals, and more. 

Beyond their direct impact on users, IR systems play a pivotal role in supporting 

various Artificial Intelligence (AI) applications, sourcing valuable data for 

downstream tasks like data analysis, recommendation systems, Question Answering 

(QA), and dialogue generation. Nevertheless, the exclusive emphasis which is on 

learning relevance patterns demands extensive training data and still falls short in 

achieving robust generalization, particularly when faced with tail queries [2] or 

unexplored search domains [3]. 

At the heart of IR lies the essential task of evaluating the relevance between a 

user's query and a document. Contemporary IR systems have traditionally depended 

on bag-of-words retrieval models, wherein the number of shared words between the 

query and the document is computed for relevance assessment. This streamlined 

representation of natural language facilitates the retrieval system in swiftly scanning 

through vast collections of millions or billions of documents, rendering large-scale 

retrieval feasible and efficient. Nevertheless, the practice of simply counting shared 

words provides a limited and superficial method for modeling the relevance in search 

contexts. At an intuitive level, an improved IR system ought to possess the capability 

to comprehend the meanings embedded in the text and discern the semantic 

relationships between queries and documents. 

There has been a significant surge in interest and attention towards enhancing 

language understanding within the realm of IR. Despite concerted efforts, the 

incorporation of advanced NLP techniques into retrieval has, for the most part, 
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yielded limited success. In recent times, neural networks have emerged as a potent 

and transformative paradigm for modeling natural language. The focus of this 

dissertation is to improve language comprehension in IR through the utilization of 

neural networks. It centers on addressing two core challenges within IR: the 

representation of textual content and the modeling of relevance. The discussion delves 

into the inherent difficulties of these challenges, introduces innovative neural network 

methodologies to overcome them, and showcases the effectiveness of these 

approaches in surpassing the limitations of earlier state-of-the-art retrieval systems. 

This research utilizes different neural network methods applied NLP and Deep 

Learning (DL) techniques on a collection of documents. Neural ranking models 

training Myanmar news datasets were enriched. 

 

1.1 Problem Statements 

 
Neural IR is a field that addresses various challenges and problems related to 

improving the effectiveness of IR systems using neural network-based techniques.  

A significant problem in Neural IR as semantic matching is how to develop 

models that can understand and match the semantics of queries and documents for 

more accurate retrieval.  

Neural IR aims to improve the ranking of documents by developing models as 

ranking relevance that can accurately and efficiently score the relevance of documents 

to queries. 

In many IR applications, it can be challenging to obtain large amounts of 

labeled data for training neural models learning from limited data. Developing 

techniques for effective learning from limited data is a problem, especially when pre-

training on large corpora is not feasible.  

Struggled with the development and evaluation of Neural IR models, the 

comparison of different models and techniques is included as model development and 

comparison:. 

Needed access to pre-trained models and datasets to develop, experiment with 

Neural IR approaches efficiently accesses to pre-trained models and data.  

 

1.2 Motivations of the Research 

 

In the contemporary era dominated by IT, search engines such as Google have 
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become ubiquitous tools for individuals seeking access to a vast array of information. 

These platforms serve as indispensable resources, enabling users to effortlessly locate 

and acquire knowledge on a myriad of topics according to their needs and interests. 

Searching for news and updates has become incredibly convenient, requiring minimal 

effort to access a wealth of information in Myanmar or English. The structure of IR 

has been altered dramatically by the inclusion of neural models, facilitating a more 

refined analysis of textual data. 

 

1.3 Intentions of the Research 

The main purpose of this research is to enhance Myanmar IR system that can 

generate the more relevance results score. For promoting the accuracy of ranking 

model, neural network architectures such as Deep Relevance Matching Model 

(DRMM), Match-Pyramid (MP), Duetl, Kernelized Neural Ranking Model 

(KNRM), Position-Aware Convolutional Recurrent Relevance (PACRR), 

Convolutional Kernelized Neural Ranking Model (CONV-KNRM) and MatchZoo-

CONV-KNRM (MZ-CONV-KNRM) have been applied in Myanmar News Retrieval 

and the most suitable neural network architecture for Myanmar News has been 

investigated. The following are the other objectives: 

1. To develop deep neural ranking model for Myanmar News Retrieval 

2. To analyze different models in Neural IR systems 

3. To assess the performance of Myanmar News Retrieval systems by using 

different evaluation metrics 

4. To improve the relevance score of the similarity between user requirements 

and Myanmar News Dataset 

5. To point out the importance of a large amount of Myanmar News corpus 

required for the development of Myanmar News Retrieval systems 

6. To apply neural network architectures such as Deep Neural Ranking 

Models and Pre-trained Language Model for Myanmar News Retrieval 

 
1.4 Contributions of the Research 

 

This research has four main contributions. The very first contribution of this 

research is creating a new kind of annotated Myanmar News dataset (title and its 

related contents). Collection is manually to retrieve from Myanmar News websites. 
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Specifically in the recent year, IR as desired query or user preferences rarely 

searches for Myanmar News. Therefore, developing Myanmar News retrieval in IR 

System is the second contribution. 

The third contribution is proposing and applying Myanmar News Dataset for 

query-document features extraction. Many IR systems give a query and return the 

documents. Therefore, the Myanmar News Dataset is proposed and applied with 

neural network extract the query-document features. 

The final contribution of this research is applying Deep Neural Ranking 

Model and Fine-tuned Model for Myanmar News retrieval. Query-document features 

can be obtained by deep learning form large amount of Myanmar News dataset and 

applying these features to rank with neural network models and fine-tuned model. 

 
 

1.5 Organization of Research 

 
This dissertation is comprised with seven chapters including literature review, 

related work and background theory of IR research, building Myanmar News dataset 

for retrieval, description of proposed system architecture, nature of text data in 

Myanmar dataset, feature extraction process, implementing Deep Neural based and 

fine-tune based ranking models with data retrieving and ranking methods, 

experimental results, conclusion and future work of research on Myanmar News 

retrieval. 

Chapter 1 describes the introduction, objectives, focus and contributions of the 

Myanmar News retrieval research work. The literature reviews on Neural IR, related 

work of this research, applied areas, previous researches of Neural IR system, pre-

trained models, fine-tuned model, and evaluation metrics of Myanmar News retrieval 

are described in Chapter 2.      Background theories required for Deep Neural Network 

process are described in Chapter 3. It includes the ranker models about DRMM, MP, 

Duetl, KNRM, PACRR, CONV-KNRM, and MZ-CONV-KNRM, likelihood of score 

computation and finally describes the performance metric. Chapter 4 explains how to 

collect and prepare the Myanmar News data from Myanmar website sources and 

building query-document datasets for Myanmar News retrieval. Moreover, the 

Myanmar information and statistics of Myanmar News datasets are also reported in 

this chapter. Chapter 5 describes general architectures of Myanmar IR system, and 

design and implementation of proposed system architecture for Myanmar News 
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retrieval. Chapter 6 describes the performance analysis for Myanmar News retrieval. 

It includes the different rankers and fine-tuned models, the experimental setup, 

performance results and discussion about the ranking models. Moreover, the proposed 

model is compared with baseline models and word embedding features are also 

explored and investigated in this chapter. Finally, Chapter 7 presents the conclusion 

extracted from this research work with the advantages and limitations of research 

work and describes the future research lines to continue it. 
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CHAPTER 2 

LITERTATURE REVIEW AND RELATED WORK 

 
This chapter describes the literature review on Neural IR techniques, related 

work of this research and previous researches of Neural IR on Myanmar language. 

Evaluation metrics of Neural IR are also briefly presented in this chapter.  

Machine learning plays a role in many aspects of modern IR systems, and 

deep learning is applied in all of them. The fast pace of modern-day research has 

given rise to many different approaches for many different IR problems where 

designing features used to be a crucial aspect and contribution of newly proposed IR 

approaches, and the focus has shifted to designing network architectures instead. As a 

consequence, many different architectures and paradigms have been proposed, such as 

auto-encoders, recursive networks, recurrent networks, convolutional networks, 

various embedding methods, deep reinforcement and deep-learning, and, more 

recently, generative adversarial networks, of which most have been applied in IR 

settings [34]. 

In recent time, machine learning models have surpassed state-of-the-art 

solutions across various domains, including health monitoring, computer vision and 

NLP. In particular, deep neural networks have been successfully applied to diverse 

area including IR [37]. A retrieval model aims to enhance traditional exact-match 

models like BM25 by incorporating semantic matching signals derived from a neural 

embedding matching model. This model trains the neural embedding to represent 

language structures and semantics that cannot be adequately captured by lexical 

retrieval methods, using a novel residual-based embedding learning approach [16]. 

The large-scale query-document retrieval problem: given a query (e.g., a 

question), return the set of relevant documents (e.g., paragraphs containing the 

answers) from a large document corpus. This problem is often solved by two steps. 

The retrieval phase first reduces the solution space, returning a subset of candidate 

documents. The scoring phase then re-ranks the documents. Critically, the retrieval 

algorithm not only desires high recall but also requires being highly efficient, 

returning candidates in time sublinear to the number of documents [8]. 

Ranking models lie at the heart of research on IR. During the past decades, 

different techniques have been proposed for constructing ranking models from 
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traditional heuristic methods and probabilistic methods, to modern machine learning 

methods. Recently, with the advance of deep learning technology, it has witnessed a 

growing body of work in applying shallow or deep neural networks to the ranking 

problem in IR, referred to as neural ranking models [20]. 

Nearly three decades have passed since the introduction of BM25, and it has 

been more than ten years since the inception of learning-to-rank methodologies. 

Throughout the last few decades, researchers have conducted extensive investigations 

aimed at integrating advanced NLP techniques into IR. However, the majority of 

these endeavors has fallen short of practical implementation. The prevailing approach 

in applying NLP to IR involves utilizing linguistically motivated elements such as 

part-of-speech tags, grammar-based parsers, word correlations, etc., derived from both 

documents and queries. These linguistic features are then employed to create 

representations for retrieval purposes.  

As an illustration, research has delved into the exploration of techniques like 

dependency parsing [71] and part-of-speech tagging [31] to enhance the 

understanding of queries and documents in IR. While these parsers provided 

inspiration, their fragility and limitation to well-formed text were notable drawbacks. 

Moreover, the extracted linguistic signals often necessitated additional complex 

processing to become valuable for retrieval. 

A deep neural network comprises an extensive assembly of elementary 

mathematical units, referred to as neurons, arranged in layers. These layers can be 

collectively trained to perform intricate tasks. The hierarchical arrangement of layers 

in the model allows it to take raw data as input and progressively acquires high-level 

features through the learning process. One of the key advantages of neural networks 

over traditional feature-based NLP techniques is their capacity to autonomously 

uncover intricate features. Neural networks leverage distributed representations, 

which represent another notable strength of this approach. Nevertheless, within the 

domain of IR, the enhancements achieved by neural networks seem somewhat modest 

in comparison to the strides made by traditional techniques.   

 

2.1 Overview of Neural Information Retrieval 
 

The field of IR includes a wide range of content types and tasks. IR is the 

science of searching for and retrieving relevant information from a collection of 

documents. It is a fundamental task in many applications, including web search engines, 
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digital libraries, and document management systems. Neural networks are a class of 

machine learning models motivated by the human brain. They consist of interconnected 

nodes (neurons) that process and transform data.  

Neural IR is one of the important research topics in the field of text processing 

and is also known as Neural IR. Neural IR is an advanced area of research in the field of 

IR and NLP. It involves the use of neural networks and deep learning techniques to 

improve the process of retrieving relevant information from large collections of text 

documents, such as web pages, books, or other text-based retrieval. In the context of 

Neural IR, neural networks are used to model text data and relationships between 

documents and queries.  

Neural networks are a class of machine learning models motivated by the 

human brain. They consist of interconnected nodes (neurons) that process and transform 

data. In the context of Neural IR, neural networks are used to model text data and 

relationships between documents and queries. In Neural IR, documents and queries are 

typically represented as numerical vectors. Each word or phrase in a document is 

converted into a vector using word embeddings (e.g., Word2Vec, GloVe) or more 

advanced techniques like transformer-based models (e.g., BERT).  Neural IR is a 

sought out research topic in the IR research community. Since then, the Neural IR 

paradigm started, and many BERT-based text ranking approaches were developed. 

These are now usually deployed as re-ranker in multistage search architecture. A 

condensed multi-stage ranking architecture of this method is shown in Figure 2.1. 

First, it uses exact matching over inverted index to execute the retrieval step, also 

known as candidate generation or first stage retrieval, and then the documents that are 

sorted based on BM25 score. This is a less costly action. After reducing the candidate 

set to k documents, a more costly re-ranking phase is conducted, determining the 

ultimate ordering of the top N documents through the use of BERT-based 

Contextualized ranking models. The trade-off in search systems is improved by these 

distinct phases. 

 

 

 

 

 

 

Figure 2.1 Example of Neural Information Retrieval (Neural IR)  

Documents 
Inverted 

Index 

Initial 

Retrieval 

Re-

ranker 

Ranked 

List 



10  

2.1.1 Document Understanding  

 
Neural IR aims to improve how well computers understand the content of 

documents. Instead of relying solely on keywords, it utilizes neural networks to create 

numerical representations of documents, capturing the context and semantics of the text. 

Document Understanding in Neural IR is a critical aspect of how search engines and 

other IR systems process, interpret, and retrieve information from large volumes of text.  

Document understanding involves several processes that enable machines to 

comprehend the content, context, and meaning of documents. Text preprocessing are 

tokenization, stemming, lemmatization, and removing stop words. Feature extraction is 

extracting meaningful features from text, such as keywords, entities, and topics. 

Semantic understanding is the meaning and context of words and phrases using 

techniques like word embeddings and contextual embeddings.  

Key techniques in document understanding of Neural IR have several neural 

techniques. These are word embedding (such as Word2Vec, GloVe, etc.), contextual 

embeddings (such as BERT, GPT, etc), sequence models (such as RNNs, LSTM, etc), 

transformers and document understanding. Word2Vec generates vector representations 

of words based on their context in the corpus and GloVe creates word embeddings by 

aggregating global word-word co-occurrence statistics. BERT (Bidirectional Encoder 

Representations from Transformers) provides deep contextualized word embeddings by 

considering both left and right context in all layers and GPT (Generative Pre-trained 

Transformer) uses transformer architecture for understanding and generating human-

like text. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) 

handle sequential data and capture dependencies over long ranges. Transformers handle 

long-range dependencies better than RNNs, enabling superior performance in tasks like 

document classification and summarization. Document understanding in Neural IR is a 

rapidly evolving field that leverages sophisticated neural network architectures to 

improve the comprehension and retrieval of information. 

 

2.1.2 Semantic Matching   

 
One of the core objectives is to achieve better semantic matching between user 

queries and documents. By encoding queries and documents as vectors, Neural IR 

models can compute similarity scores that go beyond simple keyword matching. 

Semantic matching in Neural IR is a critical component that aims to understand and 
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match the meaning behind queries and documents rather than relying solely on keyword 

matching. This approach significantly enhances the accuracy and relevance of search 

results. Semantic matching involves comparing the meanings of words, phrases, 

sentences, or documents to determine their relevance to each other. It transcends 

traditional keyword-based methods by considering the context and semantics of the 

content.  

Semantic matching in Neural IR is a transformative approach that enhances the 

relevance and accuracy of search results by focusing on the meaning behind words and 

phrases. By leveraging advanced neural network architectures and embedding 

techniques, it addresses the limitations of traditional keyword-based matching and 

paves the way for more intuitive and effective IR systems. 

The key concepts in semantic matching are semantics, contextual understanding, 

and representation learning. Semantics refers to the meaning and interpretation of words 

and sentences. Contextual understanding captures the context in which words appear to 

understand their meanings better. Representation learning learns dense vector 

representations (embeddings) of words, phrases, or entire documents that capture 

semantic information.  

Techniques and models for semantic matching are word embeddings (such as 

Word2Vec creates vector representations of words based on their context using models 

like Continuous Bag of Words (CBOW) and Skip-gram, GloVe (Global Vectors for 

Word Representation) generates word embeddings by aggregating global word-word 

co-occurrence statistics from a corpus), contextual embeddings (such as BERT, and 

ELMo). BERT (Bidirectional Encoder Representations from Transformers) provides 

deep contextualized word embeddings by considering the bidirectional context of words 

in sentences. It uses transformer architecture to capture complex relationships between 

words.  ELMo (Embeddings from Language Models) generates contextual embeddings 

by considering the entire sentence in which a word appears. In order to appear a word 

using bi-directional LSTM networks.  

Sentence and document embeddings (such as Universal Sentence Encoder, and 

Doc2Vec) are used to provide embeddings for sentences that capture their semantic 

content, using tasks like semantic similarity and text classification, Doc2Vec extends 

Word2Vec to generate embeddings for entire documents) and neural matching models 

(such as Deep Relevance Matching Model (DRMM) utilize a deep neural network to 

model the interaction between query and document terms at multiple levels of 
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granularity. DSSM (Deep Structured Semantic Models) projects queries and documents 

into a common semantic space where similarities are computed using deep learning 

techniques). 

 

2.1.3 Relevance Ranking    

 
Neural IR models learn to rank documents based on their estimated relevance to 

a given query. By training on labeled data, where the relevance of documents is 

determined by human judgments. Relevance ranking in Neural IR is the process of 

ordering documents based on their relevance to a given query. This is a core task in IR 

systems like search engines, where the goal is to present the most pertinent information 

at the top of the results as shown in Figure 2.2.  

Relevance ranking aims to order documents so that the satisfactions the user's 

query appears first. This involves evaluating the relevance of documents concerning the 

query and assigning a score that reflects their usefulness. Relevance ranking in Neural 

IR leverages advanced deep learning techniques to improve the accuracy and relevance 

of search results. By understanding and implementing these neural approaches, 

significantly enhance the performance of IR systems, making them more responsive to 

the user needs and more capable of understanding complex queries and documents. 
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Figure 2.2 Example of Relevance Ranking 

 

 

2.1.4 Representation Learning  

   
Word embeddings are techniques like Word2Vec, GloVe, and FastText 

represent words as dense vectors in a continuous space, contextual embeddings are 

models like BERT, GPT, and ELMo provides context-sensitive embeddings by 

considering the surrounding words.  

 

2.1.4.1 Text Representations for Ranking 

 

The Probability Ranking Principle [65] states that, under certain conditions, 

the documents in a collection should be ranked in order of the (decreasing) 

probability of relevance with respect to the query for a given user's query. This will 

maximize the retrieval system's overall effectiveness for the user. Ad-hoc ranking's 

job is to determine which the order of the documents is closest to or identical to the 

best ordering based on relevance probability for each query. It is typical practice to 

restrict the set of documents to be sorted to the top k documents in the best possible 

order. For example Q represents a log of (text) inquiries and D represents a collection 

of (text) documents. The vocabulary V of terms is shared by both queries and 

documents.  

 

 

 

Least Relevant Most Relevant 
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A scoring function, or ranking function, is as follows: Q × D → R calculates a 

real-valued score according to the log Q's queries for the documents in collection D. 

It refer to the value s(q, d) as the document's relevance score with respect to the query 

given a query (q) and a document (d) as in Equation (2.1). The scores of the 

documents in the collection can be used to order the documents for a given query, 

with the score values reversed. An IR system based on the scoring system is more 

effective the closer query that induced ordering. 

 

                                         𝑠(𝑞, 𝑑) =    𝑓(𝜙(𝑞),𝜓(𝑑), 𝜂(𝑞, 𝑑))      (2.1) 

 

   
where three representation functions, 𝜙: 𝑄 →  𝑉1, 𝜓: 𝐷 →  𝑉2 ∶  𝑄 →

 𝑉1, 𝜓: 𝐷 →  𝑉2, and 𝜂: 𝑄 ×  𝐷 →  𝑉3, map queries, documents, and query-

document pairings into the respective latent representation spaces, V1, V2, and V3 

[20]. These functions create computationally-friendly abstract mathematical 

representations of the text sequences of documents and queries. The aggregation 

function 𝑓: V1 ×  V2 ×  V3 →  R   calculates the relevance score of the document 

representation with respect to the query representation. The elements of these vectors 

indicate the characteristics used to describe the relevant objects. The aggregation 

function 𝑓 and the representation functions 𝜙, 𝜓,  and 𝜂 can be computed using 

machine learning methods or they can be built manually using a few heuristics or 

axioms. The representation function used in LTR contexts, traditional IR as shown in 

Figure 2.3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Representation-based decomposition of a ranking function  
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2.1.4.2 Bag-of-Word (BOW) Encodings  

 

In traditional IR, the representation and aggregation functions are created by 

hand, incorporating lexical statistics like the quantity of terms that appear in a 

document or throughout the collections. The bag of words (BOW) model, which is the 

foundation for traditional IR ranking models such as Vector Space Models (VSM) 

[67], probabilistic models [66], and statistical language models [59], models queries 

and documents as a set of terms from the vocabulary 𝑉 plus the number of 

occurrences of the corresponding tokens in the text. Formally speaking, queries and 

documents are represented as vectors 𝜙(𝑞) and 𝜓(𝑑) in 𝑁|𝑉|, which are referred to as 

BOW encodings. The number of times a term appears is encoded by the i
th

 component 

of both representations. These ranking functions lack the query-document 

representation function 𝜂. The components of the query and document 

representations, i.e., the in-query and in-document term frequencies, along with 

additional document normalization processes, are all taken into consideration by the 

explicit formula that represents the aggregate function 𝑓 over these representations. 

Since the majority of these representations' components equal zero because they 

reflect tokens that are absent from the query or document, they are known as sparse 

representations. Sparse representations are easily computed and effectively stored in 

specialized data structures known as inverted indexes, which serve as the foundation 

for commercial Web search engines [7]. For additional information on inverted 

indexes and classical IR ranking models, refer to [6], [48], [75].  

 

2.1.4.3 Learning to Rank (LTR)  

 

Pointwise approach treats the ranking problem as a regression or classification 

task where each document is scored independently examples include regression-based 

models, pairwise approach models the relative order of document pairs to minimize 

ranking errors examples include RankNet, and listwise approach optimizes the order of 

a list of documents, directly optimizing for ranking metrics examples include ListNet 

and LambdaMART(combines LambdaRank and Multiple Additive Regression Trees 

(MART)). New sources of pertinent information on the papers have been available 

since the introduction of the Web.  

 

 



16  

Relevance signals include Web page prominence (e.g., PageRank), extra 

document data (e.g., phrase frequencies in the title or anchor text), and search engine 

interactions (e.g., clicks). Furthermore, social media and collaborative websites like 

Facebook, Twitter, and Wikipedia are new sources of relevance signals. By utilizing 

these relevance signals, LTR's query and document representations have become 

richer. Features are the relevance signals that are taken out of documents and/or 

queries. These characteristics fall into a number of classes [34], [46], including: (1) 

query-only features, or elements of 𝜙(𝑞): query features, like query type, query 

length, and query performance predictors, that have the same value for every 

document; (2) query-dependent features, or components of 𝜂(𝑞, 𝑑): document 

features that depend on the query, like different term weighting models on different 

fields; (3) query-independent features, or components of 𝜓(𝑑): document features 

with the same value for each query, like importance score, URL length, and spam 

score.  

The representation functions in LTR are manually created. Using feature-

specific algorithms, the various parts of query and document representations are 

produced by taking use of relevance signals from heterogeneous information sources. 

With respect to vector spaces over R, the representations 𝜙(𝑞), 𝜓(𝑑), and 𝜂(𝑞, 𝑑) are 

thus elements whose dimensions are determined by the quantity of manually created 

query-only, query-independent, and query-dependent features, respectively. 

Furthermore, these vectors' various parts are diverse and lack any clear semantic 

significance. Through the use of various representations, the aggregation function f in 

LTR is machine-learned, for instance through the use of neural networks [4], logistic 

regression [17], or gradient-boosted regression trees [5]. For a thorough overview, it 

is seen [41].  

 

2.1.4.4 Word Embeddings  

 

Although LTR features and BOW encodings are commonly used in 

commercial search engines, they have various drawbacks. On the one hand, concepts 

that are semantically linked wind up with entirely distinct BOW encodings. While the 

names catalogue and directory are interchangeable, their BOW encodings differ 

significantly, with the single 1 occurring in distinct components.  
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In a similar vein, two publications pertaining to the same subject may end up 

with two distinct BOW encodings. Conversely, LTR features use feature engineering 

to manually generate text representations with heterogeneous components and no 

explicit notion of similarity. Despite being often employed in commercial search 

engines, LTR features and BOW encodings have a number of disadvantages.  

On the one hand, semantically related concepts result in completely different 

BOW encodings. Although the terms "catalogue" and "directory" are synonymous, 

their BOW encodings are very different, with the former occurring in separate 

components. Similarly, two publications that deal with the same topic could have two 

different BOW encodings. On the other hand, LTR features do not explicitly consider 

similarity and instead manually build text representations with heterogeneous 

components through feature engineering.  Moreover, the components of word 

embeddings are rarely 0: they are real numbers, and can also have negative values. 

Hence, word embeddings are also referred to as dense representations. Among the 

different techniques to compute these representations, there are algorithms to compute 

global representations of the words, i.e., a single fixed embedding for each term in the 

vocabulary, called static word embeddings, and algorithms to compute local 

representations of the terms, which depend on the other tokens used together with a 

given term, i.e., its context, called contextualized word embeddings. Static word 

embeddings used in Neural IR are learned from real-world text with no explicit 

training labels: the text itself is used in a self-supervised fashion to compute word 

representations. There are different kinds of static word embeddings, for different 

languages, such as Word2Vec [47], Fasttext [30] and GloVe [56].  

Based on the training data used to compute the vectors, static word 

embeddings map terms with multiple senses into an average or most common sense 

representation; each term in the lexicon is associated with a single vector. 

Contextualized word embeddings correlate each term in the lexicon with a unique 

vector each time it appears in a document, based on the surrounding tokens. They map 

tokens used in a given context to a specific vector. Deep neural networks, such as the 

Bidirectional Encoder Representations from Transformers (BERT) [12], the Robustly 

Optimized BERT Approach (RoBERTa) [42], and the Generative Pre-Training 

models (GPT) [61], are used to learn the most widely used contextualized word 

embeddings.  In Neural IR (nervous IR), word embeddings are utilized to calculate the 

aggregation function 𝑓 and the representation functions 𝜙, ψ , and 𝜂 via (deep) neural 
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networks. Neural ranking models fall into two categories: interaction-focused models 

and representation-focused models, depending on the assumptions made about the 

representation functions. In models that emphasize interaction, the function that 

represents the relationship between the query and document contents, known as the 

query-document representation function 𝜂(𝑞, 𝑑) is both explicitly created and fed into 

a deep neural network or it is implicitly generated and utilized directly by the deep 

neural network. The query-document representation function 𝜂(𝑞, 𝑑) does not exist in 

representation-focused models; instead, deep neural networks independently compute 

the query and document representations, 𝜙(𝑞) and 𝜓(𝑑).  

 

2.2 Interaction-focused Systems  

 

Deep Neural Networks (DNNs) are utilized by the interaction-focused Neural 

IR systems to model word and n-gram relationships between a query and a document. 

These systems take in a query (𝑞) and a document (𝑑) as inputs, and produce a query-

document representation 𝜂(𝑞, 𝑑) as their output. Convolutional neural networks and 

transformers are two neural network architectures that have been studied among 

others to create a representation of these interactions. Convolutional neural networks 

are among the earliest methods for creating combined representations of documents 

and questions. The development of pre-trained language models through the use of 

transformers on textual inputs marked a significant turning point in Neural IR 

research. In Neural IR, query-document representations are computed using pre-

trained language models; BERT and T5 (Text-to-Text Transfer Transformer) are the 

two primary transformer models utilized for this purpose, respectively. Query-

document representations are computed using pre-trained language models and how 

these models are adjusted to handle lengthy texts. 

 

2.2.1 Convolutional Neural Networks (CNNs) 

 

 

A Convolutional Neural Network (CNN) is a class of neural networks 

intended to identify local patterns in structured inputs like texts and images [38]. 

When combined with the feed forward and pooling layers, the convolution layer 

forms the fundamental part of a CNN. A convolutional layer is considered as a tiny 

linear filter that scans the input for proximity patterns.  
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CNN are used by a number of neural models to generate relevance scores 

based on the interactions between queries and documents. These models typically 

include aggregating the word embeddings of the query and document tokens into an 

interaction matrix, which is then utilized by CNN to learn hierarchical proximity 

patterns like bigrams, unigrams, and so forth. The relevance score 𝑠(𝑞, 𝑑) between the 

query 𝑞 and the document 𝑑 is then produced by feeding the final top-level proximity 

patterns into a feed forward neural network, as shown in Figure 2.4.  

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Scheme of an interaction-focused model based on convolutional neural 

networks  

 

 

Tokenization is used to separate the query 𝑞 and the document 𝑑 into 𝑚 and 𝑛 

tokens, respectively. Each token is associated with a static word embedding. The 

cosine similarity between a query token embedding and a document token embedding 

makes up the interaction matrix 𝜂(𝑞, 𝑑) ∈  𝑅𝑚 × 𝑛.  

The Deep Relevance Matching Model (DRMM) as one of the earliest neural 

models that makes use of the interaction matrix [21]. Using hard bucketing, the cosine 

similarity of each query token with respect to the document tokens in DRMM are 

transformed into a discrete distribution, or a query token histogram. The final query 

token-document relevance score is then calculated by feeding the histogram of each 

query token into a feed forward neural network.  
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Then, an IDF-based weighted sum across the various query phrases is used to 

aggregate these relevance scores. The Kernel-based Neural Ranking Model (KNRM) 

[82] suggests using Gaussian kernels to softly bucket histograms to feed forward 

neural networks, distributing each cosine similarity's contribution across buckets in a 

smooth manner instead of using hard bucketing.  

While both KNRM and DRMM make use of the interaction matrix, they do 

not have a convolutional layer. The query and document embeddings are first 

individually processed using k convolutional neural networks in the Convolutional 

KNRM model (CONV-KNRM) [11], in order to construct uni-gram, bigram, up to k-

gram embeddings. Such convolutions make it possible to construct word embeddings 

that simultaneously account for several closely related words. After that, between 

every combination of question and document n-gram embeddings, k
2
 cosine similarity 

matrices are constructed, and KNRM is used to process these matrices. The 

interaction matrix is processed through many convolutional and pooling layers in the 

Position-Aware Convolutional Recurrent Relevant model (PACRR) [26] in order to 

account for word proximity. Other neural models that are similar to this one also 

include convolutional layers [14], [24], [27], [53], [54].  

 

2.2.2 Pre-trained Language Models  

 

Based on the training data used to generate the vectors, static word 

embeddings map words with multiple senses into an average or most common-sense 

representation. A word's vector remains constant regardless of the other words used in 

the phrase around it. The usage of a unique neural layer dubbed self-attention in 

combination with feed forward and linear layers, the transformer neural network is 

able to explicitly consider the context of arbitrary long text sequences. Sequences of 

input length are mapped to sequences of output length by the self-attention layer. The 

layer can access all n input elements (bidirectional self-attention) or just the first i 

input elements (causal self-attention) while calculating the i
th

 output element. The 

network is able to consider the relationships between several elements in the same 

input to a self-attention layer. A self-attention layer computes token representations 

that consider the surrounding words when the input elements are tokens of a specific 

text. By doing this, the transformer generates contextualized word embeddings, in 

which the input text as a whole determines how each input token is represented.  
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Transformers have shown effectively in a variety of natural language 

processing applications, including question answering, summarization, machine 

translation, and more. These jobs are all specific examples of a broader objective, 

which is to convert an input text sequence into an output text sequence. This general 

task has been addressed by the invention of the sequence-to-sequence model. The two 

components of a sequence-to-sequence neural network are an encoder model that 

produces a contextualized representation of each input element given an input 

sequence, and a decoder model that uses these contextualized representations to 

produce an output sequence tailored to a job. The components of both types are many 

stacked transformers. Bidirectional self-attention layers are used by the encoder's 

transformers on either the input or the output sequence from the preceding 

transformer. The decoder's transformers use bidirectional cross-attention on the output 

of the final encoder transformer and causal self-attention on the output of the 

preceding decoder transformer.  

Two particular applications of sequence-to-sequence models have been 

investigated in Neural IR: encoder-only models and encoder-decoder models. All of 

the tokens in a particular input sentence are fed into encoder-only models, which then 

produce contextualized word embeddings for each token in the sentence. The models 

BERT [12], RoBERTa [42], and DistilBERT [69] are examples of this family of 

models. Depending on the input sentence, encoder-decoder models produce new 

output sentences. One token at a time, the decoder model sequentially accesses these 

embeddings to produce new output tokens, while the encoder model takes all of the 

tokens of a given sequence as input and creates a contextualized representation. 

Among these model representatives are BART [39] and T5 [63]. Sequence-to-

sequence models can be trained as language models by computing the token 

probabilities using a softmax operation and projecting each output embedding to a 

specified vocabulary using a linear layer. A function  𝜎: 𝑅𝑘 → [0, 1]𝑘, which accepts 

as input 𝑘 > 1 real numbers 𝑧1, 𝑧2, … , 𝑧𝑘 and transforms each input 𝑧𝑖 as in Equation 

(2.2), is known as the softmax operation.  

 

                                                          𝜎(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑘

𝑗=1

                                (2.2) 
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The input values are normalized into a probability distribution using the 

softmax procedure. Within the domain of deep learning, the inputs of a softmax 

operation are commonly referred to as logits. These logits are the unprocessed 

predictions produced by a multi-class classification model, which the softmax 

operation transforms into a probability distribution across the classes.  

A sequence-to-sequence model can be trained as a Casual Language Model 

(CLM), like T5, or as a masked language model (MLM), like BERT, depending on 

the training goal. While CLM training focuses on predicting the next token in an 

output sequence given the previous tokens in the input sequence, MLM training 

teaches learners to predict missing tokens in a sequence given the surrounding tokens. 

To create pre-trained language models, it is customary to train these models on large 

amounts of text data in both situations. By doing this, it enables the model to acquire 

general-purpose language knowledge that may subsequently be applied to a 

downstream task that is more specialized. This transfer learning strategy uses an 

initial model that is pre-trained on a smaller, domain-specific training dataset to refine 

it for the downstream target job. To put it another way, fine-tuning is the process of 

modifying a pre-trained language model's parameters for the target task and domain 

data.  

Figure 2.5 illustrates the basic requirements for pre-training: large-scale 

general-purpose training corpus (e.g., Wikipedia or Common Crawl web pages), 

costly computing resources, and lengthy training periods (e.g., many days or weeks). 

However, fine-tuning necessitates a small domain-specific corpus that is concentrated 

on the downstream job, reasonably priced computing resources, and a few more hours 

or days of training. Two specific instances of fine-tuning are zero-shot learning, in 

which a pre-trained language model is applied to a downstream job for which it was 

not fine-tuned, and few-shot learning, in which the domain-specific corpus consists of 

a relatively small quantity of training data.  
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Figure 2.5 Transfer learning of a pre-trained language model to a fine-tuned 

language model  

 

Cross-encoder models are interaction-focused Neural IR systems that employ 

pre-trained language models. They take as input a pair (𝑞, 𝑑)  of query and document 

strings. Different cross-encoders are fine-tuned in different ways depending on the 

type of sequence-to-sequence model; nevertheless, generally speaking, their goal is to 

compute a relevance score 𝑠(𝑞, 𝑑) to rank documents with respect to a given query. 

The most popular cross-encoders using both encoder-only and encoder-decoder types 

are shown in the following.  

 

2.2.3 Ranking with Encoder-only Models  

 

BERT, an encoder-only model, is the transformer architecture that is most 

frequently used in Neural IR. The WordPiece sub-word tokenizer [79] is used to 

tokenize the text input. This tokenizer's vocabulary V consists of 30, 522 terms, with 

the uncommon/rare words (like goldfish) divided into smaller words (like gold## and 

##fish). The unique  [𝐶𝐿𝑆] token—which stands for "classification"—is always the 

first input token used in BERT. Other special tokens that indicate the end of a text 

supplied as input or divide two distinct texts supplied as a single input are accepted as 

input by BERT. One such token is [𝑆𝐸𝑃]. A maximum of 512 tokens can be entered 

into BERT, and for each token entered, an output embedding in 𝑅𝑙 is produced. The 

most widely used variant of BERT is called BERT base, and it has an output 

representation space with dimensions of 𝑙 = 768 and 12 transformer layers stacked. 

There are two slightly different approaches to fine-tune BERT as a cross-encoder1: 

[49] and [44].  

Both texts in a query-document combination are tokenized into the token 
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sequences  𝑑1, . . . , 𝑑𝑛, 𝑎𝑛𝑑 𝑞1, . . . , 𝑞𝑛. Following that, the tokens and BERT special 

tokens are concatenated to create the input configuration seen below:  

 

 [𝐶𝐿𝑆]𝑞1, … , 𝑞𝑚 [𝑆𝐸𝑃] 𝑑1, … , 𝑑𝑛 [𝑆𝐸𝑃] 

 

This will be the input for the BERT. By doing this, the BERT encoders' self-

attention layers are able to consider the semantic relationships between the question 

and document tokens. For the input [𝐶𝐿𝑆] token, the output embedding 𝜂[𝐶𝐿𝑆] ∈

 𝑅𝑙 provides a contextual representation of the query-document pair as a whole.  

To calculate the query-document relevance score, [50] fine-tune BERT on a 

binary classification job, as shown in Figure 2.6. In order to obtain the relevance 

score 𝑠(𝑞, 𝑑), BERT processes the query and the document to produce the output 

embedding 𝜂[𝐶𝐿𝑆] ∈ 𝑅𝑙. This embedding is then multiplied by a learned set of 

classification weights 𝑊2 ∈ 𝑅2∗𝑙  to yield two real scores, 𝑧0 and 𝑧1, which are 

subsequently transformed into a probability distribution 𝑝0 and 𝑝1 over the relevant 

and non-relevant classes via a softmax operation. The final relevance score is the 

probability corresponding to the relevant class, which is often assigned to label 1, or 

𝑝1. Through the learnt matrix  𝑊1 ∈ 𝑅1∗𝑙, [44] fine-tune BERT by projecting the 

output embedding 𝜂[𝐶𝐿𝑆] ∈ 𝑅𝑙 into a single real value 𝑧, which represents the final 

relevance score as in Equations (2.3) – (2.6). 

 

                                𝜂[𝐶𝐿𝑆] =  𝐵𝐸𝑅𝑇 (𝑞, 𝑑)           (2.3) 

                 [𝑧0,  𝑧1] =  𝑊2𝜂[𝐶𝐿𝑆] or   𝑧 = 𝑊1𝜂[𝐶𝐿𝑆]           (2.4) 

                       [𝑝0,  𝑝1] =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [𝑧0,  𝑧1]                        (2.5) 

                                         𝑠(𝑞, 𝑑) = 𝑝1  or 𝑠(𝑞, 𝑑) = 𝑧                                            (2.6) 
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Figure 2.6 BERT classification model for ad-hoc ranking  

 

 

2.2.4 Ranking with Encoder-decoder Models  

 
It is possible to use an encoder-decoder model [63] with prompt learning in 

place of an encoder-only transformer model to compute the latent representation of a 

query-document pair and convert it into a relevance score. This is achieved by 

converting the relevance score computation task into a cloze test, or fill-in-the-blank 

problem. In tasks involving the summarization of articles [62] and the building of 

knowledge bases [58], prompting has been effectively implemented. In quick 

learning, the downstream goal is recast as a cloze-like problem while the input texts 

are reformed as a natural language template. For subject classification, for instance, if 

the phrase text needs to be divided into two classes, 𝑐0 and 𝑐1,, the input template 

could be:  

 

𝐼𝑛𝑝𝑢𝑡 ∶ 𝑡𝑒𝑥𝑡 𝐶𝑙𝑎𝑠𝑠 ∶ [𝑂𝑈𝑇]  

 

Two label terms, 𝑤0 and  𝑤1, have been chosen from the lexicon to represent 

the classes 𝑐0 and 𝑐1, respectively. It is possible to convert the likelihood that the input 

token [𝑂𝑈𝑇] will be allocated to the appropriate label token from the likelihood of 

assigning the input 𝑡𝑒𝑥𝑡 to a class: 
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𝑝(𝑐0|𝑡𝑒𝑥𝑡) = 𝑝([𝑂𝑈𝑇] =  𝑤0|𝐼𝑛𝑝𝑢𝑡 ∶  𝑡𝑒𝑥𝑡 𝐶𝑙𝑎𝑠𝑠 ∶ [𝑂𝑈𝑇])                      (2.7) 

𝑝(𝑐1|𝑡𝑒𝑥𝑡) = 𝑝([𝑂𝑈𝑇] =  𝑤1|𝐼𝑛𝑝𝑢𝑡 ∶  𝑡𝑒𝑥𝑡 𝐶𝑙𝑎𝑠𝑠 ∶ [𝑂𝑈𝑇])                    (2.8) 

 

As shown in Figure 2.7, a rapid learning strategy for relevance ranking 

utilizing a T5 model [51]. The following input template is created by concatenating 

the query with the document texts 𝑞 and  𝑑:  

 

𝑄𝑢𝑒𝑟𝑦 ∶ 𝑞 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 ∶ 𝑑 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 ∶  [𝑂𝑈𝑇]  

 

A downstream job that takes this input configuration as input and produces an 

output sequence with the last token equal to True or False, depending on whether the 

document 𝑑 is relevant or irrelevant to the query 𝑞, is used to fine-tune an encoder-

decoder model. The calculation of the query-document relevance score involves 

applying a softmax operation to normalize solely the False and True output 

probabilities, which are calculated throughout the entire vocabulary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 T5 model for ad-hoc ranking  
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The query and the text are processed by T5 to create the output embedding 

𝜂[𝑂𝑈𝑇] ∈ 𝑅𝑙, which is projected over the vocabulary 𝑉  by a learnt set of classification 

weights 𝑊𝑉 ∈ 𝑅|𝑉|∗𝑙 in order to yield the relevance score 𝑠(𝑞, 𝑑). In order to get the 

necessary predictions 𝑝𝐹𝑎𝑙𝑠𝑒 and  𝑝𝑇𝑟𝑢𝑒  over the "non-relevant" and "relevant" 

classes, the outputs  𝑧𝐹𝑎𝑙𝑠𝑒 and 𝑧𝑇𝑟𝑢𝑒  , which correspond to the 𝐹𝑎𝑙𝑠𝑒 and 𝑇𝑟𝑢𝑒 

terms, respectively, are converted into a probability distribution using a softmax 

operation.  

The ultimate relevance score is the prediction, or 𝑝𝑇𝑟𝑢𝑒  , that corresponds to 

the relevant class.  

 

                        𝜂[𝑂𝑈𝑇] = 𝑇5(𝑞, 𝑑)          (2.9) 

                      [… , 𝑧𝐹𝑎𝑙𝑠𝑒 , … , 𝑧𝑇𝑟𝑢𝑒 , … ]𝑇 = 𝑊𝑉 𝜂[𝑂𝑈𝑇]                               (2.10) 

          [𝑝𝐹𝑎𝑙𝑠𝑒 , 𝑝𝑇𝑟𝑢𝑒 ]  = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝑧𝐹𝑎𝑙𝑠𝑒 , 𝑧𝑇𝑟𝑢𝑒 ])                                (2.11) 

                         𝑠(𝑞, 𝑑) =  𝑝𝑇𝑟𝑢𝑒                                (2.12) 

 
2.2.5 Fine-tuning Interaction-focused Systems  

 
The pre-trained language models used in IR need to be adjusted for a 

particular downstream job. A Neural IR model M(𝜃), parametrized by 𝜃, evaluates an 

input query-document pair (𝑞, 𝑑)  and returns the score of document 𝑑 with respect to 

the query 𝑞, or 𝑠𝜃(𝑞, 𝑑) ∈  𝑅. Predicting 𝑦 ∈ {+,−}  from (𝑞, 𝑑) ∈ 𝑄 ×  𝐷  is a task, 

with denoting non-relevant and + denoting relevant. One way to describe this issue is 

as a binary classification issue. Assuming a joint distribution p over {+,−} ×  𝑄 ×  𝐷   

, it carry out the classification by selecting appropriate pairs (+, 𝑞, 𝑑) ≡  (𝑞, 𝑑+)  and 

 (−, 𝑞, 𝑑) ≡  (𝑞, 𝑑−). As an example of a metric learning issue [80], it learns a score 

function 𝑠𝜃(𝑞, 𝑑) using sampled correct pairs. The score function must provide a high 

score to a relevant document and a low score to a non-relevant document, as in 

Equations (2.3) - (2.6) and (2.9) - (2.12). Afterwards, it identifies  𝜃∗ such that it 

minimizes the (binary) cross entropy 𝑙𝐶𝐸  between the model probability 𝑝𝜃(𝑦|𝑞, 𝑑) 

and the conditional probability 𝑝(𝑦|𝑞, 𝑑):  

 

                 𝜃∗ = arg𝑚𝑖𝑛𝜃 𝐸[𝑙𝐶𝐸(𝑦, 𝑞, 𝑑)]       (2.13) 
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where the cross entropy is determined as, and the expectation is calculated 

over (𝑦|𝑞, 𝑑) ~ p as in Equations. 

 

         𝑙𝐶𝐸(𝑦, 𝑞, 𝑑) =  {
−log(𝑠𝜃(𝑞, 𝑑))             𝑖𝑓 𝑦 =  +
− log(1 −𝑠𝜃(𝑞, 𝑑))     𝑖𝑓 𝑦 =  −

      (2.14) 

 

A list of triples (𝑞, 𝑑+, 𝑑−)  with 𝑞 representing a query, 𝑑+ representing a 

relevant document for the query, and 𝑑− representing a non-relevant document for the 

query typically makes up a dataset 𝑇 that may be used to fine-tune pre-trained 

language models for relevance scoring as in Equation (2.15). In this instance, the 

cross entropies calculated for each triple add up to the predicted cross entropy:  

 

           𝐸[𝑙𝐶𝐸(𝑦, 𝑞, 𝑑)] ≈  
1

2|𝑇|
 ∑ (−log(𝑠𝜃(𝑞, 𝑑)) − log(1 −𝑠𝜃(𝑞, 𝑑)))  (𝑞,𝑑+,𝑑−) ∈ 𝑇     (2.15) 

 

This method is restricted to considering positive and negative triples 

independently of each other pairwise. An alternative fine-tuning strategy is frequently 

applied to representation-focused systems, which accounts for several irrelevant 

documents for every important document. 

 

2.3 Representation-focused Systems  

 

Document representations can be pre-computed and stored that representation-

focused systems construct independent query and document representations. Only the 

query representation is computed during query processing; the stored document 

representations are searched to get the top documents. By doing this, representation-

based systems which belong to a new class of retrieval techniques known as dense 

retrieval systems are able to find the pertinent documents among all the documents in 

a collection as opposed to simply a query-dependent sample. In dense retrieval, two 

distinct families of representations have so far surfaced.  

 

2.3.1  Single Representations  

 

Because every word in the document can attend to every word in the query 

and vice versa, interaction-focused systems concatenate the query and document texts 
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before processing them with sequence-to-sequence models. This results in rich 

interactions between the query context and the document context. Every document 

must be concatenated with the query and processed through a forward pass of the 

entire sequence-to-sequence model during the query processing phase. Despite the 

proposal of certain strategies, such as pre-computation of internal representations 

[45], interaction-focused systems are not scalable to handle a high volume of 

documents. A standard CPU can process a query over the entire document collection 

using an inverted index in a matter of milliseconds [74], whereas [44] found that 

calculating the relevance score of a single query-document pair using a transformer 

model may take several seconds.  

As shown in Figure 2.8, representation-focused systems use encoder-only 

models to independently compute query representations 𝜙(𝑞) and document 

representations 𝛹(𝑑) in the same latent vector space, as opposed to using sequence-

to-sequence models to compute a semantically richer but computationally expensive 

interaction representation 𝜂(𝑞, 𝑑) [76]. Next, using an aggregation function 𝑓 between 

these representations, the relevance score between them is calculated:  

 

      𝜙(𝑞) = 𝜙[𝐶𝐿𝑆], 𝜙1, … , 𝜙|𝑞|] = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑞)                  (2.16) 

   𝛹(𝑑) = 𝛹[𝐶𝐿𝑆], 𝛹1, … , 𝛹|𝑑|] = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑑)                   (2.17) 

                                           𝑠(𝑞, 𝑑) = 𝑓(𝜙(𝑞), 𝛹(𝑑))                  (2.18) 

 

The representations functions 𝜙 and 𝛹 in neural inference are calculated using 

refined encoder-only sequence-to-sequence models, such BERT.  

Since the question and document representations are computed using the same 

neural model, this model is also referred to as a dual encoder or bi-encoder [3]. A bi-

encoder is a mapping that creates mathematical manipulates representations of queries 

and documents in the same vector space 𝑅𝑙. Typically, one assumes that the output 

embedding that corresponds to the [𝐶𝐿𝑆] token represents a specific input text as in 

Equations. The dot product serves as the score aggregation function when using these 

single representations:  

 

                                                   𝑠(𝑞, 𝑑) = 𝜙[𝐶𝐿𝑆], 𝛹[𝐶𝐿𝑆]                     (2.19) 
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Figure 2.8 Representation-focused system  

 

A variety of single-representation systems have been proposed; the most 

generally used ones are DPR (Dense Passage Retrieval) [32], [81], and [83].  

 

2.3.2 Multiple Representations  

 

Previously, this attention has been drawn to representation-focused systems, 

wherein documents and queries are represented by a single embedding into the latent 

vector space. It is believed that this one representation has all of the meaning text 

within that one embedding. On the other hand, multiple representation systems, like 

COIL [15], [36], [43], and [28], use more than one embedding to represent a given 

text, potentially enabling a richer semantic representation of the content.  

Poly-encoders [28] use the first m output embeddings 𝛹0, 𝛹1, … ,𝛹𝑚−1 to 

encode a document 𝑑 rather than simply the first output embedding 𝛹[𝐶𝐿𝑆] = 𝛹0. 

While it needs to aggregate the 𝑚 output document embeddings into a single 

representation 𝛹∗ in order to compute the final relevance score using the dot product 

with the output query embedding, a query q is still represented by a single embedding, 

𝜙[𝐶𝐿𝑆] = 𝜙0. To do this, poly-encoders use the dot product to first calculate the m 

similarity 𝑠0, … , 𝑠𝑚−1 between the query embedding and the first m document 

embedding.  
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Using a softmax operation, these similarities are converted into normalized 

weights 𝑣0, … , 𝑣𝑚−1 , and the weighted output embeddings are added up to determine 

the final document embedding 𝛹∗ that is employed. 

 

                   [ 𝜙0, 𝜙1, … ] = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑞)                  (2.20) 

                    [𝛹0, 𝛹1, … ] =  𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑑)                 (2.21) 

  [𝑠0, 𝑠1, … , 𝑠𝑚−1] =  𝜙0. 𝛹0, 𝜙0. 𝛹1, … , 𝜙0. 𝛹𝑚−1                        (2.22) 

[𝑣0, 𝑣1, … , 𝑣𝑚−1] = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝑠0, 𝑠1, … , 𝑠𝑚−1])                        (2.23) 

                  𝛹∗ = ∑ 𝑣𝑖
𝑚−1
𝑖=1 𝛹𝑖                                                           (2.24) 

                 𝑠(𝑞, 𝑑) =  𝜙0. 𝛹∗                        (2.25) 

 

Similarly to poly-encoders, ME-BERT [43] exploits the first m output 

embeddings to represent a document d (including the [𝐶𝐿𝑆] embedding), but uses a 

different strategy to compute the relevance score 𝑠(𝑞, 𝑑) a query 𝑞. ME-BERT 

computes the similarity between the query embedding and the first 𝑚 document 

embedding using the dot product, and the maximum similarity, also called maximum 

inner product, represents the relevance score: 

 

                    𝑠(𝑞, 𝑑) = 𝑚𝑎𝑥𝑖=0,…,𝑚−1 𝜙0. 𝛹𝑖                                  (2.26) 

 

On the contrary, the relevance scoring function in Equations (2.20) - (2.25), 

based on a softmax operation does not permit to decompose the relevance scoring to a 

maximum computation over dot products. ColBERT [36] does not impose a 

maximum on the number of embeddings that can be utilized to represent a document, 

in contrast to poly-encoders and ME-BERT. Rather, it represents a document using all 

of the 1 + |𝑑|  output embeddings, i.e., one output embedding for each document 

token, including the [𝐶𝐿𝑆] special token. Additionally, a query 𝑞 is represented by 

numerous 1 + |𝑞|  output embeddings, meaning that each query token, including the 

[𝐶𝐿𝑆] special token, has an output embedding. To provide “a soft, differentiable 

mechanism for learning to expand queries with new terms or to re-weigh existing 

terms based on their importance for matching the query,” queries may also be 

augmented with additional masked tokens, as in other representation-focused systems 

[36]. Currently, up to 32 query token embeddings are included to queries.  
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A learnt weight matrix 𝑊 ∈ 𝑅𝑙′∗𝑙, with  𝑙′ < 𝑙, can project query and 

document embeddings in a smaller latent vector space without sacrificing generality. 

ColBERT takes advantage of a modified form of the relevance scoring function in 

Equations (2.26), where each query embedding adds to the final relevance score by 

summing, because there are numerous query embeddings. 

 

                       𝑠(𝑞, 𝑑) =  ∑ 𝑚𝑎𝑥𝑗=0,…,|𝑑|𝜙𝑖
|𝑞|
𝑖=0 . 𝛹𝑗                 (2.27) 

 

In Equation (2.27), also known as sum maxim, ColBERT late interaction 

scoring carries out an all-to-all computation: every query embedding, including the 

embeddings of the masked tokens is dot-multiplied with every document embedding, 

and the maximum computed dot products for each query embedding are then summed 

up. By matching a different lexical word to the maximum extent possible, a query 

term might so contribute to the final scoring. The COIL system suggests an alternative 

method [15]. A learnt matrix 𝑊𝐶 ∈ 𝑅𝑙∗𝑙 is used in COIL to linearly project the query 

and document [𝐶𝐿𝑆] embeddings. Using another learnt matrix 𝑊𝑇 ∈ 𝑅𝑙′∗𝑙, the 

embeddings corresponding to normal query and document tokens are projected into a 

smaller vector space with dimension 𝑙′ < 𝑙. Values for ~ 0 typically fall between 8 

and 32.  

The total of the two elements is the query-document relevance score. The 

projected query and document [𝐶𝐿𝑆] embeddings are multiplied to create the first 

component, and the sum of the sub-components, one for each query token, is the 

second component. The maximal inner product between a query token and the 

document embeddings for the same token is what makes up each sub component as in 

Equations:  

 

                       [𝜙0
′ , 𝜙1

′ , … ] = [𝑊𝐶𝜙0,𝑊𝑇𝜙1, … ]               (2.28) 

                       [𝛹0
′ , 𝛹1

′ , … ] = [𝑊𝐶𝛹0,𝑊𝑇𝛹1, … ]               (2.29) 

     𝑠(𝑞, 𝑑) =  𝜙0
′ . 𝛹0

′ + ∑ 𝑚𝑎𝑥𝑡𝑗∈𝑑, 𝑡𝑖= 𝑡𝑗 
  𝜙𝑖

′.𝑡𝑖∈𝑞  𝛹𝑗
′                 (2.30) 
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It can pre-compute the projected document embeddings and, for each term in 

the vocabulary, concatenate the embeddings in the same document and in the entire 

collection to the COIL's scoring function, which is based on lexical matching between 

query and document tokens. These embeddings are then arranged in posting lists of 

embeddings, with a special posting list reserved for the [𝐶𝐿𝑆] token and its document 

embeddings. This organization uses optimized linear algebra libraries, like BLAS, to 

handle posting lists efficiently at query time [2]. It should be noted that computation 

of the projected query embeddings occurs during query processing.  

 

2.3.3 Fine-tuning Representation-focused Systems 
 

Fine-tuning of a bi-encoder is equivalent to learning an inner-product function 

that is suited for relevance scoring in the ad-hoc ranking challenge. Neural IR 

model 𝑀(𝜃), which is parametrized by 𝜃, calculates a score 𝑠𝜃(𝑞, 𝑑) for a document 

𝑑 in relation to a query 𝑞. It now formulates the learning task as an estimation 

problem using probabilities. In order to achieve this, it applies a softmax operation to 

transform the scoring function into a suitable conditional distribution as in Equation:  

 

                               𝑝𝜃(𝑑|𝑞) =  
exp (𝑠𝜃(𝑞,𝑑))

∑ exp (𝑠𝜃(𝑞,𝑑′))𝑑′∈𝐷

                                         (2.31) 

 

where the posterior probability of the document being relevant in light of the 

query is represented by  𝑝𝜃(𝑑|𝑞). It aims to determine the parameters 𝜃∗ that 

minimize the cross entropy 𝐼𝐶𝐸 between the actual probability 𝑝(𝑑|𝑞) and the model 

probability 𝑝𝜃(𝑑|𝑞)., assuming that it have a joint distribution 𝑝 over 𝐷 × Q as in 

Equation:  

 

    𝜃∗ = arg𝑚𝑖𝑛𝜃  𝐸[𝐼𝐶𝐸(𝑑, 𝑞)] =  arg𝑚𝑖𝑛𝜃  𝐸[− log(𝑝0(𝑑|𝑞))]            (2.32) 

 

where (𝑑, 𝑞)~𝑝 is the computation of the expectation. If the scoring function 

 𝑠𝜃(𝑞, 𝑑) is sufficiently expressive, then 𝑝(𝑑|𝑞) =  𝑝𝜃(𝑑|𝑞) for a given 𝜃. Due to the 

enormous number of documents in 𝐷, it is challenging to optimize the cross entropy 

loss and computing the denominator, sometimes referred to as the partition function.  
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In noise contrastive estimation, it maximizes the likelihood of  𝑝𝜃(𝑑|𝑞) 

contrasting 𝑔(𝑑) by selecting an artificial noise distribution 𝑔 over 𝐷 of negative 

samples. It defines the conditional distribution for each of the 𝑘 ≥ 2  

documents  𝐷𝑘 = 𝑑1, … , 𝑑𝑘 as in Equation.  

 

                   �̂�𝜃(𝑑𝑖|𝑞, 𝐷𝑘) =
exp (𝑠𝜃(𝑞,𝑑𝑖))

∑ exp (𝑠𝜃(𝑞,𝑑′))𝑑′∈𝐷𝑘

                      (2.33) 

 

This is much less expensive to calculate than Equation (2.33) if 𝑘 ≪ |D| |. The 

goal now is to identify the values of 𝜃+ that minimize the noise contrastive estimation 

loss (𝑙𝑁𝐶𝐸), which is expressed as in Equation:  

 

𝜃+ = arg𝑚𝑖𝑛𝜃  𝐸[𝑙𝑁𝐶𝐸(𝐷𝑘, 𝑞)] =  arg𝑚𝑖𝑛𝜃  𝐸[− log(�̂�𝜃(𝑑1|𝑞, 𝐷𝑘))]   (2.34) 

 

where, for 𝑖 = 2,… , 𝑘, the expectation is calculated over (𝑑1, 𝑞)~𝑝 and 

(𝑑𝑖~ 𝑔). The ultimate objective of this fine-tuning is to learn a latent vector space for 

query and document representations [32] where a query and its relevant document(s) 

are closer than the query and its non-relevant documents, with respect to the dot 

product [25]. This fine-tuning approach is also known as contrastive learning. The 

noise distributions 𝑔 over 𝐷 yields negative samples. Its outline a few negative 

sampling techniques used in Neural IR below.  

Random sampling means 𝑞(𝑑) =
1

|𝐷|
, or any random document from the 

corpus is regarded as non-relevant with equal probability. One can sample an infinite 

number of negative documents. It makes intuitive sense to anticipate that a document 

selected at random will have a relevance score that is significantly lower than the 

relevance score of a positive document, with a loss value that is near to zero. The 

training convergence to determine the parameters 𝜃+ is not significantly impacted by 

negative documents with almost minimal loss [29] and [33].  

In-batch sampling means in order to speed up training, the queries used to 

calculate the loss can be arbitrarily combined into batches of size 𝑏. The positive 

passages for the other 𝑏 − 1 inquiries are regarded as negative passages for the 

particular query in a specific batch [18]. Although the sampling process is faster, this 

sampling strategy has the same near zero loss issue as random sampling [81].  
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Hard negative sampling means using a traditional or trained retrieval system, 

negative documents can be produced. The retrieval system receives each query as 

input, retrieves the top documents, and treats the documents that do not match the 

positive results as negatives. Take note that since it presumes to know the pertinent 

document 𝑑1 for the query, it is assuming a conditional noise distribution𝑝(𝑑|𝑞, 𝑑1). 

Low-ranking papers that do not affect the user experience or cause loss are given 

priority over high-ranking documents in this way. The BM25 relevance model, as in 

DPR [32], and the neural model that is presently being trained, as in ANCE [81], can 

be utilized by the retrieval system that was used to mine the negative documents, or 

another fine-tuned neural model that has been refined, such STAR [83]. 

 

2.4 Retrieval architectures 

 

Although they are relatively costly to compute, pre-trained language models 

successfully increase the efficiency of IR systems in the ad hoc rating task. The 

interaction-focused methods are not employed directly on the document collection, 

that is, to rank all documents that match a query, because of these processing costs. 

They are used in a pipelined architecture as shown in Figure 2.9, where a more costly 

neural re-ranking system, such the cross-encoders, is used after a preliminary ranking 

stage that retrieves a restricted number of candidates, usually 1000 documents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Re-ranking pipeline architecture for interaction-focused Neural IR 

systems  
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The ability to pre-compute and cache the representations of a sizable corpus of 

documents using the learnt document representation encoder 𝜓(𝑑) is the primary 

advantage of bi-encoders.  

During the query processing phase, the user receives the top 𝑘 documents 

whose embeddings have the largest inner product of the query embedding. The 

learned query representation encoder only needs to compute the query 

representation 𝜓(𝑞). After that, the documents are ranked based on this inner product 

as shown in Figure (2.10). 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Dense Retrieval Architecture for Representation-focused 

Neural IR systems  

 

2.5 Application Areas of IR and Neural IR 

 
IR has a broad range of applications across various domains, leveraging the 

power of neural networks to enhance the retrieval of relevant information. The 

following are the example applied areas from some of them. Fine-tuning models to 

improve the ranking of documents based on relevance to a query. Adapt models to 

retrieve accurate answers from a corpus in response to user queries. Enhancing 

recommendation algorithms by fine-tuning models to understand user preferences and 

provide relevant suggestions. 

Neural IR has a broad range of applications across various domains, 

leveraging the power of neural networks to enhance the retrieval of relevant 

information. The following are the example applied areas from some of them. 
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Neural IR models like BERT and DPR enhance the relevance of search results 

by better understanding user queries and document content in web search engines 

improved search relevance. Neural models help in expanding and reformulating user 

queries to improve retrieval performance in web search engine as query expansion 

and reformulation. 

QA systems are open-domain QA, and conversational agents. Open-domain 

QA systems like DPR are used to retrieve relevant passages from large corpora to 

answer user queries. Conversational agents mean virtual assistants and chat-bots use 

Neural IR to fetch relevant information and provide accurate responses to user 

questions. 

E-commerce are includes the product search, and recommendation systems. 

Neural IR enhances product search by understanding user queries and matching them 

with product descriptions, reviews, and specifications in product search. 

Recommendation systems combine IR with recommendation algorithms to provide 

personalized product recommendations based on user behavior and preferences. 

Healthcare includes the clinical decision support, and patient query systems. 

Neural IR helps healthcare professionals retrieve relevant medical literature, clinical 

guidelines, and patient records are patient query systems assisting patients in finding 

relevant health information and resourced by understanding natural language queries. 

Legal IR is case law and legal documents, and e-discovery. Neural IR aids in 

retrieving relevant case laws, statutes, and legal documents based on complex legal 

queries in case law and legal documents and E-discovery enhances the efficiency and 

accuracy of the electronic discovery process by retrieving relevant documents from 

large datasets. 

Academic Research and Digital Libraries are research paper retrieval, and 

metadata extraction. Research paper retrieval assists researchers in finding relevant 

academic papers, articles, and citations, but Metadata extraction extracting and 

retrieving metadata information from academic articles are for better organization and 

search ability. 

Social Media and Content Moderation is content retrieval, and content 

moderation. Content retrieval helps finding relevant posts, comments, and user-

generated content based on specific queries or interests. Content moderation uses 

Neural IR to identify and retrieve harmful or inappropriate content for review and 

moderation. 
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Customer support is including the automated customer service, and help desk 

systems. Automated customer service enhances automated customer support systems 

by retrieving relevant information from knowledge based on answer customer queries. 

Desk systems assisting support agents in finding relevant solutions and documentation 

to resolve customer issues quickly. 

Multimedia retrieval is including the image and video search, and content-

based retrieval. Neural IR models are used to retrieve relevant images and videos 

based on textual or visual queries. Content-based Retrieval leveraging neural 

networks to match multimedia content based on content features rather than just 

metadata. 

Enterprise Search is internal document retrieval, and knowledge management. 

Internal document retrieval helps employees retrieve relevant documents, reports, and 

internal communications from large corporate databases. Knowledge management 

enhances knowledge management systems by retrieving relevant information and 

documents for decision-making and operational efficiency. 

Personal Assistants and Smart Devices are voice search and command, and 

contextual awareness. Voice search and command enhance voice-activated search and 

command functionalities by understanding natural language queries and retrieving 

relevant information. Contextual awareness using Neural IR to provide contextually 

relevant information based on user interactions and preferences. 

Media and Entertainment are content recommendation, and semantic search. 

Content recommendation enhances content recommendation systems for movies, 

music, and articles based on user preferences and behavior. Semantic search enables 

semantic search capabilities for large media databases to find relevant content based 

on complex queries. 

The applications of Neural IR are vast and continuously expanding as neural 

network models become more sophisticated and capable. These applications 

significantly enhance the efficiency, accuracy, and relevance of IR across various 

domains, leading to improve user experiences and operational efficiencies. 
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2.6  Overview of Deep Neural Networks   

 

A Deep Neural Network (DNN) is a type of Artificial Neural Network (ANN) 

with multiple layers between the input and output layers. These networks are capable of 

learning complex patterns and representations in data through hierarchical processing. 

DNNs represent a significant advancement in artificial intelligence, enabling machines 

to perform complex tasks with high accuracy. Their development and applications 

continue to expand, driven by both academic research and industry innovations. 

 

2.6.1 Applications of DNNs in IR 

 

DNNs can learn complex ranking functions that score documents based on their 

relevance to a query. Models like RankNet, LambdaRank and LambdaMART, are 

designed for document ranking. 

By understanding the context and semantics of a query, DNNs can suggest 

additional relevant terms to improve retrieval performance in query expansion. 

DNNs can match queries with documents at a semantic level rather than relying 

solely on keyword matching. This is particularly useful for understanding synonyms 

and contextually similar phrases in semantic matching. 

DNNs can model user preferences and search behaviors to provide personalized 

search results. This involves learning user profiles and adapting the retrieval process 

accordingly personalization. 

DL models can understand and generate natural language, making them suitable 

for building systems that answer user queries directly instead of retrieving a list of 

documents in QA systems. 

 

2.7 Overview of Pre-trained Model 

 

To get pre-trained language models, it is standard practice to train these 

models on large amounts of textual data in both scenarios. By doing this, it enables 

the model to acquire general-purpose language knowledge that may subsequently be 

applied to a downstream task that is more specialized. This transfers learning strategy 

uses an initial model that is already learned to refine it on a smaller, domain-specific 

training dataset for the downstream target job.  

 

 



40  

Another way is fine-tuning that is the process of modifying a pre-trained 

language model's parameters for the target task and domain data. Pre-training 

language models typically requires a huge general-purpose training corpus, such as 

Wikipedia or Common Crawl web pages, expensive computation resources and long 

training times, spanning several days or weeks. On the other side, fine-tuning models 

requires a small domain-specific corpus focused on the downstream task, affordable 

computational resources and few hours or days of additional training. Special cases of 

fine-tuning are few-shot learning, where the domain-specific corpus is composed of a 

very limited number of training data, and zero-shot learning, where a pre-trained 

language model is used on a downstream task that it was not fine-tuned on. Cross-

encoder models are interaction-focused Neural IR systems that employ pre-trained 

language models. They take as input a pair (q, d) of query and document strings. 

Different cross-encoders are fine-tuned differently depending on the type of sequence-

to-sequence model; nonetheless, they all strive to rank documents according to a 

given query by computing a relevance score s(q, d).  

 

2.7.1 Overview of Fine-tuned Model 

 

Fine-tuning begins with an existing model that has already been trained on a 

large, diverse data set to gain a wide range of characteristics and patterns. During this 

initial training, the pre-trained model learns to generalize by finding underlying 

patterns and characteristics in the training data. Over time, the model gains the ability 

to effectively comprehend new data. The process of fine-tuning a machine learning 

model involves pre-trained it and then retraining it on a more focused, smaller 

collection of data. The goal of fine-tuning is to preserve a pre-trained model's initial 

capabilities while modifying it to fit more specific use cases. Machine learning 

developers can more quickly and effectively design models for particular use cases by 

fine-tuning an already complex model. When there is a shortage of pertinent data or 

computational resources, this strategy is quite helpful.  

On the tasks for which it was fine-tuned, a fine-tuned model's performance can 

outperform the initial pre-trained model. On the other hand, fine-tuning refers to 

methods for training a model again after its weights have already been adjusted by 

previous training.  
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By training the underlying model on a smaller, task-specific dataset, fine-

tuning adapts the model by starting with its prior knowledge. Although it was 

theoretically possible to train a huge model from scratch on a small dataset, doing so 

runs the danger of overfitting, the model may learn to perform well on the training 

instances but may not translate well to new data. This would negate the benefit of 

model training and make the model inappropriate for the task at hand.  

Fine-tuning offers the benefits of both worlds: refining the model's 

comprehension of more particular, detailed concepts while utilizing the wide 

knowledge and stability obtained via pre-training on a large set of data. Owing to the 

growing effectiveness of open source foundation models, pre-training can frequently 

be benefited from without incurring any additional costs or difficulties with 

calculation or logistics. When fine-tuning, a pre-trained model's weights are used as a 

basis for additional training on a smaller dataset of instances that more closely match 

the particular tasks and use cases the model will be applied to. Although supervised 

learning is usually involved, it can also involve semi-supervised, self-supervised, or 

reinforcement learning. When the situation necessitates supervised learning but there 

are few appropriate labeled instances, semi-supervised learning a type of machine 

learning that combines both labeled and unlabeled data is beneficial. For NLP tasks, 

semi-supervised fine-tuning has demonstrated promising results and eases the 

difficulty of obtaining a sufficient amount of labeled data. The weights of the entire 

network can be updated by fine-tuning; however this is not usually the case due to 

practical considerations. When a company uses generative AI for customer assistance, 

for instance, it might train a Large Language Model (LLM) using data from previous 

customer interactions, policies, and product information.  

 

2.7.2 Large Language Model (LLM) 

 

A crucial step in the LLM development cycle is fine-tuning, which enables the 

basic foundation models' linguistic capabilities to be modified for a range of 

applications, including coding, chat-bots, and other creative and technical fields. 

Using a vast corpus of unlabeled data, self-supervised learning is used to pre-train 

LLMs. Autoregressive language models are trained to predict the next word or words 

in a sequence until it is finished. Examples of these models are OpenAI's GPT 

(Generative Pre-trained Transformer), Google's Gemini, and Meta's Llama models. 
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Pre-training involves giving models a sample sentence's beginning from the training 

data and asking them to forecast each word in the sequence until the sample's end. 

The real word that follows in the original example sentence acts as the ground truth 

for each forecast. Although this pre-training produces strong text production 

capabilities, it does not produce a true grasp of the intent of the user. Fundamentally, 

autoregressive LLMs merely append text to a prompt rather than responding to it. 

 A pre-trained LLM (that has not been refined) only predicts, in a 

grammatically coherent manner, what might be the next word(s) in a given sequence 

that is launched by the prompt, without particularly explicit direction in the form of 

prompt engineering. In response to the question, "Teach me how to make a resume," 

and then LLM would say, "using Microsoft Word." Although it is an acceptable 

approach to finish the sentence, it does not support the user's objective. The model 

may already possess a great deal of resume writing expertise derived from pertinent 

information. The fine-tuning process thus serves a crucial role in not only tailoring 

foundation models for business’s unique tone and use cases, but in making them 

altogether suitable for practical usage.  

The model's core knowledge can be expanded or customized, and it can be 

made to work in whole new jobs and domains by fine-tuning. Models can be adjusted 

to better represent the intended tone of a business. This might involve anything from 

subtle changes like starting each conversation with a kind greeting to more intricate 

behavioral patterns and unique visual styles. LLMs' general language skills can be 

refined for certain activities. For instance, Meta's Llama 2 models were made 

available as code-tuned (Code Llama), chatbot-tuned (Llama-2-chat), and base 

foundation models. Despite having undergone extensive pre-training on a vast corpus 

of data, LLMs lack omniscience includes domain-specific information. Legal, 

financial, and medical environments sometimes need the usage of specialized, esoteric 

language that may not have been well represented in pre-training, making it more 

crucial to apply extra training samples to augment the basic model's understanding in 

these domains. Including proprietary data can have a pipeline of confidential data that 

is extremely pertinent to the particular use case. This information can be fed into the 

model through fine-tuning, saving the need to start from scratch throughout training. 

Few-shot learning: Using relatively few demonstrative instances, models with good 

generalized knowledge may typically be fine-tuned for more specific categorization 

texts. Handling edge cases model respond in a particular way to circumstances that 
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were not covered in pre-training. One good technique to make sure these kinds of 

events handled correctly is to fine-tune a model on labeled samples of them. 

When compared to its more generic pre-trained cousin, the refined model 

generates more relevant and valuable replies because of this enterprise-specific 

training. An existing model that has already been trained on a sizable, varied data set 

to acquire a broad variety of features and patterns is the starting point for fine-tuning. 

Fine-tuning can be viewed as a subset of the more general transfer learning technique, 

which is the process of using the prior information that an existing model has acquired 

to begin learning new tasks. The idea behind fine-tuning is that, in general, it is less 

expensive and easier to refine the capabilities of a basic model that has already been 

trained and has gained general knowledge relevant to the task at hand than it is to train 

a new model from the beginning for that particular use. This is particularly true for 

deep learning models with millions or even billions of parameters, such as the 

complex CNNs and Vision Transformers (ViTs) used for computer vision tasks like 

object detection, image segmentation, or LLMs that have gained popularity in the 

field of NLP. Fine-tuning can lower the quantity of costly processing resources and 

labeled data required to produce huge models customized to specialized use cases and 

business objectives by utilizing previous model training through transfer learning. 

Fine-tuning, for instance, can be used to simply change the illustration style of a pre-

trained image generation model or the conversational tone of a pre-trained LLM. It 

can also be used to add proprietary data or specialized, domain-specific knowledge to 

the learnings from a model's original training dataset. As a result, fine-tuning is 

crucial to the practical use of ML (Machine Learning) models, facilitating more 

widespread access to and modification of complex models. Although fine-tuning is 

supposedly a method used in model training, it is a separate procedure from what is 

typically referred to as "training." In this context, data scientists usually refer to the 

latter as pre-training for clarity's sake.  

The model has not "learned" anything at the start of training or, pre-training. 

The first step in training is to randomly initialize the model's parameters, which are 

the different weights and biases applied to the mathematical operations carried out at 

each neural network node.  Training takes place iteratively in two stages: during 

backpropagation, an optimization algorithm typically gradient descent is used to 

adjust model weights across the network to reduce loss. In a forward pass, the model 

makes predictions for a batch of sample inputs from the training dataset, and a loss 
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function measures the difference (or loss) between the model's predictions for each 

input and the “correct” answers (or ground truth). The model "learns" through these 

weight modifications. The procedure is carried out again over several training. 

Labeled data is used in conventional supervised learning, which is typically used to 

pre-train models for Neural IR. The knowledge imparted by these pretext tasks is 

helpful for tasks that follow. Usually, they use one of two strategies: Self-prediction 

involves hiding a portion of the initial input and giving the model the challenge of 

piecing it back together. For LLMs, this is the most common training method. 

Training models to acquire similar embeddings for related inputs and distinct 

embeddings for unrelated inputs is known as contrastive learning.  

 

2.7.3 Parameter-Efficient Fine-Tuning (PEFT)  

 

Other fine-tuning techniques that update only a subset of the model parameters 

are widely available and are commonly referred to as Parameter-Efficient Fine-

Tuning (PEFT). PEFT approaches, which help to reduce catastrophic forgetting (the 

phenomena where fine-tuning results in the loss or destabilization of the model's 

essential information) and computing demands, typically without causing significant 

performance sacrifices. Because there are so many different fine-tuning techniques 

and variables that come with them, it is frequently necessary to go through several 

iterations of training strategies and setups in order to achieve optimal model 

performance. These iterations involve adjusting datasets and hyper-parameters, such 

as batch size, learning rate, and regularization terms, until a satisfactory result is 

reached, as determined by the metrics that are most pertinent to use case. To fine-tune, 

just updating the complete neural network is the most conceptually simple method. 

The only significant distinctions between the pre-training and complete fine-tuning 

procedures are the model's initial parameter state and the dataset being used. This 

straightforward methodology essentially looks like the pre-training process. Certain 

hyper-parameters model attributes that impact learning but are not themselves 

learnable parameters might be adjusted in relation to their specifications during pre-

training to prevent destabilizing changes from the fine-tuning process. For instance, a 

smaller learning rate (which lowers the magnitude of each update to model weights) is 

less likely to result in catastrophic forgetting.  

Similar to pre-training, full fine-tuning is highly computationally intensive. It 
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is typically too expensive and impracticable for contemporary deep learning models 

with hundreds of millions or even billions of parameters.  A variety of techniques are 

combined under the umbrella of PEFT to minimize the number of trainable 

parameters that must be modified in order to successfully tailor a sizable pre-trained 

model to particular downstream applications. By doing this, PEFT dramatically 

reduces the amount of memory and processing power required to produce a model 

that is successfully fine-tuned. Especially for NLP use cases, PEFT approaches have 

frequently been shown to be more stable than full fine-tuning methods. 

 

2.7.3.1 Partial Fine-tuning 

 

Partial fine-tuning techniques, also known as selective fine-tuning, are 

designed to lower computational demands by adjusting only the specific subset of pre-

trained parameters that are the most important to the model's performance on pertinent 

downstream tasks. The remaining settings are guaranteed not to be altered because 

they are "frozen". Updating the neural network's outer layers solely is the most logical 

partial fine-tuning method. For example, in a CNN used for image classification, early 

layers typically discern edges and textures; each subsequent layer discerns 

progressively finer features until final classification is predicted at the outermost 

layer. In most model architectures, the inner layers of the model (closest to the input 

layer) capture only broad, generic features. In general, the pre-trained weights of the 

inner layers of the model will already be more beneficial for this new, related work 

and the fewer layers need to be updated the more similar the new task (for which the 

model is being fine-tuned) is to the original goal. Additional partial fine-tuning 

techniques include changing the model's layer-wide bias terms alone (as opposed to 

the node-specific weights) and "sparse" fine-tuning techniques that modify just a 

portion of the model's total weights. 

 

2.7.3.2 Additive Fine-tuning 

 

Additive approaches add additional parameters or layers to a pre-trained 

model, freeze the pre-trained weights, and train only those new components, as 

opposed to fine-tuning the existing parameters of a pre-trained model. This method 

preserves the model's stability by guaranteeing that the initial pre-trained weights do 
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not change.  Because there are fewer gradients and optimization stages to store, this 

can lengthen training durations but also drastically lower memory requirements. 

Training a whole model set of parameters uses 12–20 times more Graphics Processing 

Unit (GPU) memory than training the model weights alone [40]. The six quantization 

weights of frozen model can save even more memory by reducing the precision with 

which model parameters are represented. This is conceptually comparable to reducing 

the bitrate of an audio file. Prompt tuning is one area of additive approaches. From a 

conceptual standpoint, it is comparable to prompt engineering, which is the process of 

customizing "hard prompts," or human-written prompts in natural language, to direct 

the model toward the intended result, including defining a specific tone or offering 

instances that help with few-shot learning. AI-authored soft prompts, or learnable 

vector embeddings concatenated to the user's hard prompt, are introduced by prompt 

tweaking. Prompt tuning involves freezing model weights and training the soft prompt 

itself, as opposed to retraining the model. Prompt, effective adjustment reduces 

interpretability but makes it easier for models to transition between different tasks. 

 

2.7.3.3 Adapters 

 

An additional subset of additive fine-tuning involves injecting and training 

adaptor modules, which are new, task-specific layers introduced to the neural 

network, instead of fine-tuning any of the frozen pre-trained model weights. The 

original paper measured the outcomes on the BERT masked language model, and 

found that adapters trained only 3.6% more parameters while achieving performance 

comparable to full fine-tuning. 

 

2.7.3.4 Re-parameterization 

 

Techniques that rely on re-parameterization, such as Low Rank Adaptation 

(LoRA), utilize the low-rank transformation of matrices with high dimensions (such 

as the large matrix of trained model weights in a transformer model). To capture the 

underlying low-dimensional structure of model weights, these low-rank 

representations exclude irrelevant higher-dimensional information, resulting in a 

significant reduction in the number of trainable parameters. This significantly 

minimizes the amount of memory required to store model updates and speeds up fine-
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tuning. Instead of directly optimizing the matrix of model weights, LoRA inserts a 

matrix of updates to model weights, or delta weights, into the model and then 

optimizes it. The number of parameters that need to be updated is significantly 

decreased by representing that matrix of weight updates as two smaller (i.e., lower 

rank) matrices. This decreases the amount of memory required to store model changes 

and speeds up fine-tuning. The weights of the pre-trained models themselves stay 

fixed. An additional advantage of LoRA is that different task-specific LoRAs can be 

"swapped in" as needed to adapt the pre-trained model whose actual parameters 

remain unchanged to a given use case. This is because what is being optimized and 

stored with LoRA are not new model weights, but rather the difference (or delta) 

between the original pre-trained weights and fine-tuned weights.  

Numerous variations of LoRA have been created, including Quantized Low Rank 

Adaptation (QLoRA), which quantizes the transformer model before Low Rank 

Adaptation (LoRA), so reducing computational complexity even further.  

 

2.8 Summary 

 
In this chapter, overview of Neural IR system, pre-trained model, fine-tuned 

model and some applied areas of Neural IR are described. By reviewing the related 

work, it can be seen that these techniques can promote the quality of Neural IR for 

other languages such as English, but there is no research on Neural IR system for 

Myanmar Language are described in this chapter. Queries and documents are 

represented by a single embedding in single representations systems, multiple 

representations systems express queries and/or documents using several embeddings, 

and the fine-tuning of representation-focused systems by using noise-contrastive 

estimation. The primary distinction between these systems used the method based on 

BERT model fine-tuning. 
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CHAPTER 3 

D EEP NEURAL RANKING MODELS 

 
This chapter describes the theoretical backgrounds and methodologies to DNN 

in detail. It describes about the overviews of DNN as well as the mechanism for its 

development and representation. It also describes the Deep Neural Ranking Model 

and Fine-tuned Model.  

 

3.1 Models of Neural IR System  

 

Neural IR models aim to understand the relevance between a user's query and 

a document by learning a function that scores the similarity between vector 

representations. This matching score is used to rank documents based on their 

relevance to the query. Neural IR models are trained on labeled data, where 

documents are labeled as relevant or non-relevant to specific queries. These labels are 

used to optimize the model's parameters so that it can better predict relevance in the 

future. The ultimate goal of Neural IR is to rank documents in order of their likely 

relevance to a given query. This ranking can be used in search engines to display the 

most relevant results to users. The performance of Neural IR models is typically 

evaluated using metrics like Precision, Recall, F1-score, and MAP to assess how well 

they retrieve relevant documents. Neural IR models often utilize deep learning 

architectures like CNNs or Transformers to capture complex patterns in text data and 

improve the accuracy of relevance ranking. Some Neural IR models are pre-trained 

on large text corpora (e.g., BERT) and then fine-tuned on specific retrieval tasks to 

make them more effective at understanding the nuances of IR. 

 

3.2 Deep Neural Networks (DNNs) in Information Retrieval 

 DNNs are a class of machine learning algorithms inspired by the human 

brain's neural networks. They consist of multiple layers of artificial neurons (nodes), 

which process input data to extract features and make predictions. In IR, DNNs are 

employed to improve the effectiveness and efficiency of retrieving relevant 

information from large datasets. 
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3.2.1 Key Components and Architectures 

The input layer represents the raw data fed into the network. In IR, this data 

could be text documents, queries, user profiles, or other forms of structured and 

unstructured data. Hidden layers are composed of multiple neurons that perform 

transformations on the input data. These layers capture various levels of abstractions 

and features from the data. In the context of IR, hidden layers can capture semantic 

meanings, contextual information, and latent relationships between terms and 

documents. The output layer provides the final prediction or classification. In IR, this 

could be a relevance score, a ranking position, or a classification of documents into 

relevant and non-relevant categories. 

3.2.2 Popular DNN Architectures in Information Retrieval 

Modeling local patterns and spatial hierarchies are used in text data on CNNs.  

An example is CNNs which can be used for document classification, where the 

convolutional layers detect features such as important keywords or phrases. 

RNNs and LSTM capture long-term dependencies and suitable for sequential 

data. Tasks like query understanding and text generation are used. An example is 

LSTMs which can model the sequence of words in a query and predict the relevance of 

documents based on the entire query context. 

State-of-the-art architecture for various NLP tasks due to their ability in 

transformers captures contextual information through self-attention mechanisms. An 

example is transformers (like BERT) which can be used for query expansion, where the 

model understands the context and retrieves more relevant documents. 

3.2.3 Advantages of Using DNNs in Information Retrieval 

DNNs automatically learn features from raw data, eliminating the need for 

manual feature engineering as feature learning:. 

DNNs are effective in processing unstructured data such as text, images, and 

audio, making them versatile for various IR tasks handling unstructured data. 

The multiple layers in DNNs allow them to capture complex patterns and 

relationships in the data that traditional models might miss capturing complex 

relationships. 
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DNNs can learn complex ranking functions that score documents based on their 

relevance to a query. Models like RankNet, LambdaRank, and LambdaMART are 

designed for this purpose in document ranking. 

DNN have significantly advanced the field of IR by enabling more accurate, 

efficient, and context-aware retrieval of information. Their ability to learn from vast 

amounts of data and model complex relationships has led to substantial improvements 

in tasks like document ranking, query expansion, and semantic matching. However, 

challenges such as data requirements and computational demands need to be addressed 

to fully leverage their potential in IR applications. 

3.2.4 Training Process of DNN  

Forward propagation input data is passed through the network layer by layer to 

generate an output. Loss function measures the difference between the predicted output 

and the actual output. Common loss functions are Mean Squared Error (MSE) and 

Cross-Entropy Loss. The error is propagated back through the network to update the 

weights and biases using the gradient descent algorithm in backpropagation. Methods 

used to minimize the loss function, including Stochastic Gradient Descent (SGD), 

Adaptive Moment Estimation (Adam), and Root Mean Square Propagation 

(RMSprop) in optimization algorithms. 

3.2.5 Types of DNN 

Feedforward Neural Networks (FNNs) data flows in one direction from input 

to output without cycles. CNNs specialized for processing grid-like data such as images. 

They use convolutional layers to automatically detect spatial hierarchies of features. 

Convolutional Layers apply filters to extract features from the input. Pooling Layers 

reduce the dimensionality of the data, helping to prevent overfitting. RNNs designed for 

sequential data. They maintain information across time steps using loops. LSTM is an 

advanced type of RNN that can capture long-term dependencies. Gated Recurrent Units 

(GRUs) is a simplified version of LSTMs. Autoencoders such as unsupervised learning 

models that compress and then reconstruct the input data. Variational Autoencoders 

(VAEs) introduce a probabilistic approach to data encoding and decoding. Generative 

Adversarial Networks (GANs) consist of two networks, a generator and a discriminator, 

that compete to improve data generation. 
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The key concepts of DNN are regularization, hyper-parameters, and transfer 

learning.  Regularization techniques prevent overfitting, such as dropout and L2 

regularization. Hyper-parameters settings that control the learning process, like learning 

rate, batch size, and number of epochs. Transfer learning using a pre-trained model on a 

new but related task to leverage learned features. 

 

3.3 Deep Neural Ranking Models  

 

 Many neural ranking models have been proposed primarily to solve IR tasks. 

Several approaches to ranking are based on traditional machine learning algorithms 

using a set of hand-crafted features. Recently, researchers have leveraged deep learning 

models in IR. These models are trained end-to-end to extract features from the raw data 

for ranking tasks, so that they overcome the limitations of hand-crafted features. A 

variety of DL models have been proposed, and each model presents a set of neural 

network components to extract features that are used for ranking [75].  Developing 

efficient and effective retrieval models have always been at the core of IR [72]. Modern 

search engines use a multi-stage cascaded architecture for ranking documents in 

response to each query [9].  

DNNs play a pivotal role in advancing the capabilities of IR systems, enabling 

them to deliver more accurate, relevant, and personalized results to users across various 

domains and applications. Ranking models are the main components of IR systems. In 

this research, it has applied the following ranking models: Deep Relevance Matching 

Model (DRMM) [21], Match-Pyramid (MP) [53], Duetl [48], Kernelized Neural 

Ranking Model (KNRM) [82], Position-Aware Convolutional Recurrent Relevance 

(PACRR) [26], Convolutional Kernelized Neural Ranking Model (CONV-KNRM) 

[11], MatchZoo-CONV-KNRM (MZ-CONV-KNRM) [19].   

 

3.3.1 Deep Relevance Matching Model (DRMM)  

 

A neural network architecture called the Deep Relevance Matching Model 

(DRMM) was created with IR tasks in mind. It focuses on relevance matching between 

documents and queries. DRMM, created by researchers at Microsoft Research Asia, 

attempts to increase the efficiency of retrieval systems such as search engines by better 

determining the relevance of documents to specific queries.   
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The main attributes and elements of DRMM are interaction-based approach, and 

matching histograms. DRMM places a strong emphasis on the interactions between 

query terms and document terms, in contrast to conventional approaches that process 

queries and documents independently. By capturing the relevance signals between 

every pair of query and document terms, it generates interaction matrices. Using the 

interaction matrices, the DRMM creates matching histograms. The distribution of term-

level matches and non-matches between the queries is shown by these histograms.  The 

DNN that analyzes the matching histograms is the central element of the deep 

reinforcement machine model. 

The purpose of this network is to use the properties of the histogram to identify 

meaningful, complicated patterns. It is made up of several layers of brain units with 

varying degrees of matching information. The DRMM has a term gating network that 

gives query terms varying relevance weights as term gating network. By prioritizing 

more significant terms in the query, the model is able to improve overall relevance 

matching. To optimize the model and rank relevant articles higher than irrelevant ones, 

DRMM is trained using a ranking loss function as ranking loss function. This loss 

function is essential to ensure that the model successfully learns to discriminate between 

different levels of relevance. DRMM [21] is a neural model designed for document 

ranking. It focuses on modeling the interaction between query terms and document 

terms using a histogram-based approach. It is known for its effectiveness in capturing 

local term-matching patterns. It represents documents and queries as term frequency 

histograms and computes a relevance score. 

 

                                𝑚𝑎𝑡𝑐ℎ(𝑇1, 𝑇2) = 𝐹(Φ(T1),Φ(T2))    (3.1) 

 

where two texts 𝑇1 and 𝑇2, the degree of matching is typically measured as a 

score produced by a scoring function based on the representation of each text, where 𝛷 

is a function to map each text to a representation vector, and 𝐹 is the scoring function 

based on the interactions between them by the Equation 3.1. Such a text matching 

problem is considered general since it also describes many NLP tasks. These elements 

work together to give DRMM a strong framework for relevance matching in IR tasks. It 

has been demonstrated to significantly outperform conventional retrieval models, 

particularly in situations where it is essential to comprehend the subtle relationships 

between query and document terms. 
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Figure 3.1:  Architecture of the Deep Relevance Matching Model  

 

As in Figure 3.1, q means a user’s search input, typically component of a 

sequence of words or tokens and d means collection of documents. A local interaction 

captures interactions layer (eg. Convolution layer) to measure the similarity between 

individual terms in the query and documents. Matching histogram mapping constructs 

matching histograms based on the local interactions and captures the distribution of 

term overlap. Feed-forward matching network to process the matching histograms and 

generate a relevance score. Term gating network to assign weights to individual terms 

based on their relevance. Score aggregation process combined the weighted terms and 

generated the final relevance score for the query-document pair. Finally, outputs are 

matching score which results to relevant user queries.   

 

3.3.2 Match-Pyramid (MP)  

 

A deep learning architecture called MatchPyramid (MP) was created for text 

matching applications, including IR, QA, and paraphrase recognition. Inspired by the 

success of CNNs in image processing, it was proposed to capture the hierarchical 

matching patterns between two text sequences (e.g., a query and a document). The main 

elements and functionalities of MP are interaction matrix, convolutional layers, and 

local matching patterns. MP begins by creating an interaction matrix, just like DRMM 

does. The similarity scores between every word pair from the two text sequences are 

displayed in this matrix. This matrix can be filled with different similarity metrics, like 
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 dot product or cosine similarity. MP modifies the interaction matrix by applying 

convolutional layers. Local matching patterns between the two texts are captured by 

these layers, which function as feature extractors.  

Convolutional filters are used to detect various n-gram matching patterns by 

swiping over the interaction matrix. Pooling layers are applied after the convolutional 

layers in order to extract the most prominent matching patterns and lower the 

dimensionality of the feature maps. Pooling facilitates the creation of a more condensed 

representation and improves model generalization. Fully connected (dense) layers 

receive the output from the pooling layers. In order to determine if the two texts match, 

these layers must combine the features that were extracted.  

The model can learn to its fully connected layers. Hierarchical Structure by 

gradually implementing convolutional and pooling processes, MP is able to capture 

hierarchical matching patterns. Accurate text matching depends on the model's ability to 

learn both local and global matching information, which is made possible by its 

hierarchical structure. Because of the way it is built, MP works especially well for 

activities where it is crucial to comprehend the subtle relationships between two text 

passages. MP can automatically extract pertinent characteristics from the interaction 

matrix by utilizing CNNs, which improves performance in a variety of text matching 

applications. 

MP [53] is a neural model that encodes both the query and document as 

matrices and computes their similarity through keep consistency: CNN. It is effective at 

capturing local and global matching patterns between queries and documents. It 

converts text into matrices and applies convolutions to find matching patterns. 

 

                                        𝑀𝑖𝑗 = 𝑤𝑖 ⨂ 𝑣𝑗                                                       (3.2) 

 

Matching Matrix is a two-dimension structure where each element 𝑀𝑖𝑗   denotes 

the similarity between the 𝑖𝑡ℎ word 𝑤𝑖 in the first piece of text (user query) and the 𝑗𝑡ℎ 

word 𝑣𝑗  in the second piece of text (documents), where ⨂ stands for a general 

operation to obtain the similarity by the Equation 3.2. 
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Figure 3.2:  Model structure of the Match-Pyramid  

 

As shown in Figure 3.2, 𝑇1  and 𝑇2 take two text sequences are composed of 

words or tokens as input representing user query and collection of documents. Level-0 

matching matrix captures the local similarity information at the word level. Level-1 2D-

convolution capture local matched patterns within a window of adjacent word pairs. 

Level-2 2D-pooling capture the most relevant information from the feature maps. 

Layer-n MLP (Multilayer Perceptron) captured higher-level semantic information and 

relationships. Finally, outputs are matching score results to relevant user query. 

 

3.3.3 Duetl  

 

Duet is a neural ranking model that makes use of both distributed and local 

representations of documents and queries in order to enhance IR. Microsoft Research's 

Duet leverages deep learning-based semantic matching to complement traditional term-

based matching, with the goal of improving search engine and other retrieval system 

efficacy. The main elements and characteristics of Duet are dual representation, local 

representation, and distributed representation. Dual representation means Duet 

represents queries and documents via two distinct channels. Local Representation 

means using precise matches between query and document words, this channel 

concentrates on conventional term-based matching.  
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To represent local relevance signals, it makes the use of convolutional layers 

and interaction matrices. Distributed representation captures semantic similarities 

between query and document terms, it makes the use of distributed word embeddings 

(e.g., word2vec, GloVe). To understand semantic matching patterns, it makes the use of 

dense layers.  

MP and DRMM-like interaction matrix is built by Duet in the local 

representation channel. This matrix captures local matching patterns by displaying the 

precise term matches found in the document and the query. To extract features that 

capture signals of local importance, the local representation channel applies 

convolutional and pooling layers to the interaction matrix. These layers aid in locating 

significant patterns of query and document phrase matching.  

The word embeddings of the query and document terms are processed by the 

dense layers of the distributed representation channel. As a result, high-level 

interactions and semantic similarities between the query and the content can be captured 

by the model. To create a single representation, the outputs from the distributed and 

local representation channels are merged. By combining the benefits of term-based and 

semantic matching, this approach offers a thorough comprehension of the relationship 

between the query and the document.  

Ranking loss function to optimize the model and rank pertinent articles are 

higher than irrelevant ones, Duet is trained using a ranking loss function. This loss 

function makes sure the model which effectively learns to discriminate between 

different levels of relevance. In IR problems, Duet offers a strong foundation for 

relevance matching by merging local and distributed representations. It has been 

demonstrated to significantly outperform conventional retrieval methods, particularly in 

situations where determining the relevance between queries and documents depends on 

both exact term matches and semantic similarities. 

Duetl [48] is a novel document ranking model composed of two separate deep 

neural networks, one that matches the query and the document using a local 

representation, and another that matches the query and the document using learned 

distributed representations. The two networks are jointly trained as part of a single 

neural network. This combination or ‘duet’ performs significantly better than either 

neural network individually on a Web page ranking task, and also significantly 

outperforms traditional baselines and other recently proposed models based on neural 

networks.  
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    𝑓(𝑄, 𝐷) =  𝑓𝑙(𝑄, 𝐷) + 𝑓𝑑(𝑄, 𝐷)    (3.3) 

 

where both the query and the document are considered as ordered list of terms, 

𝑄 = [𝑞1, . . . , 𝑞𝑛𝑞 ] and 𝐷 =  [𝑑1, . . . , 𝑑𝑛𝑑  ]. Each query term 𝑞 and document term 𝑑 is 

an m × 1 vector where m is the input representation of the text (e.g. the number of terms 

in the vocabulary for the local model) by the Equation 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3:  Architecture of the Duetl  

 

As shown in Figure 3.3, user/item features include information about users (e.g., 

represents the user’s preferences, queries, or historical interactions such as a set of 

words or tokens that reflect the user’s current interests or preferences) and items (e.g., 

content features such as collection of documents or textual descriptions). Feature 

embedding converts textual user and item features convert into continuous vectors using 

word embeddings and an embedding layer.  
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Neural Network includes multiple layers allow the model to learn complex 

patterns and representations from the feature embeddings. User and item embedding are 

continuous vectors that encode the characteristics, preferences, or features of users and 

items. Similarity Calculation calculated using cosine similarity, dot product or another 

distance metrics. Output is a relevance or similarity score, indicating the predicted 

preference or likelihood of interaction between the user and the item. 

 

3.3.4 Kernelized Neural Ranking Model (KNRM)  

 

Neural network architecture called the Kernelized Neural rating Model 

(KNRM) was created for IR tasks. It focuses primarily on the relevance rating of 

documents in response to a query. In order to capture both exact matches and soft 

semantic matches between query and document terms, KNRM blends kernel-based 

methods with deep learning. KNRM, created by academics at the University of 

Massachusetts Amherst, intends to use neural networks' and kernel methods' advantages 

to increase search engines' efficacy. The main elements and characteristics of KNRM 

are word embeddings, and interaction matrix.  KNRM represents the terms in the query 

and the document using pre-trained word embeddings (such as word2vec, GloVe). 

These embeddings aid in finding soft matches between keywords and capture the 

semantic meanings of the words. The word embeddings of the query and document 

terms are used to build an interaction matrix. The similarity between a pair of terms 

from the query and the document is represented by each row in this matrix, and is 

usually calculated using a similarity measure like the dot product or cosine similarity.  

Gaussian kernels converts the interaction matrix into a set of kernel scores, 

KNRM uses several Gaussian kernels. Each kernel captures varying degrees of 

similarity between the query and document terms are parameterized by a mean and a 

variance. The model can capture both precise matches and semantic matches to these 

kernels, which are tailored to concentrate on particular similarity ranges. Kernel 

pooling throughout the query and document, the matching signals are aggregated by 

pooling the kernel scores. A fixed-length feature vector that condenses the relevant 

signals that each of the many kernels was able to collect is produced by this pooling 

operation. Fully connected (dense) layers receive the pooled kernel scores. In order to 

determine the final relevance score for the query-document pair, these layers learn to 

aggregate the kernel scores.  
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The model may learn intricate relationships between the kernel scores and 

determine a final relevance assessment to the deep layers. A ranking loss function like 

pairwise hinge loss or cross-entropy loss, is used to train KNRM. In order to ensure 

that the model learns, this loss function optimizes the model to rank pertinent 

documents higher than irrelevant ones. Through the integration of neural networks 

and kernel approaches, KNRM offers an effective framework for relevance ranking in 

IR applications. While the neural network layers allow the model to learn intricate 

relevance patterns, the Gaussian kernels allow the model to capture both exact and 

soft matches between query and document terms. It has been demonstrated that 

KNRM significantly outperforms conventional retrieval models, especially in 

situations where capturing fine-grained relevance signals is essential. 

KNRM [82] is a neural ranking model that uses a CNN to learn term-to-term 

matching signals and applies a kernelized function to measure the importance of terms 

in the matching process. A CNN learns the matching signals between these terms. Then, 

kernelized functions measure the importance of these matching signals. KNRM uses 

CNN to learn matching signals between query and document terms. It then applies 

kernelized functions to measure the importance of terms in the matching process.   

 

                  𝐾𝑁𝑅𝑀 = ∑ ∑ 𝑓𝑘𝑒𝑟𝑛𝑒𝑙(𝑞𝑖, 𝑑𝑗) ∗ 𝑆𝑜𝑓𝑡 − 𝑇𝐹(𝑞𝑖) ∗ 𝑆𝑜𝑓𝑡 − 𝑇𝐹(𝑑𝑖)
𝐽
𝑗=1

𝐿
𝑖=1        (3.4) 

 

where 𝐿 represents the number of terms in the query, 𝐽 is the number of terms in 

the document, 𝑞𝑖 and 𝑑𝑗  denote the embeddings of the 𝑖𝑡ℎ term in the query and 𝑗𝑡ℎ term 

in the document, respectively. Additionally, 𝑓𝑘𝑒𝑟𝑛𝑒𝑙  is a kernel function assessing the 

similarity between terms by the Equation 3.4. 
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Figure 3.4:  Architecture of the Kernelized Neural Ranking Model  

 

As in Figure 3.4, input query n words (include sequence of words or tokens) and 

document m words (include collection of documents) in the embedding layer converting 

words or terms in the query and document into continuous vector representations. 

Translation layer calculates the word-word similarities between the terms in the query 

and documents and forms the translation matrix, the kernel pooling layer employs 

multiple kernel functions, each designed to capture specific matching patterns between 

terms in the translated query and document embeddings and generate soft-TF counts as 

ranking features. Soft-TF is a weighting mechanism that aims to model the importance 

of terms based on their frequencies. The process of ranking features in the learning-to-

rank phase involves extracting informative features from the kernel pooling output and 

using term to train a model that can accurately predict the relevance of documents to 

queries and combines the soft-TF to the final ranking score. 

 

 

3.3.5 Position-aware Convolutional Recurrent Relevance (PACRR)  

 

With an emphasis on relevance matching between queries and documents, the 

Position-Aware Convolutional Recurrent Relevance Model (PACRR) is a neural 

network architecture created for IR applications.  
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In order to capture both long-range dependencies and local matching patterns, 

PACRR blends convolutional and recurrent neural networks. Additionally, it 

incorporates term positioning information to enhance relevance estimation. The main 

elements and characteristics of PACRR are interaction matrix, and convolutional 

layers. PACRR creates an interaction matrix that depicts the similarities between 

query terms and document terms, much like other relevance models like DRMM and 

MP. Usually, cosine similarity or dot product based on word embeddings is used to 

populate this matrix. Convolutional layers extract local matching patterns; PACRR 

uses convolutional layers to the interaction matrix. In order to find n-gram matches, 

the convolutional filters pass across the interaction matrix, catching both exact and 

approximatively word matches.  

Position-aware pooling is carried out by PACRR following the convolutional 

layers. Positional information is preserved as the convolutional features are 

aggregated in this stage. Position-aware pooling helps the model grasp the positioning 

context of matching words by tracking the locations of maximum values, as opposed 

to regular max-pooling, which discards positional information. Layers of a RNN 

layers, such as LSTM or GRUs, are used in PACRR to capture long-range 

relationships and sequential patterns in the query-document interactions. In order to 

learn, these RNN layers process the position-aware pooled features. Dense, fully 

connected layers get input from the RNN layers.  

A final relevance score for the query-document pair is generated by combining 

the features that have been extracted by these layers. The model can learn intricate 

relationships between the convolutional and recurrent features because to the deep 

layers. Ranking loss function to optimize the model and rank pertinent documents 

higher than irrelevant ones, PACRR is trained using a ranking loss function, such as 

pairwise hinge loss or cross-entropy loss. This loss function makes sure the model can 

discriminate between different levels of relevance. A complete framework for 

relevance matching in IR tasks is provided by PACRR, which combines position-

aware pooling with convolutional and recurrent neural networks. Local matching 

patterns are captured by the convolutional layers, within the RNN layers. 

PACRR [26] is a neural model that combines CNN and RNN to capture 

hierarchical matching patterns between queries and documents. It is known for its 

ability to capture positional information.  
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A hierarchical structure is visualizing where term pairs are compared at different 

levels. Convolutional and recurrent layers analyze these pairs while considering their 

positions in the text. PACRR combines CNN and RNN to capture hierarchical matching 

patterns. It considers both term similarity and term position in the document.  

 

            𝐿(𝑞, 𝑑+, 𝑑−; 𝜃) = 𝑚𝑎𝑥 (0,1 − 𝑟𝑒𝑙(𝑞, 𝑑+) + 𝑟𝑒𝑙(𝑞, 𝑑−))        (3.5) 

 

where a query 𝑞, relevant document 𝑑+, and non-relevant document 𝑑−, 

minimizing a standard pairwise max margin loss by the Equation 3.5. 

 

 

Figure 3.5:  Architecture of the Position-aware Convolutional Recurrent 

Relevance  

 

As in Figure 3.5, each query q and document d is first converted into a query-

document similarity matrix  𝑠𝑖𝑚|𝑞|×|𝑑| . Thereafter, a distillation method (first k is 

displayed) transforms the raw similarity matrix into unified dimensions, namely, 

  𝑠𝑖𝑚|𝑞|×|𝑑|. Here,   𝑙𝑞−1  convolutional layers (CNN) are applied to the distilled 

similarity matrices. As   𝑙𝑔  =3 is shown, layers with kernel size 2 and 3 are applied. 

Next, max pooling is applied, leading to   𝑙𝑔   matrices 𝐶1 …  𝐶𝑙𝑞. Following this, 

  𝑛𝑠 − 𝑚𝑎𝑥  pooling captures the strongest ns signals over each query term and n-

gram size, and the case for ns = 2 is shown here. Finally, the similarity signals from 

different n-gram sizes are concatenated, the query terms normalized IDFs are added, 

and a recurrent layer combines these signals for each query term into a query-

document relevance score rel(q, d). 
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3.3.6 Convolutional Kernelized Neural Ranking Model (CONV-KNRM)  

 

For IR tasks, an enhanced neural network architecture called the CONV-

KNRM was created. Convolutional layers are added to the KNRM in order to capture 

n-gram interactions between query and document terms. This method improves 

relevance estimation by strengthening the model's comprehension of intricate 

matching patterns and semantic linkages in text. The main elements and 

functionalities of CONV-KNRM are word embeddings, and covoluational layers. 

Word embeddings represent the terms in the query and the document and CONV-

KNRM uses pre-trained word embeddings (such as word2vec, GloVe). These 

embeddings act as the input for the layers that follow, capturing the semantic 

meanings of the words. To be Convolutional layers the word embeddings of the query 

and document terms, the model adds convolutional layers. By swiping convolutional 

filters across the embeddings, these layers provide n-gram representations that capture 

local contextual data and term interaction patterns.  

The n-gram representations produced by the convolutional layers are the 

foundation for building an interaction matrix. The similarity between a pair of n-

grams from the query and the document is represented by each item in this matrix. 

This similarity is usually calculated using a similarity measure like the dot product or 

cosine similarity. CONV-KNRM converts the interaction matrix into a set of kernel 

scores by using many Gaussian kernels, just like KNRM does. Every kernel captures 

both precise and approximate similarities within a particular range. Throughout the 

query and document, the matching signals are aggregated by pooling the kernel 

scores. A fixed-length feature vector that condenses the relevant signals that each of 

the many kernels was able to collect is produced by this pooling operation. 

 Fully connected (dense) layers receive the pooled kernel scores. In order to 

determine the final relevance score for the query-document pair, these layers learn to 

aggregate the kernel scores. The model may learn intricate relationships between the 

kernel scores and determine a final relevance assessment to the deep layers. A ranking 

loss function like pairwise hinge loss or cross-entropy loss is used to train CONV-

KNRM. By optimizing the model to rank pertinent documents higher than irrelevant 

ones, this loss function makes sure the model which can distinguish between 

documents with differing levels of relevance.  
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Convolutional layers and kernel-based methods are combined to provide 

CONV-KNRM, a strong framework for relevance ranking in IR problems. The 

Gaussian kernels provide flexible matching of both exact and semantic similarities 

while the convolutional layers improve the model's capacity to record n-gram 

interactions and local context. This combination improves performance across a range 

of retrieval circumstances, especially those that call for a sophisticated comprehension 

of textual significance. 

CONV-KNRM [11] is an extension of KNRM that incorporates convolutional 

layers to better model term interactions. It uses CNN to capture multi-level matching 

patterns. An extension of KNRM with convolutional layers added. These convolutional 

layers capture more intricate matching patterns between terms. CONV-KNRM extends 

KNRM by incorporating convolutional layers. This allows it to capture multi-level 

matching patterns in text.  

 

                                    𝑓(𝑞, 𝑑) = tanh (𝑤𝑟
𝑇 ∅(𝑀) + 𝑏𝑟)     (3.6) 

 

The Learning-To-Rank (LeToR) layer combines the soft-TF ranking features 

 ∅(𝑀) into a ranking score. 𝑤𝑟  and 𝑏𝑟 are the linear ranking parameters to learn. |wr | = 

|∅(M)| and |𝑏𝑟| = 1. 𝑡𝑎𝑛ℎ () is the activation function as in by the Equation 3.6. 
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Figure 3.6:  Architecture of the Convolutional Kernelized Neural Ranking  

Model  

 

As in Figure 3.6, given input query 𝑇𝑞  and document 𝑇𝑑 , the word embedding 

layer maps their words into distributed representations, the convolutional layer 

generates n-gram embeddings; the cross-match layer matches the query n-grams and 

document n-grams of different lengths, and forms the translation matrices; the kernel 

pooling layer generates soft-TF features and the learning-to-rank (LeToR) layer 

combines them to the ranking score. The case with Unigrams and Bigrams (hmax = 2) 

is shown. 
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3.3.7 MatchZoo-CONV-KNRM (MZ-CONV-KNRM)  

 

A toolkit called MatchZoo is intended for text matching in NLP and IR. For a 

variety of matching tasks, such as document retrieval and question-answer matching, 

it offers a variety of neural network models. CONV-KNRM is one of the models 

available in MatchZoo. Convolutional Kernel-based Neural Ranking Model, or 

CONV-KNRM, is a neural ranking model intended for use in ad hoc retrieval 

applications. CNNs extract local contextual features from text, CONV-KNRM use 

convolutional layers. The n-gram characteristics, which are essential for 

comprehending the semantic context of words within a sentence, are captured by the 

convolutional layers. Kernel Pooling: The model employs a kernel pooling approach 

following convolution.  

The concept is to quantify the degree of similarity between the query and the 

document at different granularities using a set of kernel functions. This aids in 

capturing varying levels of query and document term similarity. A neural network is 

then fed the combined similarity features to provide a relevance score as neural 

ranking. Documents are ranked by the neural network according to how relevant they 

are to the query. Benefits of the CONV-KNRM are contextual understanding, and 

end-to-end learning. CONV-KNRM can better grasp context by capturing intricate, 

local patterns in text through the use of CNNs. Accurate ranking depends on a flexible 

and comprehensive measurement of similarity, which is made possible by the kernel 

pooling layer. End-to-end learning by training the model from beginning to end, all of 

its components may be optimized at the same time to boost performance.  

CONV-KNRM is the process of using a query to find pertinent documents 

within a sizable corpus for document retrieval. QA is the process of selecting the right 

response from a list of possible answers for a given question. Any job that involves 

matching text inputs to pertinent textual responses or resources is known as IR. 

CONV-KNRM, which combines the benefits of kernel-based similarity measurement 

and convolutional networks, is an effective tool for text matching and ranking overall. 

MatchZoo is a framework for text-matching tasks, including IR. Models like MZ-

KNRM and MZ-CONV-KNRM [19] are specific implementations of KNRM and 

CONV-KNRM within the MatchZoo framework, making them easy to use. It can easily 

adapt and experiment with these models for various IR tasks.   
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Figure 3.7:  An overview of the Match-Zoo Architecture  

 

In Figure 3.7, data preparation involves organizing and pre-processing the 

dataset to make it suitable for training. Model construction involves selecting a text 

matching model architecture, configuring its parameters, and building the model. 

Training and testing a model provide batches of data during training and evaluating 

the model's performance on a separate test set. In MatchZoo, the process of 

preparation, parameter tuning, and model selection in automatic machine learning 

involve the AutoModel class. 

 

3.4 Fine-tuned Model  

 
A pre-trained machine learning model that has been further trained on a 

particular task or dataset to enhance its performance on that specific task is known as 

a fine-tuned model. Usually using a smaller, task-specific dataset, fine-tuning applies 

the skills and information gained during the first pre-training phase to the current task. 

In pre-training, a model is trained on a sizable, varied dataset for a broad purpose, like 

image classification on a sizable dataset like ImageNet or language modeling 

(guessing the word that will appear in a phrase).  
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The model learns many different traits and patterns that are generally helpful, 

such as identifying edges, forms, and textures in picture models or comprehending 

grammar, syntax, and semantics in language models. Examples are pre-training on 

large datasets is common for models such as BERT, GPT, and ResNet. The model is 

adjusted using a smaller, task-specific dataset following pre-training in order to 

modify its general knowledge to meet the demands of the novel task. The process of 

fine-tuning entails using task-specific data to retrain the previously learned model. 

The architecture (if necessary) will alter. Lowering the learning pace in order to 

prevent significant updates that can wipe out previously learned information. 

Sometimes, only training the final few layers or adding new layers for a given job 

while freezing some layers preserves the features that were learned during the pre-

training phase. Examples are included fine-tuning a pre-trained ResNet for a 

particular kind of image classification (e.g., medical image analysis) or BERT for 

sentiment analysis, Named Entity Recognition (NER), or QA.  

Since fine-tuning begins with a model that has already acquired valuable 

representations, it is both computationally faster and less expensive than training a 

model from scratch. Compared to models trained from scratch using the same quantity 

of task-specific data, fine-tuned models frequently perform better on certain tasks. 

Fine-tuning might be helpful when there is a shortage of task-specific data because it 

takes less data than training from scratch. A model has already been trained and is 

suitable for the basic task. For example, models like BERT or GPT might be useful if 

users are working on a linguistic task. Users need to prepare the task-specific 

Information Collect and then prepare the data that are necessary for the particular task 

at hand. If required to modify, modify the model architecture. Adding task-specific 

layers may be necessary for this. Use the task-specific dataset to train the previously 

trained model, may be with some layers frozen and at a lower learning rate. The 

optimized model is analyzed using a validation set, and it can be change as needed to 

enhance performance. Use the task-specific dataset to retrain the previously trained 

model, usually at a slower learning rate and perhaps with certain layers frozen. 

Analyze the optimized model using a validation set, and change as needed to enhance 

performance. In contemporary machine learning, fine-tuning is a potent approach that 

enables practitioners to take advantage of the advantages of large, pre-trained models 

and effectively modify them for particular applications. 
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Language model pre-training has been shown to be effective in improving 

many NLP tasks [23], [10], [57], [61]. These include sentence-level tasks such as 

natural language inference [78], [60] and paraphrasing [13], which aim to predict the 

relationships between sentences by analyzing them holistically, as well as token-level 

tasks such as NER and QA, where models are required to produce fine-grained output 

at the token level [64], [68]. There are two existing strategies for applying pre-trained 

language representations to downstream tasks: feature-based and fine-tuning methods. 

The feature-based approach, such as ELMo [77], uses task-specific architectures that 

include the pre-trained representations as additional features. The fine-tuning 

approach, such as the Generative Pre-trained Transformer (OpenAI GPT) [61], 

introduces minimal task-specific parameters, and is trained on the downstream tasks 

by simply fine-tuning all pre-trained parameters.  

In this research, it improves the fine-tuning-based approaches by applying 

BERT: Bidirectional Encoder Representations from Transformers. BERT is 

conceptually simple and empirically powerful. For this research, it used a fine-tuned 

model, Vanilla-BERT [12], aiming to improve performance scores. Fine-tuning 

method is straightforward since the self-attention mechanism in the Transformer 

allows BERT to model many downstream tasks whether they involve single text or 

text pairs—by swapping out the appropriate inputs and outputs. For applications 

involving text pairs, a common pattern is to independently encode text pairs before 

applying bidirectional cross attention [70], [55]. 

 

                   (3.7) 

 

where  BERT(X) represent the output embedding for the input sequence  X,  𝑋 

can be a concatenation of a query and a document,  Embeddings(X):  This involves 

converting the input tokens into embedding.  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(): This refers to the 

transformer architecture, which consists of multiple layers of self-attention and 

feedforward mechanisms. 
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    Figure 3.8 BERT for query-document matching  

 

In Figure 3.8 shows a query-document pair (q, d), the input to the BERT 

model includes query words, document words: “[CLS],q1, . . . , qN , [SEP], d1, . . . , 

dM , [SEP]”, where “[CLS] ” is the token to indicate whether the query-document pair 

is relevant or not, “[SEP]” is the token to indicate the separation of query and 

document, and qi and dj are the i
th

 query word and the j
th

 document word, respectively. 

The query (and document) is padded or truncated to have N (and M ) words. Each 

word is represented with its embedding. The input embedding of a word is the sum of 

the corresponding position embeddings, the segment embeddings, and the word 

embeddings. Position embeddings adds information about the position of each token 

in the sequence. Segment embeddings adds information about the segment to which 

each token belongs. Word embeddings captures the semantic meaning of each token. 

Outputs a sequence of high level semantic representations for the special input tokens 

and query and document words: “C, T1 , . . . , TN , T[SEP] , T10 , . . . , TM, T[SEP] ”, 

where C is the representation of the token [CLS], T1 , . . . , TN of the query  words, 

T10 , . . . , TM of the document words, T[SEP] and T[SEP] of the two separators. The 

representation of the [CLS] token C is fed into an output layer (e.g., single layer 

neural network) to obtain p(rel | q, d) , which represents the probability of document’s 

being relevant to query. 
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3.4.1 Bidirectional Encoder Representations from Transformers (BERT) 

The Bidirectional Encoder Representations from Transformers (BERT) 

architecture is utilized by a BERT-based model in an IR system to enhance the 

process of locating pertinent documents or information fragments in response to a 

user query. This is a thorough rundown of BERT's applications in infrared systems: 

Google created the transformer-based BERT paradigm. It is pre-trained using two 

training tasks on a big corpus of text; BERT can comprehend a sentence's context in 

both directions by learning to anticipate words that are lacking in MLM. Next, 

Sentence Prediction (NSP) analyzes the connections between two sentences; BERT 

enhances its comprehension of sentence relationships and context. BERT can be used 

in an IR system in a number of ways to increase the relevancy and precision of search 

results. Understanding a query by identifying the subtleties and context in the query 

wording, BERT can be utilized to comprehend the user's inquiry more fully. This 

makes it easier to understand the user's intent.  

DL models that have been pre-trained on copious quantities of textual data in 

order to uncover the underlying patterns and connections between words and phrases 

are known as pre-trained text models. These models are intended to capture the context 

and meaning of text data, and they are taught using methods like neural networks. They 

are the ideal instrument for determining the text embeddings of a document. BERT is 

one example of such a model. Based on the training data used to generate the vectors, 

static word embeddings map words with multiple senses into an average or most 

common-sense representation. A word's vector remains constant regardless of the 

other words used in the phrase around it. The employment of a unique neural layer 

dubbed self-attention in combination with feed forward and linear layers, the 

transformer neural network is able to explicitly consider the context of any length of 

text.  Sequences of input length are mapped to sequences of output length by the self-

attention layer. The layer can access all n input elements (bidirectional self-attention) 

or just the first i input elements (causal self-attention) while calculating the i
th

 output 

element. The network is able to consider the relationships between several elements in 

the same input to a self-attention layer. A self-attention layer computes token 

representations that consider the surrounding words when the input elements are 

tokens of a specific text. In doing so, the transformer computes contextualized word 

embeddings, in which the input text as whole conditions each input token's 

representation.  
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Transformers have shown effective in a variety of natural language processing 

applications, including QA, summarization, machine translation, and more. These 

jobs are all specific examples of a broader objective, which is to convert an input text 

sequence into an output text sequence. This general task has been addressed by the 

invention of the sequence-to-sequence model. The two components of a sequence-to-

sequence neural network are an encoder model that produces a contextualized 

representation of each input element given an input sequence, and a decoder model 

that uses these contextualized representations to produce an output sequence tailored 

to a job. The components of both types are many stacked transformers. Bidirectional 

self-attention layers are used by the encoder's transformers on either the input or the 

output sequence from the preceding transformer. The decoder's transformers use 

bidirectional cross-attention on the output of the final encoder transformer and causal 

self-attention on the output of the preceding decoder transformer.  

Two particular applications of sequence-to-sequence models have been 

investigated in Neural IR: encoder-only models and encoder-decoder models. All of 

the tokens in a given input sentence are received as input by encoder-only models, 

which then compute an output contextualized word embedding for each token in the 

phrase. The models BERT [12], Robustly Optimized BERT Pre-training Approach 

(RoBERTa) [42], and Distilled BERT (DistilBERT) [69] are examples of this family 

of models. Depending on the input sentence provided, encoder-decoder models 

produce new output sentences. One token at a time, the decoder model sequentially 

accesses these embeddings to produce new output tokens, while the encoder model 

takes all of the tokens of a given sequence as input and creates a contextualized 

representation. The input values are normalized into a probability distribution using 

the soft-max procedure. Within the domain of deep learning, the inputs of a soft-max 

operation are commonly referred to as logits. These inputs are the unprocessed 

predictions produced by a multi-class classification model, which the soft-max 

operation transforms into a probability distribution across the classes. A sequence-to-

sequence model can be trained as a Casual Language Model (CLM), like T5, or as a 

Masked Language Model (MLM), like BERT, depending on the training goal. While 

CLM training focuses on predicting the next token in an output sequence given the 

previous tokens in the input sequence, MLM training teaches learners to predict 

missing tokens in a sequence given the surrounding tokens.  
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BERT can be used to determine how similar the texts in the corpus are to the 

query as document ordering and semantic matching. BERT has the ability to ascertain 

the degree of semantic similarity between the query and documents by encoding them 

into high-dimensional vectors. Re-ranking based on a more thorough contextual 

understanding; BERT can improve the order of the original list of documents that 

were obtained by a conventional IR model (such as BM25). BERT can assist in 

locating and prioritizing particular text portions within documents that are most 

pertinent to the query, as opposed to retrieving entire documents as retrieve passage. 

This is especially helpful for lengthy publications where only a few sections might be 

pertinent. BERT can be used in QA systems to extract the document's most pertinent 

response as extract the answer. BERT can identify the section of text that most 

effectively responds to a given question given the inquiry and its context (such as a 

paragraph). An example of the query preprocessing workflow for a BERT-based IR 

system transforms the query into input tokens that BERT can process, tokenize it 

using the tokenizer built into BERT. To get a starting collection of potentially 

pertinent documents, use a conventional IR approach (such as BM25). BERT is used 

to encode the query as well as any documents or passages that are obtained. To obtain 

contextual embeddings, the text must be fed through BERT. The degree of similarity 

is determine between each document/passage embedding and the query.  

Cosine similarity or other distance metrics can be used for this. Reordering: 

Based on how closely the papers or passages match the query, order them. The things 

with the highest scores are deemed to be the most pertinent. BERT is used to 

determine the most pertinent text segment among the top-ranked papers if the task 

requires locating a specific answer inside a document. Unlike previous models, BERT 

is bidirectional, which helps it better understand the text's semantics and context.  

BERT's utilization of deep learning enables it to assimilate minute details and 

enhance the significance of search outcomes. BERT is adaptable to a range of IR 

applications, such as document rating, response extraction, and query interpretation. 

Obstacles and Real-time IR systems may face difficulties due to the computationally 

demanding nature of BERT models. The memory and processing power limitations of 

BERT make it difficult to handle large-scale corpora. Labeled data and computing 

resources are needed for BERT to perform better when fine-tuned on domain-specific 

data.  
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BERT-based models have significantly advanced the field of IR by providing 

more accurate and contextually aware search results. By integrating BERT into IR 

systems, developers can leverage its powerful language understanding capabilities to 

enhance the user experience and improve the relevance of retrieved information. 

 

3.5  Summary 

 
This chapter discussed the methodologies and theoretical background of Deep 

Neural Networks. It explained what about DNNs, architectures of DNNs, type of the 

Deep Neural Ranking Models and Fine-tuned Model are described how they work. 
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CHAPTER 4  

BUILDING MYANMAR NEWS DATASET 

 
This chapter covers the development of text datasets used in this research. 

Text dataset building is an imperative and a very first task for implementing any 

Myanmar News retrieval system. Although there are freely and widely available 

resources in well-resourced language like English, the text dataset is needed to build 

first for Myanmar which has no available text dataset easily to use. Moreover, four 

evaluation methods such as MAP, MRR, P@1, and P@3 metrics are described in this 

chapter 

 

4.1 Building Myanmar News Dataset 

 
Text data collection is the very first step in any IR tasks especially for under 

resourced language which is to gather the text data. The main problem in IR research 

for Myanmar language is the lack of proper data. Therefore, the text dataset is 

necessary to develop first. The text dataset is an abundant collection of Myanmar 

languages and is important for IR. For Myanmar News retrieval, as the first 

contribution of this work, the text dataset needs to build first systematically for 

Myanmar language. The text data were obtained from main sources: 
1
 online source 

and collected in this research. The next steps will be exact to features for retrieval 

process if the data have been prepared properly. Many IR systems are constructed on 

the neural models based on the text data. Therefore, text dataset building is 

essentially needed to develop the retrieval related systems. The text dataset used in 

this work is constructed by collecting from the main sources: Web based collected 

news and for the purpose of training the IR system.  

Due to the lack of a large dataset for the retrieval task on Search Engine, it 

decided to develop a large Myanmar News dataset containing 118,486 documents 

composed in Myanmar Unicode font collected from the Myanmar News webpages. 

Types of news are Health, Sport, Entertainment, Political and Economic. Each 

document consists of two parts: title and contents. Table 4.1 shows collections of 

Myanmar News datasets. 

 

 
 

1 
Eleven Broadcasting media, Mizzima News Myanmar, Irrawaddy Burmese News, 7days news, Thit 

Htoo Lwin Burmese News 
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Table 4.1 Statistics of Myanmar News Datasets 
 

 

Number of documents 
 

Number of sentences 
 

Number of words 

118,486 54,634,415 1,283,260,155 

 

 

Text collection is the most important effort in every retrieval related system. 

Nowadays, Myanmar News is available on many Web sites. From the sites of  

2
Eleven Myanmar News, 

3
7days Myanmar News, 

4
Irrawaddy Myanmar News, 

5
Mizzima Myanmar News, and 

6
Thit Htoo Lwin Myanmar News.  

 

4.1.1 Data Pre-processing  

 
Textual data from search engine, especially Google, is unstructured and 

contains noisy tokens or stop words, which need to be cleaned to improve its quality 

and usefulness for training deep learning models. Data pre-processing methods 

prepare data for further processing, verify its integrity and consistency, reduce data 

noise, fill in missing values, and structure it in databases. To facilitate data cleaning, 

preparation techniques of Myanmar dataset are word segmentation and stop word 

removal. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

2
 https://news.eleven.com/ 

3
 https://www.7Daynews.com/ 

4
 https://www.irrawaddy.com/ 

5
 https://www.mizzimaburmese.com/ 

6
 http://www.thithtoolwin.com/ 

 

http://www.facebook.com/elevenbroadcasting
http://www.facebook.com/elevenbroadcasting
http://www.facebook.com/7DayOnlineTV/
http://www.facebook.com/7DayOnlineTV/
http://www.mizzimaburmese.com/
http://www.mizzimaburmese.com/
http://www.mizzimaburmese.com/
http://www.mizzimaburmese.com/
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4.1.1.1 Word Segmentation  

 
The foundational task in NLP is word segmentation. This procedure involves 

breaking down text into individual words and sentences, where the objective is to 

identify word tokens and sentence boundaries. While English word boundaries are 

easily defined, the same does not hold true for Myanmar. Myanmar word boundaries 

often lack spacing within sentences, making it challenging to discern individual 

words. Hence, in the context of IR, effective word segmentation proves invaluable for 

navigating sentences and word tokens. To fulfill this objective, the Myanmar word 

segmentation tool is employed which is developed by UCSY [52]. Examples of word 

segmentation are additionally illustrated in Table 4.2. During the pre-processing stage, 

the significance of word segmentation is heightened, particularly in the context of IR 

evaluation. 

 

Table 4.2 Example of Word Segmentation 

 

 

 

4.1.1.2 Stop-word Removal 

 
The aim of stop word removal is to filter out words that are prevalent in the 

 

Original sentences 
 

After word segmentation 

မုိးသည်းထန်စွာ ရွာသည်နှင့်တစ်ပြိုင်နက် ရရလျှမံှုများ 

ဖြစ်ရြါ်ရနသည့်ရန်ကုန် 

"မုိးသည်းထန်စွာ”, “ ရွာသည်နှင့်", "တစ်ပြိုင်နက်", 

"ရရလျှမံှုများ", "ဖြစ်ရြါ်", "ရနသည့်", "ရန်ကုန်" 

ကြ္ပလီြင်လယ်ဖြင်နှင့် ဘင် ဂ္လားြင်လယ်ရော် 

ရတာင်ြုိင်းတ့ုိတွင် တိမ်ေသင့်ေတင့်မှ 

တိမ်ထူထြ်ရနပြီး ကျန်ဘင် ဂ္လားြင်လယ်ရော်တွင် 

တိမ်ေနည်းငယ်ဖြစ်ထွန်းရနရ ကာင်းသိရသည် 

"ကြ္ပလီ", "ြင်လယ်ဖြင်", "နှင့်", "ဘင် ဂ္လား", 

"ြင်လယ်ရော်", "ရတာင်ြုိင်း”, “တ့ုိတွင်”, 

“တိမ်”, “ေသင့်ေတင့်”, “မှ”, “တိမ်”, “ထူထြ်”, 

“ရန”, “ပြီး”, “ကျန်”, “ ဘင် ဂ္လားရော်”, “တွင်”, 

“တိမ်”, “ေနည်းငယ်”, “ဖြစ်ထွန်း”, “ရန”, 

“ရ ကာင်း”, “သိရသည်” 

ြံုမှန်ရသွးလှူနုိင်ရောင် ကုိယ်ကကျန်းမာရနြ့ုိ လုိေြ် 

တ့ဲေတွက် ြံုမှန်ေိြ်၊ ြံုမှန်စား 

ေရနေထုိင်သင့်တင့်မျှတရောင် ရနသင့်တယ် 

 

“ြံုမှန်”, “ရသွး”, “လှူ”, “နုိင်”, “ရောင်”, “ကုိယ်က”, 

“ကျန်းမာ”, “ရန”, “ြ့ုိ”, “လုိေြ်”, “တ့ဲေတွက်”, “ြံုမှန်” 

“ေိြ်”, “၊”,  “ြံုမှန်”, “စား”, “ေရနေထုိင်”, “သင့်တင့်”, 

“မျှတ”, “ရောင်”, “ရန”, “သင့်”, “တယ်” 



78  

majority of documents. In Myanmar, stop words encompass ရ, သည်, မ, မှ, နှင့်, ခဲ,့ 

ရတွ, မည်, မယ်, ရန်, ထ,ံ ြါ, က, များ, ကုိ, တွင်, etc. Illustrations of Myanmar stop words 

removal are also presented in Table 4.3, removed the Myanmar stop words are “စွာ, 

သည်, နှင့်, များ, သည့,် တ့ုိ, တွင်, ပြီး, ရ ကာင်း, သည်, က", etc. This stage holds 

significant importance in the pre-processing techniques applied in NLP methods.  

Table 4.3 Example of Stop-word Removal 
 

 

 

4.2 Evaluation Metrics for Myanmar News Retrieval 

 
  The performance of the system is measured using MAP, MRR, P@1, and P@3 

metric to assess the performance of IR systems by comparing their retrieved results to 

the ground truth relevance assessments. These metrics are commonly used in IR 

evaluation to assess the quality of ranking systems. Higher values for these metrics 

indicate better-performing systems. These performance metrics commonly used for 

evaluating neural networks in IR and recommendation tasks: MAP (Mean Average 

Precision), MRR (Mean Reciprocal Rank), P@1 (Precision at 1), and P@3 (Precision 

at 3).  

 

 

 

Original sentences 
 

After stop-word removal 

မုိးသည်းထန်စွာ ရွာသည်နှင့်တစ်ပြိုင်နက် ရရလျှမံှုများ 

ဖြစ်ရြါ်ရနသည့်ရန်ကုန် 

"မုိးသည်းထန်”, “ ရွာ", "တစ်ပြိုင်နက်", "ရရလျှမံှု", 

"ဖြစ်ရြါ်", "ရန", "ရန်ကုန်" 

ကြ္ပလီြင်လယ်ဖြင်နှင့် ဘင် ဂ္လားြင်လယ်ရော် 

ရတာင်ြုိင်းတ့ုိတွင် တိမ်ေသင့်ေတင့်မှ 

တိမ်ထူထြ်ရနပြီး ကျန်ဘင် ဂ္လားြင်လယ်ရော်တွင် 

တိမ်ေနည်းငယ် ဖြစ်ထွန်းရနရ ကာင်းသိရသည် 

"ကြ္ပလီ", "ြင်လယ်ဖြင်", "ဘင် ဂ္လား", 

"ြင်လယ်ရော်", "ရတာင်ြုိင်း”, “တိမ်”, 

“ေသင့်ေတင့်”, “တိမ်”, “ထူထြ်”, “ရန”, 

“ကျန်”, “ဘင် ဂ္လားရော်”, “တိမ်”, “ေနည်းငယ်”, 

“ဖြစ်ထွန်း”, “ရန”, “သိရ” 

ြံုမှန်ရသွးလှူနုိင်ရောင် ကုိယ်ကကျန်းမာရနြ့ုိ လုိေြ် 

တ့ဲေတွက် ြံုမှန်ေိြ်၊ ြံုမှန်စား 

ေရနေထုိင်သင့်တင့်မျှတရောင် ရနသင့်တယ် 

“ြံုမှန်”, “ရသွးလှူ”, “နုိင်ရောင်”, “ကုိယ်”, 

“ကျန်းမာ”, “ရန”, “လုိေြ်”, “ြံုမှန်” “ေိြ်”, 

“ြံုမှန်”, “စား”, “ေရနေထုိင်”, “သင့်တင့်”, 

“မျှတ”, “ရောင်”, “ရနသင့်” 
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 These equations provide a quantitative measure of the performance of a ranking 

system based on different aspects such as precision, average precision and reciprocal 

rank. They are used in IR to assess the quality of ranked lists of documents. 

 

4.2.1 MAP (Mean Average Precision) 

 

MAP is a metric used to evaluate the performance of a ranking system. It 

calculates the average precision across multiple queries. For each query, calculate 

precision at each position where a relevant document is found in the ranked list. These 

precision values are averaged, compute the mean (average) precision across all 

queries. A higher MAP indicates a better ranking system. MAP ranges from 0 to 1.  

 

                                             MAP =
1

Q
∑ AveragePrecisioni

Q
i=0        (4.1) 

 

  where 𝑄 is the number of queries and 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 is the average precision 

for query 𝑖 as in Equation (4.1). 

 

4.2.2 MRR (Mean Reciprocal Rank) 

 

    MRR is a metric that measures the effectiveness of a ranking system based 

on the reciprocal of the rank of the first relevant item. For each query, the rank of the 

first relevant document is identified in the ranked list. Taking the reciprocal of this 

rank and computing the mean (average) of these reciprocal ranks are across all 

queries. A higher MRR indicates a better ranking system. MRR ranges from 0 to 1. 

 

                    MRR =
1

Q
∑

1

Ranki

Q
i=1       (4.2) 

 

    where 𝑄 is the number of queries and 𝑅𝑎𝑛𝑘𝑖 is the rank of the first relevant 

document for query 𝑖 as in Equation (4.2). 

 

4.2.3 P@1 (Precision at 1) 

 

   P@1 is a metric that evaluates the precision of a ranking system at the top 

position. For each query, check if the first document in the ranked list is relevant.  
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If relevant, P@1 is 1; otherwise, it is 0. The mean (average) precision at the top 

position is computed across all queries. P@1 measures the precision of the top-ranked 

document for each query. P@1 ranges from 0 to 1. 

 

                                                   P@1 =
1

Q
∑ Precisioni@1Q

i=1           (4.3) 

 

    where 𝑄 is the number of queries and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖@1 is the precision at the 

top position for query 𝑖 as in Equation (4.3). 

 

4.2.4 P@3 (Precision at 3) 

 

    P@3 is similar to P@1 but considers precision at the top 3 positions. For 

each query, check if any of the top 3 documents in the ranked list are relevant. 

Calculate precision as the number of relevant documents among the top 3 is divided by 

3. The mean (average) precision at the top 3 positions is computed across all queries. 

P@3 measures the precision of the top 3 documents for each query. P@3 ranges from 0 

to 1. 

 

                                          P@3 =
1

Q
∑ Precisioni@3Q

i=1            (4.4) 

 

    where 𝑄 is the number of queries and  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖@3 is the precision at the 

top 3 positions for query 𝑖 as in Equation (4.4). 

 

4.3 Summary 

 
This chapter presents building the Myanmar News dataset for using in IR. It 

describes collecting, preparing and segmenting the Myanmar data obtained from Web. 

The Myanmar News datasets are also created. The number of news and different type 

of the Myanmar News contained in Myanmar dataset are represented and finally 

express the information of Myanmar datasets used in this work. Moreover, four 

evaluation methods such as MAP, MRR, P@1, and P@3 metrics are described in this 

chapter. 
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CHAPTER 5 

THE PROPOSED SYSTEM ARCHITECTURE 

 

Myanmar News retrieval is to retrieve query based on a Myanmar phrase. It is 

the way to make relevance documents on the basis of collected Myanmar datasets. 

There are many perspectives approaching to IR system from the aspects of data point 

of view, and state-of-the-art technologies to enhance the retrieval performance. This 

work emphasizes from the data point of view to boost the performance of the ranker 

models. The basic structure of the Myanmar News retrieval system, including 

retrieving and relevance of the documents as well as similarity score, is shown in this 

chapter. It also presents the design and implementation processes of proposed system 

architecture together with clear understanding of pictorial representation. 

 

5.1 Basic Structure of Information Retrieval System 

 
An IR system is developed in order to help users to discovery relevant 

information from a storehouse containing collection of documents. The idea of IR 

assumes that there exist several documents or records comprising data have been 

arranged in a suitable order for easy retrieval is depicted in Figure 5.1. 

 

 

 
 

 

 

 

 

 

 

Figure 5.1 Basic Structure of Information Retrieval System 
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5.2 Basic Structure of Neural Information Retrieval System 
 

Neural IR is a subfield of IR that leverages neural networks to improve the 

search and retrieval of relevant information from large datasets. Traditional IR 

systems often rely on techniques such as keyword matching and statistical methods, 

but Neural IR aims to enhance these processes by incorporating advanced machine 

learning models, particularly deep learning is depicted in Figure 5.2. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Basic Structure of Neural Information Retrieval System 

 
 

5.3 Proposed System Architecture 

 
The process of precisely retrieving documents through analysis of their 

relevance query is known as IR. This section describes the design and implementation 

of proposed Myanmar News retrieval system architecture with pictorial representation 

as shown in Figure 5.3. 

As shown in Figure, there are two phases in Myanmar News retrieval system: 

training and testing phase.  
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Figure 5.3 Proposed Architecture of Myanmar News Retrieval System 

 
 

In pre-processing steps, the original clean data are obtained from the raw data 

which come from online source data. As part of online source data, the raw data are 

mainly taken in the Zawgyi font. These fonts are converted to Unicode font.  

In the process of training neural ranking model, the training data for updating 

model weights given a training dataset and designed to continue training from a 

previous checkpoint if restarted, by using saved versions of both the ranker weights 

and optimizer state and by fast-forwarding a dataset back to its previous state. The 

neural ranking model based on DRMM, MP, Duetl, KNRM, PACRR, CONV-KNRM, 

MZ-CONV-KNRM is constructed in the training phase. The model corresponding to 

each of the individual token is obtained by adapting the parameters with the use of 

evaluation metrics such as MAP, MRR, P@1, and P@3.  

After the training phase, the neural ranking model is assessed in the testing 

phase. At first, the input text query is preprocessed and then retrieved the relevance of 

similarity score documents.  

 

5.4 Fine-tuned Model 

 

The process of fine-tuning a machine learning model involves pre-trained it 

and then retraining it on a more focused, smaller collection of data. The goal of fine-

tuning is to preserve a pre-trained model's initial capabilities while modifying it to fit 

more specific use cases.  
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On the tasks for which it was fine-tuned, a fine-tuned model's performance can 

outperform the initial pre-trained model. An existing model that has already been 

trained on a sizable, varied data set to acquire a broad variety of features and patterns 

are the starting point for fine-tuning. Through the process of identifying underlying 

patterns and characteristics in its training data, the pre-trained model gains the ability 

to generalize during this initial training. The model learns to accurately understand 

fresh data over time. The goal of this procedure is to strike a compromise between 

optimizing the model's performance on the fine-tuning use case and preserving its 

important basic information. In order to do this, model creators frequently choose a 

lower learning rate, a hyper-parameter that specifies the amount by which a model's 

weights are changed during training. By preventing significant modifications to the 

already learned weights, a reduced learning rate can be set during fine-tuning to help 

ensure the model retains its current knowledge. 

Fine-tuning involves taking a pre-trained model and continuing its training on 

a smaller, task-specific dataset. This process adapts the general knowledge embedded 

in the pre-trained model to the specific requirements and nuances of the target task. 

Fine-tuning typically involves dataset preparation collecting and preparing a dataset 

that reflects the specific IR task or domain, transfer learning leveraging the pre-trained 

model and its learned representations, and task-specific training trains the model 

further using the prepared dataset, often with a lower learning rate to adjust the pre-

trained weights slightly. Fine-tuning enhances the model's ability to perform the 

specific IR task by adjusting it to the specific characteristics of the data. Since the 

model starts from a pre-trained state, it requires less time and computational resources 

compared to training from scratch. The model retains the broad language 

understanding from the pre-training phase while specializing in the specific IR task.  
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Figure 5.4 Example of Fine-tuned Model  

 

5.4.1 Popular Models and Techniques 

 

BERT (Bidirectional Encoder Representations from Transformers) is a widely 

used pre-trained language model that can be fine-tuned for various IR tasks, T5 (Text-

to-Text Transfer Transformer) is a model that converts all tasks into a text-to-text 

format and can be fine-tuned for specific IR applications, and GPT (Generative Pre-

trained Transformer) though primarily used for text generation, GPT models can be 

adapted for IR tasks through fine-tuning. 

A fine-tuned model in Neural IR is a powerful tool that combines the general 

language understanding of pre-trained models with the specific requirements of IR 

tasks, leading to more effective and efficient IR systems. 

 

5.5 Summary 

 
This chapter presents what Myanmar News Retrieval system is, the basic 

structures of IR system, and Neural IR system with pictorial representations. The 

design and implementation of proposed architecture of this work are explained in 

detail together with clear understanding of pictorial representation. 
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CHAPTER 6 

PERFORMANCE EVALUATIONS FOR MYANMAR NEWS 

RETRIEVAL 

 

This chapter presents the experimental setup regarding with building ranking 

models, the promising results derived from assessing the performance of the neural 

ranking models and showing the improvement of recognizing quality by Myanmar 

News dataset. Building or training the neural ranking models is one of the important 

phases of Myanmar News retrieval system employed. This is the process of retrieving 

the documents relevant to query and deals with collecting data from the online source. 

Only the neural ranking models are constructed, the performance of Myanmar News 

retrieval system can be assessed by comparing the different neural ranking models. 

The evaluation of Myanmar News retrieval performance is done with MAP, MRR, 

P@1, and P@3 with Myanmar News datasets. Moreover, the next experiment is fine-

tuned methods on different datasets: Myanmar News and Antique dataset. 

 

6.1 Building Deep Neural Ranking Models 

 
Retrieval models take as input a user query, and then present a set of 

documents that are relevant to the query. In order to return a useful set of documents 

to the user, the retrieval model should be able to rank documents based on the given 

query. This means that the model ranks the documents using features from both the 

query and documents. Machine learning algorithms can learn ranking models, and the 

inputs to these models are a set of often hand-crafted features. This setting is known 

as learning to rank (LTR) using hand-crafted features. These features are domain 

specific and time-consuming in terms of defining, extracting, and validating a set of 

specific features for a given task. In order to overcome the limitations of using 

handcrafted features, deep ranking models that accept raw text data as an input and 

learn suitable representations for inputs and ranking functions. A key feature in IR 

models is the relevance judgement.  

A ranking model with sufficient capacity is needed to capture the matching 

signals, and map document-query pairs to accurate prediction of a real-valued 

relevance score. Deep neural networks are known for their ability to capture complex 

patterns in both feature extraction and model building phases.  
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Due to the advantages of deep neural networks, designing neural ranking 

models to learn both features and model simultaneously. Neural ranking models have 

many challenges to address in IR tasks. First, the queries and documents have 

different lengths: the query is usually a short text that typically consists of a few 

keywords, and the document is long with both relevant and irrelevant parts to the 

query. Second, in many cases, the query and documents have different terms, so exact 

matching models cannot be used to accurately rank documents; a neural matching 

model should be designed to capture semantic matching signals to predict the 

relevance score. The semantic similarity is context dependent, and another challenge 

for the neural ranking model is to understand the context of both query and documents 

in order to generalize across multiple domains.  

 

6.2 Building Fine-tuned Model 

 

Pre-train a neural network model on a source dataset (such as the ImageNet 

dataset), also referred to as the source model. As the target model, a new neural 

network model is created. With the exception of the output layer, this duplicates all 

model designs and parameters on the source model. It expects that the knowledge 

gained from the source dataset is contained in these model parameters, and that this 

knowledge will also be relevant to the target dataset. Additionally, it is assumes that 

the source model's output layer is not employed in the target model because it is 

strongly correlated with the labels in the source dataset. To the target model, an output 

layer is added with as many outputs as there are categories in the target dataset. Next, 

the model parameters are initialized at random. Fine-tuning aids in enhancing the 

capacity of models to generalize when target datasets are significantly smaller than 

source datasets as shown in Figure 6.1. 

 The knowledge acquired from the source dataset is transferred to the target 

dataset through transfer learning. One typical method for transfer learning is fine-

tuning. With the exception of the output layer, the target model replicates the source 

model's entire model architecture and parameter set, fine-tuning them in light of the 

target dataset. On the other hand, the target model's output layer requires initial 

training. While training the output layer from scratch can require a higher learning 

rate, fine-tuning parameters often requires a lower learning rate.  
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Figure 6.1 Architecture of Fine-tuned Model  

 

6.3 Experiments 

Experiments are done on Myanmar News dataset based on deep neural 

ranking models. 

 

6.3.1 Experimental Setups  

 
The different deep neural ranking models for creating and training deep neural 

networks are conducted on gpu_determ, Ubuntu Linux machine. Python library is 

used to implement with Python programming language. When the given amount of 

training data is trained, all of the models are set at the 20 epochs.  

 

6.3.2 Data Setups 

 
This section trained different deep neural rankings models on the Myanmar 

News dataset as mentioned in Chapter 3. The detailed information of the Myanmar 

News dataset is presented in Table 6.1. It applied the DRMM [33], MP [40], Duetl 

[72], KNRM [34], PACRR [36], CONV-KNRM [35], MZ-CONV-KNRM [73] 

models in advance datasets.   

 

Output 

layer 

Layer L-1 

Layer 1 

Source 

dataset 

Pre-

train 
… 

Source model 

Output 

layer 

Layer L-1 

Layer 1 

Target 

dataset 

… 

Target model Random 

initialization 

copy 

copy 

copy 

Fine-tune 

Train 



89  

 

6.3.3 Experimental Results 

 

The evaluation results on different deep neural ranking models of Myanmar 

News retrieval are represented in this section to prove that the CONV-KNRM 

methods can also enhance the system performance. As this result, it can be studied 

that the score results are significantly different in MAP and MRR because MAP 

measures the average precision at different recall levels, providing an overall 

assessment of a ranking model's ability to retrieve relevant items across the entire list 

and MRR calculates the average of the reciprocal ranks of the first relevant items in 

the ranked lists, emphasizing the model's effectiveness in placing relevant items high 

in the list.  

 

Table 6.1 Statistics of Training, Testing and Validation  

the Myanmar News Dataset 

 

 
Number of 

documents 

Number of 

sentences 

Number of 

words 

Training Set 90,607 47,964,418 1,122,242,776 

Testing Set 13,940 3,784,204 93,569,044 

Validation Set 13,939 2,885,793 67,448,335 

 

The results obtained from the experiments can be seen in Figure 6.2 to 6.5. 

The comparisons of neural ranking performance on the Myanmar News dataset are 

illustrated in the following Figures: Figure 6.2 shows the performance measured by 

MAP, Figure 6.3 shows the performance measured by MRR, Figure 6.4 shows the 

performance measured by P@1, and Figure 6.5 shows the performance measured by 

P@3.  It can be observed that CONV-KNRM performs better than other neural 

ranking models. This demonstrates the versatility and adaptability of CONV-KNRM 

in addressing the retrieving task across various contexts and the similarity scores of 

different deep neural ranking models using the Myanmar News dataset.  
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Figure 6.2 Comparison of neural ranking performance on the  

Myanmar News dataset measured by MAP 

 

 

Figure 6.3 Comparison of neural ranking performance on the  

Myanmar News dataset measured by MRR 
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Figure 6.4 Comparison of neural ranking performance on the  

Myanmar News dataset measured by P@1 

 

 

Figure 6.5 Comparison of neural ranking performance on the  

Myanmar News dataset measured by P@3 

 

 
The best neural ranking model “CONV-KNRM” has been used as a baseline 

model for in this research work. The comparison was done between the fine-tuned 

ranking model and CONV-KNRM. During fine-tuning, it applied Vanilla-BERT fine-

tuned model to improve the performance of ranking.  
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Table 6.2 Comparison of Performance on CONV-KNRM and Fine-tuned  

Models on the Myanmar News Dataset measured by Evaluation Metrics 

 

Ranking and fine-tuned 

models 
MAP MRR P@1 P@3 

CONV-KNRM 0.1439 0.4066 0.3150 0.2450 

Fine-tuned Model 0.1472 0.4415 0.3700 0.2433 

 

Table 6.3 Comparison of Performance on CONV-KNRM and  

Fine-tuned Models on the Antique Dataset measured by Evaluation Metrics 

 

Ranking and fine-tuned 

models 
MAP MRR P@1 P@3 

CONV-KNRM 0.2031 0.5902 0.4800 0.3717 

Fine-tuned Model 0.2801 0.7101 0.5950 0.4967 

 

As in Table 6.2, fine-tuning using Vanilla-BERT is found to be better than 

CONV-KNRM in all evaluation metrics except P@3 on the Myanmar News dataset. 

Specifically, the MRR results were 0.4066 and 0.4415, which is the best statistically 

significant different score results on other evaluation metrics (MAP, P@1 and P@3), 

whereas for CONV-KNRM and Vanilla-BERT. As this result, it studied that the score 

results are significantly different in MAP and MRR because MAP measures the 

average precision at different recall levels, providing an overall assessment of a 

ranking model's ability to retrieve relevant items across the entire list and MRR 

calculates the average of the reciprocal ranks of the first relevant items in the ranked 

lists, emphasizing the model's effectiveness in placing relevant items high in the list.  

As in Table 6.3, the Antique datasets [22] is also used to see the clear 

performance of this ranking model in the experiments. The Antique datasets consists 

of 89M questions and answers–pair datasets collection. According to this experiments 

and results, observed that the fine-tuned model outperforms CONV-KNRM with the 

best score of 0.4415 in the Myanmar News dataset and 0.7101 in the Antique dataset 

in terms of MRR.  
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It can be clearly seen in Tables 6.2 and 6.3 that the fine-tuned model achieved 

better performance than the CONV-KNRM on the Myanmar News dataset, 

specifically, 0.0349 MRR value higher than the CONV-KNRM, and the fine-tuned 

model achieved better performance than the CONV-KNRM on the Antique dataset, 

specifically, 0.1199 MRR value higher than the CONV-KNRM. The experimental 

results provide interesting results while comparing the performance of different deep 

neural rankings on the Myanmar News dataset. The results suggest that the choice of 

fine-tuned technique can significantly impact the performance of the deep neural 

ranking models. 

 

6.4 Results and Discussion  

 

The comparisons of seven different deep neural ranking model architectures 

for Myanmar News retrieval are discussed in this chapter. The following is a list of 

the models that it experimented on Myanmar News dataset which contains 118,486 

documents that are taken from online source. In this chapter, word segmentation and 

stop-word removal is considered in text preprocessing step. The models are trained on 

GPU and implemented with Python by using Python library. Performance scores of 

the models have been evaluated with evaluation metrics. The best result is attained 

from comparing different deep neural ranking model as a CONV-KNRM. 

 

6.5 Summary 

 
This chapter presents the experimental results regarding with building deep 

neural ranking models, fine-tuned model, the discussion and analysis of promising 

results derived from assessing the performance of the different deep neural ranking 

models, fine-tuned model and showing the improvement of recognizing quality by 

Myanmar News retrieval on Myanmar News dataset.  
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CHAPTER 7 

CONCLUSION AND FUTURE WORKS 

 
Summarization of the dissertation, its advantages and limitations of proposed 

system are described and future works will be discussed in this chapter. 

 

7.1 Dissertation Summary 

 
This research focused on IR for the Myanmar News dataset which contained 

title and contents. Different experiments have been conducted, with a wide variety of 

deep neural ranking models, and a fine-tuned model. It was observed that the best-

performing model is fine-tuned model using Vanilla-BERT in this research. The 

statistical significance of the superior performance has been confirmed by comparing 

the results of the baseline CONV-KNRM and the fine-tuned model on the Myanmar 

News and Antique datasets. The experiments also indicate that the use of fine-tuning 

techniques can result in significant improvements in the performance of deep neural 

ranking models for different datasets. The experiment results suggest that fine-tuning 

approach can potentially be extended to other retrieval applications. Concerning 

further research as future work, it would be interesting to investigate the effect of 

adding more features to the textual data. This study adds valuable insights to the 

ongoing discussions within the field, paving the way for future research endeavors 

aimed at optimizing models to address a spectrum of challenges in IR. 

In this research as objective is to build the Myanmar News dataset first for 

applying to IR, Myanmar News dataset for sufficient amount of training data and to 

investigate the text quality by using fine-tuned techniques for the retrieving the 

similarity score. Myanmar News dataset are created as one of main contributions. The 

Myanmar News dataset is built for better performance by using these seven deep 

neural ranking model and especially fine-tuned model is the best performance on 

different datasets.  

This dissertation summarizes effectiveness of the Myanmar News dataset for 

retrieving the similarity score results on various deep neural ranking models and a 

fine-tuned model built with different training datasets.  
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7.2 Advantages  
 

Neural models, especially those based on deep learning, can capture complex 

semantic relationships between queries and documents, leading to more relevant 

search results and improved relevance and accuracy semantic understanding. Models 

like BERT understand context within queries and documents, improving the retrieval 

of contextually appropriate information.  

Neural IR systems can process natural language queries more effectively, 

handling nuances like synonyms, homonyms, and polysemy, enhanced query 

understanding in NLP. Neural networks can suggest relevant query expansions. 

Neural IR systems can handle and retrieve information across text data, 

providing a more comprehensive search experience.  

The ability to build end-to-end models that integrates various retrieval 

components (embedding, ranking, relevance feedback) into a single neural network, 

optimizing the entire process cohesively as end-to-end learning in unified models. 

 

7.3 Limitations 

 

Training and deploying deep neural networks require significant 

computational resources, including powerful GPUs or Tensor Processing Units 

(TPUs) and large memory capacities and high computational costs in resource 

intensive. The energy consumption of running large-scale neural models can be 

substantial, raising concerns about sustainability.  

Effective training of neural retrieval models often requires vast amounts of 

labeled data, which can be difficult and expensive to obtain and data requirements in 

large datasets. The performance of Neural IR systems is heavily dependent on the 

quality of the training data, and biases in the data can lead to biased retrieval results 

and quality of data.  

 

7.4 Future Works 

 
The results show that, with corresponding relative improvements, the 

performance of models using the Myanmar News dataset beats that of models using 

different deep neural ranking modeling. By further optimization, these examining 

techniques will be used for other research.  
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The retrieval system of different deep neural ranking model and fine-tuned 

model will be implemented as extensions of the Myanmar language. End to end 

learning approach will be pursued in IR as future work for more improving the 

performance of Myanmar News Retrieval.  
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LIST OF ACRONYMS

IR   Information Retrieval 

IT   Information Technology 

DRMM  Deep Relevance Matching Model 

MP   Match-Pyramid 

Duetl   Duet local 

KNRM  Kernelized Neural Ranking Model 

PACRR  Position-Aware Convolutional Recurrent Relevance 

CONV-KNRM Convolutional Kernelized Neural Ranking Model 

MZ-CONV-KNRM MatchZoo-CONV-KNRM 

Vanilla-BERT Vanilla-Bidirectional Encoder Representations from 

Transformers 

MAP   Mean Average Precision 

MRR    Mean Reciprocal Rank 

P@1    Precision at 1 

P@3   Precision at 3 

BM25   Best Matching 25 

LTR   Learning-To-Rank 

NLP   Natural Language Processing 

Neural IR  Neural Information Retrieval 

AI   Artificial Intelligent 

QA   Question Answer 

DL   Deep Learning 

Word2Vec  Word-to-Vector 

GloVe   Global Vectors 
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BERT   Bidirectional Encoder Representations from Transformers 

GPT   Generative Pre-trained Transformer 

RNNs   Recurrent Neural Networks 

LSTM   Long Short-Term Memory 

CBOW  Continuous Bag of Words 

CNN   Convolutional Neural Network 

ELMo   Embeddings from Language Models 

Doc2Vec  Document-to-Vector  

DSSM   Deep Structured Semantic Models 

BOW   Bag-of-Words 

VSM   Vector Space Model 

LambdaMART combines LambdaRank and Multiple Additive Regression 

Trees (MART) 

URL Uniform Resource Locator 

RoBERTa Robustly Optimized BERT Pre-training Approach 

DNNs Deep Neural Networks 

T5 Text-to-Text Transfer Transformer 

CNN   Convolutional Neural Network 

IDF-based  Inverse Document Frequency-based 

DistilBERT Distilled BERT 

CLM Casual Language Model 

MLM Masked Language Model 

CPU Central Processing Unit 

DPR Dense Passage Retrieval 

COIL Contextualized Inverted List 



99 
 

ME-BERT Multi-Vector Encoding from BERT  

ColBERT Contextualized Late Interaction over BERT 

ANCE Approximate nearest neighbor Negative Contrastive Estimation 

STAR Structured Transformer-based Autoencoder for Representation 

learning 

DNN Deep Neural Network 

ANN Artificial Neural Network 

LLM Large Language Model 

LLMs Large Language Models 

GPT Generative Pre-trained Transformer 

ViTs Vision Transformers 

CNNs   Convolutional Neural Networks 

ML  Machine Learning 

PEFT Parameter-Efficient Fine-Tuning 

GPU Graphics Processing Unit 

LoRA Low Rank Adaptation 

QLoRA Quantized Low Rank Adaptation 

LoRA Low Rank Adaptation 

MSE Mean Squared Error 

SGD Stochastic Gradient Descent 

Adam Adaptive Moment Estimation 

RMSprop Root Mean Square Propagation 

FNNs Feedforward Neural Networks 

GRUs   Gated Recurrent Units 

VAEs Variational Auto-encoders 
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GANs Generative Adversarial Networks 

MLP Multilayer Perceptron 

LeToR   Learning-To-Rank 

soft-TF  soft-Term Frequency 

ResNet   Residual Network 

NER   Named Entity Recognition 

UCSY   University of Computer Studies, Yangon 

NSP   Next Sentence Prediction 

TPUs   Tensor Processing Units 
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