
DEEP NEURAL RANKING MODELS FOR

MYANMAR NEWS RETRIEVAL

HAY MAN OO

UNIVERSITY OF COMPUTER STUDIES, YANGON

JULY, 2024

Deep Neural Ranking Models for Myanmar News Retrieval

Hay Man Oo

University of Computer Studies, Yangon

A thesis submitted to the University of Computer Studies, Yangon in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy

July, 2024

Statement of Originality

I hereby certify that the work embodied in this thesis is the result of original

research and has not been submitted for a higher degree to any other University or

Institution.

…..…………………………… .…………........…………………………

Date Hay Man Oo

i

ACKNOWLEDGEMENTS

First of all, I would like to thank the Union Minister, the Ministry of Science

and Technology for granting me for full facilities support during the Ph. D Course at

the University of Computer Studies, Yangon.

I would like to express my special appreciation and deepest gratitude to Dr.

Mie Mie Thet Thwin, Former Rector of the University of Computer Studies, Yangon,

for giving me kindness and morality supports.

Secondly, I would like to express very special thanks to Dr. Mie Mie Khin, the

Rector, the University of Computer Studies, Yangon, for allowing me to do this

research and giving me technical supports during the period of my research.

My greatest pleasure and the deepest appreciation to my supervisor, Dr. Win Pa

Pa, Professor, Natural Language Processing Lab., University of Computer Studies,

Yangon for her kindly support, encouragement, excellent mentorship, constructive

comments and practical advice throughout the research period. This research would not

be possible without her supervision, invaluable guidance and constructive ideas. I really

gratitude for her supports which lead me to this point. She helped me in developing

skills to present the progress of research work and enhancing my interests in the area

of Information Retrieval.

I would like to thank and respect to Dr. Sabai Phyu, Professor, and former

Dean of the Ph.D 11
th

 Batch, University of Computer Studies, Yangon, for her clear

guidance, inspiration and encouragement.

I greatly appreciate and acknowledge the kindly support, motivation,

encouragement and valuable suggestions received from Dr. Tin Thein Thwel,

Professor, University of Computer Studies, Yangon, for her advice and

encouragement during my research.

I would like to deeply special thanks and appreciate to Dr. Si Si Mar Win,

Professor and Dean of the Ph.D 11
th

 Batch, University of Computer Studies, Yangon,

for her great patience, valuable suggestions, motivation and kindly supports in

everything.

I deeply and specially thank the external examiner, Dr. Aung Nway Oo,

ii

Professor, University of Information Technology, for her patience in critical reading,

valuable comments and suggestions in the preparation of the dissertation.

I would like to mention my special appreciation and thanks to Dr. Khin Mar

Soe, Professor, Head of Natural Language Processing Lab., University of Computer

Studies, Yangon, for her insightful advice and kindly suggestions, and providing me

with the institutional resources.

I would like to extend my special thanks to Dr. Aye Mya Hlaing, Associate

Professor, Natural Language Processing Lab., University of Computer Studies,

Yangon, for her excellent guidance, caring, patience, and providing me with excellent

ideas and kindly supports in everything.

I am indeed obliged to Daw Mya Thandar, Associate Professor of English

Department., University of Computer Studies, Yangon, for her careful assistance from

the language point of view and pointed out the correct usage in my dissertation.

My sincere thanks also go to all my respectful teachers for giving us valuable

lectures and knowledge during the Ph.D. course work.

I also thank my friends from Ph.D. 11th batch for providing support and

friendship that I needed.

Last but not least, I would like to express my indebtedness and gratitude to my

beloved parents, aunts and only one brother for their positive encouragement in

morality, eternal love, endless support and always believing in me. They are always

supporting and encouraging me during the research journey and also helping the

financial supports.

iii

ABSTRACT

This dissertation focuses on enhancing Myanmar Information Retrieval (IR)

system to generate more natural text for a given input text. Typical IR systems have

two main components: text query (user needs or preferences) and text documents

(related to text query). Both text query and documents are important for the clarity

and effectiveness of the IR system. Therefore, this research is emphasized on both text

query and documents in Myanmar IR system.

In the contemporary era dominated by Information Technology (IT), search

engines such as Google have become ubiquitous tools for individuals seeking access

to a vast array of information. These platforms serve as indispensable resources,

enabling users to effortlessly locate and acquire knowledge on a myriad of topics

according to their needs and interests. Searching for News in English or Myanmar has

become incredibly convenient, requiring a minimal effort to access a wealth of

information.

The structure of IR has been altered dramatically by the inclusion of neural

models, facilitating a more refined analysis of textual data. The textual data for

Myanmar News dataset has been prepared in this research. In this research, the

Myanmar News dataset was collected from Myanmar News website. In this dataset,

each document contains two parts: title and contents.

The evaluations on different neural ranking models were conducted and so the

results are thoroughly analyzed and discussed. A comprehensive analysis has started,

with immersion in the use of various neural ranking models to comprehend intricate

semantic connections, ultimately enhancing the effectiveness of IR systems. Pivotal

neural ranking models such as DRMM, MP, Duet, KNRM, PACRR, CONV-KNRM,

MZ-CONV-KNRM, which have left a profound impact on the field, are delved deep

into, investigating their implications for enhancing the precision and efficiency of

retrieval systems.

Another evaluation was done using a fine-tuning approach with the pre-trained

model, Vanilla-BERT. The superior performance of this model compared to baseline

methods, showcasing improvements in MAP, MRR, P@1 and P@3 overall retrieval

performance. The implications of these findings extend to retrieve the similarity score

results, highlighting the potential for enhanced IR capabilities.

iv

Table of Contents

Acknowledgements

Abstract

Table of Contents

List of Figures

List of Tables

List of Equations

1. INTRODUCTION

1.1 Problem Statements…………………………………………………..

1.2 Motivation of the Research ………………………………………….

1.3 Intentions of the Research…………………………………………...

1.4 Contributions of the Research ……………………………………….

1.5 Organization of the Research ………………………………………..

2. LITERATURE REVIEW AND RELATED WORKS

2.1 Overviews of Neural Information Retrieval………………...............

2.1.1 Document Understanding………….……..………….……......

2.1.2 Semantic Matching………………….………………………….

2.1.3 Relevance Ranking………………...…………..……………….

2.1.4 Representation Learning………………………….………….…

2.1.4.1 Text Representations for Ranking……...……….………

2.1.4.2 Bag-of-Words (BOW) Encoding .……….………………

2.1.4.3 Learning-to-Rank (LTR)….………….……….…………

2.1.4.4 Word Embeddings………….………….……….………

2.2 Interaction-focused Systems………….………….……….…………

2.2.1 Convolutional Neural Networks (CNNs)..………….……......

2.2.2 Pre-trained Language Models..………….……......….……......

2.2.3 Ranking with Encoder-only Models…….……......….……......

2.2.4 Ranking with Encoder-decoder Models.……......….……......

2.2.5 Fine-tuning Interaction-focused Systems......….……..….…….

2.3 Representation-focused Systems……….………….……….………

2.3.1 Single Representations..………….……......….……….………

2.3.2 Multiple Representations………….……......….……….………

2.3.3 Fine-tuning Representation-focused Systems.……….………

i

iii

iv

viii

x

xi

1

3

3

4

4

5

7

8

10

10

 12

13

13

15

15

16

18

18

20

23

25

27

28

28

30

33

v

2.4 Retrieval Architectures.……………………………………………

2.5 Application Areas of IR and Neural IR…………………….……….

2.6 Overview of Deep Neural Networks…….……….………….……….

2.6.1 Applications of DNNs in IR…….……......….……….………

2.7 Overview of Pre-trained Models…….……….………….…………

2.7.1 Overview of Fine-tuned Models….……......….……….………

2.7.2 Large Language Models (LLM)….……......….……….………

2.7.3 Parameter Efficient Fine-Tuning (PEFT)......….……….………

2.7.3.1 Partial Fine-tuning ……...……….…………….………

2.7.3.2 Additive Fine-tuning ……...……….…………….………

2.7.3.3 Adapters ……...……….…………….…………….……

2.7.3.4 Re-parameterization ……...……….…………….………

2.8 Summary ………….……….………….……………….………….…

3. DEEP NEURAL RANKING MODELS

3.1 Models of Neural IR System……………….……………………...

3.2 Deep Neural Network in Information Retrieval …………………..

3.2.1 Key Components and Architectures..………………………...

3.2.2 Popular DNN Architectures in Information Retrieval..………...

3.2.3 Advantages of Using DNNs in Information Retrieval ………...

3.2.4 Training Process of DNN ….………...………...…...………...

3.2.5 Types of DNN .………..………...………....………...………...

3.3 Deep Neural Ranking Models...…………………………………...

3.3.1 Deep Relevance Matching Model (DRMM)…………………...

3.3.2 Match-Pyramid (MP)…………………...…………………......

3.3.3 Duetl…………………...………………...…………………....

3.3.4 Kernelized Neural Ranking Model (KNRM)………………...

3.3.5 Position-Aware Convolutional Recurrent Relevance Model

(PACRR) …………………...………………...………………..

3.3.6 Convolutional Kernelized Neural Ranking Model (CONV-

KNRM)…………………...…...………………...…………….

3.3.7 MatchZoo-CONV-KNRM (MZ-CONV-KNRM)……………...

3.4 Fine-tuned Model……….………………………………..…....…... Ant Colony Optimization 44

3.4.1 Bidirectional Encoder Representations from Transformers

35

36

39

39

39

40

41

44

45

45

46

46

47

48

48

48

49

49

49

50

50

51

51

53

55

58

60

63

66

67

71

vi

(BERT) …………………...…...………………...……………. Ant Colony Optimization 44

3.5 Summary …………………...…...………………...………………….

4. BUILDING MYANMAR NEWS DATASET

4.1 Building Myanmar News Dataset…. ………………………………..

4.4.1 Data Pre-processing ……...…...………………...…………….

4.4.1.1 Word Segmentation…………...……….…………….…

4.4.1.2 Stop-word Removal…………...……….…………….…

4.2 Evaluation Metrics for Myanmar News Retrieval…………………..

4.2.1 MAP (Mean Average Precision)………………...…………….

4.2.2 MRR (Mean Reciprocal Rank).………………...…………….

4.2.3 P@1 (Precision @ 1) ………………...…………….……….

4.2.4 MRR (Precision @ 3) .………………...……………. ……….

4.3 Summary ……………………………………………………………

5. THE PROPOSED SYSTEM ARCHITECTURE

5.1 Basic Structure of Information System Architecture………………..

5.2 Basic Structure of Information System Architecture ………………

5.3 Proposed System Architecture….…………….………………………

5.4 Fine-tuned Model …………………………..….…………….………

5.4.1 Popular Models and Techniques………………...…………….

5.5 Summary……………………………………………………………..

6. PERFORMANCE EVALUATIONS FOR MYANMAR NEWS

RETRIEVAL

6.1 Building Deep Neural Ranking Models…………………………….

6.2 Building Fine-tuned Model…………………..…………………..….

6.3 Experiments ……………………….…………….………………..…

6.3.1 Experimental Setups ………………...…………….…………..

6.3.2 Data Setups ………………...…………….…………..………..

6.3.3 Experimental Results ………………...…………….…………..

6.4 Results and Discussion………………………………………………

6.5 Summary ……………………………………………………………

7. CONCLUSION AND FUTURE WORK

7.1 Dissertation Summary…….………….………………………………

7.2 Advantages………………..………………………………………....

74

75

75

76

77

77

78

79

79

79

80

80

81

81

82

82

83

85

85

86

86

87

88

88

88

89

93

93

94

94

95

vii

7.3 Limitations……………………………………………….……….….

7.4 Future Work……………………………………………….…….……

Author’ Publications…………………………………….……………………...

Bibliography…………………………………………………………………….

95

95

viii

LIST OF FIGURES

2.1 Example of Neural Information Retrieval (Neural IR) …………………... 9

2.2 Example of Relevance Ranking ………………………….………………. 13

2.3 Representation-based decomposition of a ranking function…………….. 14

2.4
Scheme of an interaction-focused model based on convolutional neural

networks …………….………………………….……………….……....
19

2.5
Transfer learning of a pre-trained language model to a fine-tuned

language model ……….………………………….……………….……..
23

2.6 BERT classification model for ad-hoc ranking….……………….…….. 25

2.7 T5 model for ad-hoc ranking ….……………….………………….……... 26

2.8 Representation-focused system.……………….………………….……... 30

2.9
Re-ranking pipeline architecture for interaction-focused Neural IR

systems.……………….………………….……...………………….…….
35

2.10
Dense Retrieval Architecture for Representation-focused Neural IR

systems…………….………………….……...….………………….……
36

3.1 Architecture of the Deep Relevance Matching Model…………………… 53

3.2 Model structure of the Match-Pyramid …………...……………………… 55

3.3 Architecture of the Duetl.………………… ………...…………………… 57

3.4 Architecture of the Kernelized Neural Ranking Model………………… 60

3.5 Architecture of the Position-aware Convolutional Recurrent Relevance… 62

3.6 Architecture of the Convolutional Kernelized Neural Ranking Model… 65

3.7 An overview of the Match-Zoo Architecture……...……………………… 67

3.8 BERT for query-document matching……...…………………………… 70

5.1 Basic Structure of Information Retrieval System……………………… 81

5.2 Basic Structure of Neural Information Retrieval System………………. 82

ix

5.3 Proposed Architecture of Myanmar News Retrieval System…………….. 83

5.4 Example of Fine-tuned Model.……………………………..…………….. 85

6.1 Architecture of Fine-tuned Model……………………..………………… 88

6.2
Comparison of neural ranking performance on the Myanmar News

dataset measured by MAP …………………………..……………………
90

6.3
Comparison of neural ranking performance on the Myanmar News

dataset measured by MRR…..……………………………………………
90

6.4
Comparison of neural ranking performance on the Myanmar News

dataset measured by P@1 ……………….………………….…………
91

6.5
Comparison of neural ranking performance on the Myanmar News

dataset measured by P@1 ……………………………………..…………
91

x

LIST OF TABLES

Table 4.1 Statistics of Myanmar News Datasets…………………………… 76

Table 4.2 Example of Word Segmentation ……………………………..… 77

Table 4.3 Example of Stop-word Removal…………………………………. 78

Table 6.1 Statistics of Training, Testing and Validation the Myanmar News

Dataset………………………………….…………………………

 89

Table 6.2 Comparison of Performance on CONV-KNRM and Fine-tuned

Models on the Myanmar News Dataset measured by Evaluation

Metrics ………………………………….………………………

92

Table 6.3 Comparison of Performance on CONV-KNRM and Fine-tuned

Models on the Antique Dataset measured by Evaluation Metrics

…………………………………….…….…………………………

92

xi

LIST OF EQUATIONS

Equation 2.1……………………………………………………………………... 14

Equation 2.2……………………………………………………………………... 21

Equation 2.3……………………………………………………………………... 24

Equation 2.4……………………………………………………………………... 24

Equation 2.5……………………………………………………………………... 24

Equation 2.6……………………………………………………………………... 24

Equation 2.7……………………………………………………………………... 26

Equation 2.8……………………………………………………………………... 26

Equation 2.9……………………………………………………………………... 27

Equation 2.10…………………………………………………………………... 27

Equation 2.11…………………………………………………………………... 27

Equation 2.12…………………………………………………………………... 27

Equation 2.13 …………………………………………………………………... 27

Equation 2.14 …………………………………………………………………... 28

Equation 2.15 …………………………………………………………………... 28

Equation 2.16 …………………………………………………………………... 29

Equation 2.17 …………………………………………………………………... 29

Equation 2.18 …………………………………………………………………... 29

Equation 2.19 …………………………………………………………………... 29

Equation 2.20 …………………………………………………………………... 31

Equation 2.21 …………………………………………………………………... 31

xii

Equation 2.22 …………………………………………………………………... 31

Equation 2.23 …………………………………………………………………... 31

Equation 2.24 …………………………………………………………………... 31

Equation 2.25 …………………………………………………………………... 31

Equation 2.26 …………………………………………………………………... 31

Equation 2.27 …………………………………………………………………... 32

Equation 2.28 …………………………………………………………………... 32

Equation 2.29 …………………………………………………………………... 32

Equation 2.30 …………………………………………………………………... 32

Equation 2.31 …………………………………………………………………... 33

Equation 2.32 …………………………………………………………………... 33

Equation 2.33 …………………………………………………………………... 34

Equation 2.34 …………………………………………………………………... 34

Equation 3.1……………………………………………………………………... 52

Equation 3.2……………………………………………………………………… 54

Equation 3.3 …………………………………………………………………….. 57

Equation 3.4 …………………………………………………………………….. 59

Equation 3.5 …………………………………………………………………….. 62

Equation 3.6 …………………………………………………………………….. 64

Equation 3.7 …………………………………………………………………….. 69

Equation 4.1 …………………………………………………………………….. 79

Equation 4.2 …………………………………………………………………….. 79

xiii

Equation 4.3 …………………………………………………………………….. 80

Equation 4.4 …………………………………………………………………….. 80

1

CHAPTER 1

INTRODUCTION

Text Information Retrieval (IR) systems aim to retrieve text documents that

can satisfy the information requirements of their users, usually conveyed through

textual queries. Over time, this inherently ambiguous description has been

standardized and defined based on the particular characteristics of documents,

information requirements, and users. The essence of the formalization revolves

around the notion of a document's relevance concerning a query and the methods for

assessing relevance. Over time, numerous ranking models have been suggested to

gauge the relevance of documents in response to a query. These models rely on the

data presented by the queries and documents, which are utilized to generate 'relevance

signals'. Numerous ranking models have emerged over time, spanning from Boolean

models to probabilistic and statistical language models. These 'bag of words' models

utilize the presence or frequency of query terms in documents to deduce their

relevance to a query, utilizing manually created functions to aggregate these instances,

such as Best Matching 25 (BM25).

As the Internet and social platforms have become more prevalent, additional

sources of relevance information about documents have been recognized. Machine

learning techniques have demonstrated their effectiveness in handling the multitude of

relevance signals. Their utilization to prioritize documents based on relevance

estimates relative to a query has led to the development involving numerous

Learning-To-Rank (LTR) models. Relevance signals serve as input features in LTR

models, and they are frequently crafted manually, which can be a time-consuming

endeavor. Inspired by their advancements in various computer vision and Natural

Language Processing (NLP) tasks, neural networks currently stand as the state-of-the-

art method for ranking documents in terms of query relevance.

Neural Information Retrieval (Neural IR) is centered on the retrieval of text

documents that meet the information requirements of users, utilizing deep neural

networks. In Neural IR, neural networks are commonly employed in two distinct

manners: first, to acquire the ranking functions that amalgamate relevance signals for

arranging documents, and second, to acquire abstract representations of documents

and queries to encapsulate their relevance information.

2

Below, an overview of the latest methodologies in Neural IR is presented

below the chapter 2. Considering the rapidly evolving nature of research in this field,

it is acknowledged that the coverage may not encompass every aspect of Neural IR.

However, a structured introduction to the key concepts and current systems within the

field are aimed to be offered.

In the contemporary era, an age dominated by information is inhabited, where

an unprecedented volume of data is generated by individuals, reaching into the

quintillions of bytes on a daily basis. Within the domain of IR systems, serve as

efficient tools designed to swiftly retrieve necessary information from vast and

extensive data collections. IR systems have seamlessly integrated into the fabric of

daily existence, with ubiquitous search engines like Google processing billions of

searches daily. Virtually every Myanmar News website incorporates a search bar,

allowing individuals to effortlessly locate articles, products, individuals, and more.

Beyond their direct impact on users, IR systems play a pivotal role in supporting

various Artificial Intelligence (AI) applications, sourcing valuable data for

downstream tasks like data analysis, recommendation systems, Question Answering

(QA), and dialogue generation. Nevertheless, the exclusive emphasis which is on

learning relevance patterns demands extensive training data and still falls short in

achieving robust generalization, particularly when faced with tail queries [2] or

unexplored search domains [3].

At the heart of IR lies the essential task of evaluating the relevance between a

user's query and a document. Contemporary IR systems have traditionally depended

on bag-of-words retrieval models, wherein the number of shared words between the

query and the document is computed for relevance assessment. This streamlined

representation of natural language facilitates the retrieval system in swiftly scanning

through vast collections of millions or billions of documents, rendering large-scale

retrieval feasible and efficient. Nevertheless, the practice of simply counting shared

words provides a limited and superficial method for modeling the relevance in search

contexts. At an intuitive level, an improved IR system ought to possess the capability

to comprehend the meanings embedded in the text and discern the semantic

relationships between queries and documents.

There has been a significant surge in interest and attention towards enhancing

language understanding within the realm of IR. Despite concerted efforts, the

incorporation of advanced NLP techniques into retrieval has, for the most part,

3

yielded limited success. In recent times, neural networks have emerged as a potent

and transformative paradigm for modeling natural language. The focus of this

dissertation is to improve language comprehension in IR through the utilization of

neural networks. It centers on addressing two core challenges within IR: the

representation of textual content and the modeling of relevance. The discussion delves

into the inherent difficulties of these challenges, introduces innovative neural network

methodologies to overcome them, and showcases the effectiveness of these

approaches in surpassing the limitations of earlier state-of-the-art retrieval systems.

This research utilizes different neural network methods applied NLP and Deep

Learning (DL) techniques on a collection of documents. Neural ranking models

training Myanmar news datasets were enriched.

1.1 Problem Statements

Neural IR is a field that addresses various challenges and problems related to

improving the effectiveness of IR systems using neural network-based techniques.

A significant problem in Neural IR as semantic matching is how to develop

models that can understand and match the semantics of queries and documents for

more accurate retrieval.

Neural IR aims to improve the ranking of documents by developing models as

ranking relevance that can accurately and efficiently score the relevance of documents

to queries.

In many IR applications, it can be challenging to obtain large amounts of

labeled data for training neural models learning from limited data. Developing

techniques for effective learning from limited data is a problem, especially when pre-

training on large corpora is not feasible.

Struggled with the development and evaluation of Neural IR models, the

comparison of different models and techniques is included as model development and

comparison:.

Needed access to pre-trained models and datasets to develop, experiment with

Neural IR approaches efficiently accesses to pre-trained models and data.

1.2 Motivations of the Research

In the contemporary era dominated by IT, search engines such as Google have

4

become ubiquitous tools for individuals seeking access to a vast array of information.

These platforms serve as indispensable resources, enabling users to effortlessly locate

and acquire knowledge on a myriad of topics according to their needs and interests.

Searching for news and updates has become incredibly convenient, requiring minimal

effort to access a wealth of information in Myanmar or English. The structure of IR

has been altered dramatically by the inclusion of neural models, facilitating a more

refined analysis of textual data.

1.3 Intentions of the Research

The main purpose of this research is to enhance Myanmar IR system that can

generate the more relevance results score. For promoting the accuracy of ranking

model, neural network architectures such as Deep Relevance Matching Model

(DRMM), Match-Pyramid (MP), Duetl, Kernelized Neural Ranking Model

(KNRM), Position-Aware Convolutional Recurrent Relevance (PACRR),

Convolutional Kernelized Neural Ranking Model (CONV-KNRM) and MatchZoo-

CONV-KNRM (MZ-CONV-KNRM) have been applied in Myanmar News Retrieval

and the most suitable neural network architecture for Myanmar News has been

investigated. The following are the other objectives:

1. To develop deep neural ranking model for Myanmar News Retrieval

2. To analyze different models in Neural IR systems

3. To assess the performance of Myanmar News Retrieval systems by using

different evaluation metrics

4. To improve the relevance score of the similarity between user requirements

and Myanmar News Dataset

5. To point out the importance of a large amount of Myanmar News corpus

required for the development of Myanmar News Retrieval systems

6. To apply neural network architectures such as Deep Neural Ranking

Models and Pre-trained Language Model for Myanmar News Retrieval

1.4 Contributions of the Research

This research has four main contributions. The very first contribution of this

research is creating a new kind of annotated Myanmar News dataset (title and its

related contents). Collection is manually to retrieve from Myanmar News websites.

5

Specifically in the recent year, IR as desired query or user preferences rarely

searches for Myanmar News. Therefore, developing Myanmar News retrieval in IR

System is the second contribution.

The third contribution is proposing and applying Myanmar News Dataset for

query-document features extraction. Many IR systems give a query and return the

documents. Therefore, the Myanmar News Dataset is proposed and applied with

neural network extract the query-document features.

The final contribution of this research is applying Deep Neural Ranking

Model and Fine-tuned Model for Myanmar News retrieval. Query-document features

can be obtained by deep learning form large amount of Myanmar News dataset and

applying these features to rank with neural network models and fine-tuned model.

1.5 Organization of Research

This dissertation is comprised with seven chapters including literature review,

related work and background theory of IR research, building Myanmar News dataset

for retrieval, description of proposed system architecture, nature of text data in

Myanmar dataset, feature extraction process, implementing Deep Neural based and

fine-tune based ranking models with data retrieving and ranking methods,

experimental results, conclusion and future work of research on Myanmar News

retrieval.

Chapter 1 describes the introduction, objectives, focus and contributions of the

Myanmar News retrieval research work. The literature reviews on Neural IR, related

work of this research, applied areas, previous researches of Neural IR system, pre-

trained models, fine-tuned model, and evaluation metrics of Myanmar News retrieval

are described in Chapter 2. Background theories required for Deep Neural Network

process are described in Chapter 3. It includes the ranker models about DRMM, MP,

Duetl, KNRM, PACRR, CONV-KNRM, and MZ-CONV-KNRM, likelihood of score

computation and finally describes the performance metric. Chapter 4 explains how to

collect and prepare the Myanmar News data from Myanmar website sources and

building query-document datasets for Myanmar News retrieval. Moreover, the

Myanmar information and statistics of Myanmar News datasets are also reported in

this chapter. Chapter 5 describes general architectures of Myanmar IR system, and

design and implementation of proposed system architecture for Myanmar News

6

retrieval. Chapter 6 describes the performance analysis for Myanmar News retrieval.

It includes the different rankers and fine-tuned models, the experimental setup,

performance results and discussion about the ranking models. Moreover, the proposed

model is compared with baseline models and word embedding features are also

explored and investigated in this chapter. Finally, Chapter 7 presents the conclusion

extracted from this research work with the advantages and limitations of research

work and describes the future research lines to continue it.

7

CHAPTER 2

LITERTATURE REVIEW AND RELATED WORK

This chapter describes the literature review on Neural IR techniques, related

work of this research and previous researches of Neural IR on Myanmar language.

Evaluation metrics of Neural IR are also briefly presented in this chapter.

Machine learning plays a role in many aspects of modern IR systems, and

deep learning is applied in all of them. The fast pace of modern-day research has

given rise to many different approaches for many different IR problems where

designing features used to be a crucial aspect and contribution of newly proposed IR

approaches, and the focus has shifted to designing network architectures instead. As a

consequence, many different architectures and paradigms have been proposed, such as

auto-encoders, recursive networks, recurrent networks, convolutional networks,

various embedding methods, deep reinforcement and deep-learning, and, more

recently, generative adversarial networks, of which most have been applied in IR

settings [34].

In recent time, machine learning models have surpassed state-of-the-art

solutions across various domains, including health monitoring, computer vision and

NLP. In particular, deep neural networks have been successfully applied to diverse

area including IR [37]. A retrieval model aims to enhance traditional exact-match

models like BM25 by incorporating semantic matching signals derived from a neural

embedding matching model. This model trains the neural embedding to represent

language structures and semantics that cannot be adequately captured by lexical

retrieval methods, using a novel residual-based embedding learning approach [16].

The large-scale query-document retrieval problem: given a query (e.g., a

question), return the set of relevant documents (e.g., paragraphs containing the

answers) from a large document corpus. This problem is often solved by two steps.

The retrieval phase first reduces the solution space, returning a subset of candidate

documents. The scoring phase then re-ranks the documents. Critically, the retrieval

algorithm not only desires high recall but also requires being highly efficient,

returning candidates in time sublinear to the number of documents [8].

Ranking models lie at the heart of research on IR. During the past decades,

different techniques have been proposed for constructing ranking models from

8

traditional heuristic methods and probabilistic methods, to modern machine learning

methods. Recently, with the advance of deep learning technology, it has witnessed a

growing body of work in applying shallow or deep neural networks to the ranking

problem in IR, referred to as neural ranking models [20].

Nearly three decades have passed since the introduction of BM25, and it has

been more than ten years since the inception of learning-to-rank methodologies.

Throughout the last few decades, researchers have conducted extensive investigations

aimed at integrating advanced NLP techniques into IR. However, the majority of

these endeavors has fallen short of practical implementation. The prevailing approach

in applying NLP to IR involves utilizing linguistically motivated elements such as

part-of-speech tags, grammar-based parsers, word correlations, etc., derived from both

documents and queries. These linguistic features are then employed to create

representations for retrieval purposes.

As an illustration, research has delved into the exploration of techniques like

dependency parsing [71] and part-of-speech tagging [31] to enhance the

understanding of queries and documents in IR. While these parsers provided

inspiration, their fragility and limitation to well-formed text were notable drawbacks.

Moreover, the extracted linguistic signals often necessitated additional complex

processing to become valuable for retrieval.

A deep neural network comprises an extensive assembly of elementary

mathematical units, referred to as neurons, arranged in layers. These layers can be

collectively trained to perform intricate tasks. The hierarchical arrangement of layers

in the model allows it to take raw data as input and progressively acquires high-level

features through the learning process. One of the key advantages of neural networks

over traditional feature-based NLP techniques is their capacity to autonomously

uncover intricate features. Neural networks leverage distributed representations,

which represent another notable strength of this approach. Nevertheless, within the

domain of IR, the enhancements achieved by neural networks seem somewhat modest

in comparison to the strides made by traditional techniques.

2.1 Overview of Neural Information Retrieval

The field of IR includes a wide range of content types and tasks. IR is the

science of searching for and retrieving relevant information from a collection of

documents. It is a fundamental task in many applications, including web search engines,

9

digital libraries, and document management systems. Neural networks are a class of

machine learning models motivated by the human brain. They consist of interconnected

nodes (neurons) that process and transform data.

Neural IR is one of the important research topics in the field of text processing

and is also known as Neural IR. Neural IR is an advanced area of research in the field of

IR and NLP. It involves the use of neural networks and deep learning techniques to

improve the process of retrieving relevant information from large collections of text

documents, such as web pages, books, or other text-based retrieval. In the context of

Neural IR, neural networks are used to model text data and relationships between

documents and queries.

Neural networks are a class of machine learning models motivated by the

human brain. They consist of interconnected nodes (neurons) that process and transform

data. In the context of Neural IR, neural networks are used to model text data and

relationships between documents and queries. In Neural IR, documents and queries are

typically represented as numerical vectors. Each word or phrase in a document is

converted into a vector using word embeddings (e.g., Word2Vec, GloVe) or more

advanced techniques like transformer-based models (e.g., BERT). Neural IR is a

sought out research topic in the IR research community. Since then, the Neural IR

paradigm started, and many BERT-based text ranking approaches were developed.

These are now usually deployed as re-ranker in multistage search architecture. A

condensed multi-stage ranking architecture of this method is shown in Figure 2.1.

First, it uses exact matching over inverted index to execute the retrieval step, also

known as candidate generation or first stage retrieval, and then the documents that are

sorted based on BM25 score. This is a less costly action. After reducing the candidate

set to k documents, a more costly re-ranking phase is conducted, determining the

ultimate ordering of the top N documents through the use of BERT-based

Contextualized ranking models. The trade-off in search systems is improved by these

distinct phases.

Figure 2.1 Example of Neural Information Retrieval (Neural IR)

Documents
Inverted

Index

Initial

Retrieval

Re-

ranker

Ranked

List

10

2.1.1 Document Understanding

Neural IR aims to improve how well computers understand the content of

documents. Instead of relying solely on keywords, it utilizes neural networks to create

numerical representations of documents, capturing the context and semantics of the text.

Document Understanding in Neural IR is a critical aspect of how search engines and

other IR systems process, interpret, and retrieve information from large volumes of text.

Document understanding involves several processes that enable machines to

comprehend the content, context, and meaning of documents. Text preprocessing are

tokenization, stemming, lemmatization, and removing stop words. Feature extraction is

extracting meaningful features from text, such as keywords, entities, and topics.

Semantic understanding is the meaning and context of words and phrases using

techniques like word embeddings and contextual embeddings.

Key techniques in document understanding of Neural IR have several neural

techniques. These are word embedding (such as Word2Vec, GloVe, etc.), contextual

embeddings (such as BERT, GPT, etc), sequence models (such as RNNs, LSTM, etc),

transformers and document understanding. Word2Vec generates vector representations

of words based on their context in the corpus and GloVe creates word embeddings by

aggregating global word-word co-occurrence statistics. BERT (Bidirectional Encoder

Representations from Transformers) provides deep contextualized word embeddings by

considering both left and right context in all layers and GPT (Generative Pre-trained

Transformer) uses transformer architecture for understanding and generating human-

like text. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)

handle sequential data and capture dependencies over long ranges. Transformers handle

long-range dependencies better than RNNs, enabling superior performance in tasks like

document classification and summarization. Document understanding in Neural IR is a

rapidly evolving field that leverages sophisticated neural network architectures to

improve the comprehension and retrieval of information.

2.1.2 Semantic Matching

One of the core objectives is to achieve better semantic matching between user

queries and documents. By encoding queries and documents as vectors, Neural IR

models can compute similarity scores that go beyond simple keyword matching.

Semantic matching in Neural IR is a critical component that aims to understand and

11

match the meaning behind queries and documents rather than relying solely on keyword

matching. This approach significantly enhances the accuracy and relevance of search

results. Semantic matching involves comparing the meanings of words, phrases,

sentences, or documents to determine their relevance to each other. It transcends

traditional keyword-based methods by considering the context and semantics of the

content.

Semantic matching in Neural IR is a transformative approach that enhances the

relevance and accuracy of search results by focusing on the meaning behind words and

phrases. By leveraging advanced neural network architectures and embedding

techniques, it addresses the limitations of traditional keyword-based matching and

paves the way for more intuitive and effective IR systems.

The key concepts in semantic matching are semantics, contextual understanding,

and representation learning. Semantics refers to the meaning and interpretation of words

and sentences. Contextual understanding captures the context in which words appear to

understand their meanings better. Representation learning learns dense vector

representations (embeddings) of words, phrases, or entire documents that capture

semantic information.

Techniques and models for semantic matching are word embeddings (such as

Word2Vec creates vector representations of words based on their context using models

like Continuous Bag of Words (CBOW) and Skip-gram, GloVe (Global Vectors for

Word Representation) generates word embeddings by aggregating global word-word

co-occurrence statistics from a corpus), contextual embeddings (such as BERT, and

ELMo). BERT (Bidirectional Encoder Representations from Transformers) provides

deep contextualized word embeddings by considering the bidirectional context of words

in sentences. It uses transformer architecture to capture complex relationships between

words. ELMo (Embeddings from Language Models) generates contextual embeddings

by considering the entire sentence in which a word appears. In order to appear a word

using bi-directional LSTM networks.

Sentence and document embeddings (such as Universal Sentence Encoder, and

Doc2Vec) are used to provide embeddings for sentences that capture their semantic

content, using tasks like semantic similarity and text classification, Doc2Vec extends

Word2Vec to generate embeddings for entire documents) and neural matching models

(such as Deep Relevance Matching Model (DRMM) utilize a deep neural network to

model the interaction between query and document terms at multiple levels of

12

granularity. DSSM (Deep Structured Semantic Models) projects queries and documents

into a common semantic space where similarities are computed using deep learning

techniques).

2.1.3 Relevance Ranking

Neural IR models learn to rank documents based on their estimated relevance to

a given query. By training on labeled data, where the relevance of documents is

determined by human judgments. Relevance ranking in Neural IR is the process of

ordering documents based on their relevance to a given query. This is a core task in IR

systems like search engines, where the goal is to present the most pertinent information

at the top of the results as shown in Figure 2.2.

Relevance ranking aims to order documents so that the satisfactions the user's

query appears first. This involves evaluating the relevance of documents concerning the

query and assigning a score that reflects their usefulness. Relevance ranking in Neural

IR leverages advanced deep learning techniques to improve the accuracy and relevance

of search results. By understanding and implementing these neural approaches,

significantly enhance the performance of IR systems, making them more responsive to

the user needs and more capable of understanding complex queries and documents.

13

Figure 2.2 Example of Relevance Ranking

2.1.4 Representation Learning

Word embeddings are techniques like Word2Vec, GloVe, and FastText

represent words as dense vectors in a continuous space, contextual embeddings are

models like BERT, GPT, and ELMo provides context-sensitive embeddings by

considering the surrounding words.

2.1.4.1 Text Representations for Ranking

The Probability Ranking Principle [65] states that, under certain conditions,

the documents in a collection should be ranked in order of the (decreasing)

probability of relevance with respect to the query for a given user's query. This will

maximize the retrieval system's overall effectiveness for the user. Ad-hoc ranking's

job is to determine which the order of the documents is closest to or identical to the

best ordering based on relevance probability for each query. It is typical practice to

restrict the set of documents to be sorted to the top k documents in the best possible

order. For example Q represents a log of (text) inquiries and D represents a collection

of (text) documents. The vocabulary V of terms is shared by both queries and

documents.

Least Relevant Most Relevant

14

A scoring function, or ranking function, is as follows: Q × D → R calculates a

real-valued score according to the log Q's queries for the documents in collection D.

It refer to the value s(q, d) as the document's relevance score with respect to the query

given a query (q) and a document (d) as in Equation (2.1). The scores of the

documents in the collection can be used to order the documents for a given query,

with the score values reversed. An IR system based on the scoring system is more

effective the closer query that induced ordering.

 𝑠(𝑞, 𝑑) = 𝑓(𝜙(𝑞),𝜓(𝑑), 𝜂(𝑞, 𝑑)) (2.1)

where three representation functions, 𝜙: 𝑄 → 𝑉1, 𝜓: 𝐷 → 𝑉2 ∶ 𝑄 →

 𝑉1, 𝜓: 𝐷 → 𝑉2, and 𝜂: 𝑄 × 𝐷 → 𝑉3, map queries, documents, and query-

document pairings into the respective latent representation spaces, V1, V2, and V3

[20]. These functions create computationally-friendly abstract mathematical

representations of the text sequences of documents and queries. The aggregation

function 𝑓: V1 × V2 × V3 → R calculates the relevance score of the document

representation with respect to the query representation. The elements of these vectors

indicate the characteristics used to describe the relevant objects. The aggregation

function 𝑓 and the representation functions 𝜙, 𝜓, and 𝜂 can be computed using

machine learning methods or they can be built manually using a few heuristics or

axioms. The representation function used in LTR contexts, traditional IR as shown in

Figure 2.3.

Figure 2.3 Representation-based decomposition of a ranking function

Aggregation function f

Document

representation Ψ

Relevance score s(q, d)

Query

representation ϕ

Query-document

representation ƞ

 query q document d

15

2.1.4.2 Bag-of-Word (BOW) Encodings

In traditional IR, the representation and aggregation functions are created by

hand, incorporating lexical statistics like the quantity of terms that appear in a

document or throughout the collections. The bag of words (BOW) model, which is the

foundation for traditional IR ranking models such as Vector Space Models (VSM)

[67], probabilistic models [66], and statistical language models [59], models queries

and documents as a set of terms from the vocabulary 𝑉 plus the number of

occurrences of the corresponding tokens in the text. Formally speaking, queries and

documents are represented as vectors 𝜙(𝑞) and 𝜓(𝑑) in 𝑁|𝑉|, which are referred to as

BOW encodings. The number of times a term appears is encoded by the i
th

 component

of both representations. These ranking functions lack the query-document

representation function 𝜂. The components of the query and document

representations, i.e., the in-query and in-document term frequencies, along with

additional document normalization processes, are all taken into consideration by the

explicit formula that represents the aggregate function 𝑓 over these representations.

Since the majority of these representations' components equal zero because they

reflect tokens that are absent from the query or document, they are known as sparse

representations. Sparse representations are easily computed and effectively stored in

specialized data structures known as inverted indexes, which serve as the foundation

for commercial Web search engines [7]. For additional information on inverted

indexes and classical IR ranking models, refer to [6], [48], [75].

2.1.4.3 Learning to Rank (LTR)

Pointwise approach treats the ranking problem as a regression or classification

task where each document is scored independently examples include regression-based

models, pairwise approach models the relative order of document pairs to minimize

ranking errors examples include RankNet, and listwise approach optimizes the order of

a list of documents, directly optimizing for ranking metrics examples include ListNet

and LambdaMART(combines LambdaRank and Multiple Additive Regression Trees

(MART)). New sources of pertinent information on the papers have been available

since the introduction of the Web.

16

Relevance signals include Web page prominence (e.g., PageRank), extra

document data (e.g., phrase frequencies in the title or anchor text), and search engine

interactions (e.g., clicks). Furthermore, social media and collaborative websites like

Facebook, Twitter, and Wikipedia are new sources of relevance signals. By utilizing

these relevance signals, LTR's query and document representations have become

richer. Features are the relevance signals that are taken out of documents and/or

queries. These characteristics fall into a number of classes [34], [46], including: (1)

query-only features, or elements of 𝜙(𝑞): query features, like query type, query

length, and query performance predictors, that have the same value for every

document; (2) query-dependent features, or components of 𝜂(𝑞, 𝑑): document

features that depend on the query, like different term weighting models on different

fields; (3) query-independent features, or components of 𝜓(𝑑): document features

with the same value for each query, like importance score, URL length, and spam

score.

The representation functions in LTR are manually created. Using feature-

specific algorithms, the various parts of query and document representations are

produced by taking use of relevance signals from heterogeneous information sources.

With respect to vector spaces over R, the representations 𝜙(𝑞), 𝜓(𝑑), and 𝜂(𝑞, 𝑑) are

thus elements whose dimensions are determined by the quantity of manually created

query-only, query-independent, and query-dependent features, respectively.

Furthermore, these vectors' various parts are diverse and lack any clear semantic

significance. Through the use of various representations, the aggregation function f in

LTR is machine-learned, for instance through the use of neural networks [4], logistic

regression [17], or gradient-boosted regression trees [5]. For a thorough overview, it

is seen [41].

2.1.4.4 Word Embeddings

Although LTR features and BOW encodings are commonly used in

commercial search engines, they have various drawbacks. On the one hand, concepts

that are semantically linked wind up with entirely distinct BOW encodings. While the

names catalogue and directory are interchangeable, their BOW encodings differ

significantly, with the single 1 occurring in distinct components.

17

In a similar vein, two publications pertaining to the same subject may end up

with two distinct BOW encodings. Conversely, LTR features use feature engineering

to manually generate text representations with heterogeneous components and no

explicit notion of similarity. Despite being often employed in commercial search

engines, LTR features and BOW encodings have a number of disadvantages.

On the one hand, semantically related concepts result in completely different

BOW encodings. Although the terms "catalogue" and "directory" are synonymous,

their BOW encodings are very different, with the former occurring in separate

components. Similarly, two publications that deal with the same topic could have two

different BOW encodings. On the other hand, LTR features do not explicitly consider

similarity and instead manually build text representations with heterogeneous

components through feature engineering. Moreover, the components of word

embeddings are rarely 0: they are real numbers, and can also have negative values.

Hence, word embeddings are also referred to as dense representations. Among the

different techniques to compute these representations, there are algorithms to compute

global representations of the words, i.e., a single fixed embedding for each term in the

vocabulary, called static word embeddings, and algorithms to compute local

representations of the terms, which depend on the other tokens used together with a

given term, i.e., its context, called contextualized word embeddings. Static word

embeddings used in Neural IR are learned from real-world text with no explicit

training labels: the text itself is used in a self-supervised fashion to compute word

representations. There are different kinds of static word embeddings, for different

languages, such as Word2Vec [47], Fasttext [30] and GloVe [56].

Based on the training data used to compute the vectors, static word

embeddings map terms with multiple senses into an average or most common sense

representation; each term in the lexicon is associated with a single vector.

Contextualized word embeddings correlate each term in the lexicon with a unique

vector each time it appears in a document, based on the surrounding tokens. They map

tokens used in a given context to a specific vector. Deep neural networks, such as the

Bidirectional Encoder Representations from Transformers (BERT) [12], the Robustly

Optimized BERT Approach (RoBERTa) [42], and the Generative Pre-Training

models (GPT) [61], are used to learn the most widely used contextualized word

embeddings. In Neural IR (nervous IR), word embeddings are utilized to calculate the

aggregation function 𝑓 and the representation functions 𝜙, ψ , and 𝜂 via (deep) neural

18

networks. Neural ranking models fall into two categories: interaction-focused models

and representation-focused models, depending on the assumptions made about the

representation functions. In models that emphasize interaction, the function that

represents the relationship between the query and document contents, known as the

query-document representation function 𝜂(𝑞, 𝑑) is both explicitly created and fed into

a deep neural network or it is implicitly generated and utilized directly by the deep

neural network. The query-document representation function 𝜂(𝑞, 𝑑) does not exist in

representation-focused models; instead, deep neural networks independently compute

the query and document representations, 𝜙(𝑞) and 𝜓(𝑑).

2.2 Interaction-focused Systems

Deep Neural Networks (DNNs) are utilized by the interaction-focused Neural

IR systems to model word and n-gram relationships between a query and a document.

These systems take in a query (𝑞) and a document (𝑑) as inputs, and produce a query-

document representation 𝜂(𝑞, 𝑑) as their output. Convolutional neural networks and

transformers are two neural network architectures that have been studied among

others to create a representation of these interactions. Convolutional neural networks

are among the earliest methods for creating combined representations of documents

and questions. The development of pre-trained language models through the use of

transformers on textual inputs marked a significant turning point in Neural IR

research. In Neural IR, query-document representations are computed using pre-

trained language models; BERT and T5 (Text-to-Text Transfer Transformer) are the

two primary transformer models utilized for this purpose, respectively. Query-

document representations are computed using pre-trained language models and how

these models are adjusted to handle lengthy texts.

2.2.1 Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) is a class of neural networks

intended to identify local patterns in structured inputs like texts and images [38].

When combined with the feed forward and pooling layers, the convolution layer

forms the fundamental part of a CNN. A convolutional layer is considered as a tiny

linear filter that scans the input for proximity patterns.

19

CNN are used by a number of neural models to generate relevance scores

based on the interactions between queries and documents. These models typically

include aggregating the word embeddings of the query and document tokens into an

interaction matrix, which is then utilized by CNN to learn hierarchical proximity

patterns like bigrams, unigrams, and so forth. The relevance score 𝑠(𝑞, 𝑑) between the

query 𝑞 and the document 𝑑 is then produced by feeding the final top-level proximity

patterns into a feed forward neural network, as shown in Figure 2.4.

Figure 2.4 Scheme of an interaction-focused model based on convolutional neural

networks

Tokenization is used to separate the query 𝑞 and the document 𝑑 into 𝑚 and 𝑛

tokens, respectively. Each token is associated with a static word embedding. The

cosine similarity between a query token embedding and a document token embedding

makes up the interaction matrix 𝜂(𝑞, 𝑑) ∈ 𝑅𝑚 × 𝑛.

The Deep Relevance Matching Model (DRMM) as one of the earliest neural

models that makes use of the interaction matrix [21]. Using hard bucketing, the cosine

similarity of each query token with respect to the document tokens in DRMM are

transformed into a discrete distribution, or a query token histogram. The final query

token-document relevance score is then calculated by feeding the histogram of each

query token into a feed forward neural network.

ϕ1

ϕm

.

.

.

.
ƞ(q, d)

Interaction

matrix

. . . . Ψ1 Ψn

Word embeddings

W
o

rd
 em

b
ed

d
in

g
s

query

q

 document d

Convolut

ional

neural

network

Feed

forward

neural

network

s(q,d)

Proximity

pattern

Relevance

score

20

Then, an IDF-based weighted sum across the various query phrases is used to

aggregate these relevance scores. The Kernel-based Neural Ranking Model (KNRM)

[82] suggests using Gaussian kernels to softly bucket histograms to feed forward

neural networks, distributing each cosine similarity's contribution across buckets in a

smooth manner instead of using hard bucketing.

While both KNRM and DRMM make use of the interaction matrix, they do

not have a convolutional layer. The query and document embeddings are first

individually processed using k convolutional neural networks in the Convolutional

KNRM model (CONV-KNRM) [11], in order to construct uni-gram, bigram, up to k-

gram embeddings. Such convolutions make it possible to construct word embeddings

that simultaneously account for several closely related words. After that, between

every combination of question and document n-gram embeddings, k
2
 cosine similarity

matrices are constructed, and KNRM is used to process these matrices. The

interaction matrix is processed through many convolutional and pooling layers in the

Position-Aware Convolutional Recurrent Relevant model (PACRR) [26] in order to

account for word proximity. Other neural models that are similar to this one also

include convolutional layers [14], [24], [27], [53], [54].

2.2.2 Pre-trained Language Models

Based on the training data used to generate the vectors, static word

embeddings map words with multiple senses into an average or most common-sense

representation. A word's vector remains constant regardless of the other words used in

the phrase around it. The usage of a unique neural layer dubbed self-attention in

combination with feed forward and linear layers, the transformer neural network is

able to explicitly consider the context of arbitrary long text sequences. Sequences of

input length are mapped to sequences of output length by the self-attention layer. The

layer can access all n input elements (bidirectional self-attention) or just the first i

input elements (causal self-attention) while calculating the i
th

 output element. The

network is able to consider the relationships between several elements in the same

input to a self-attention layer. A self-attention layer computes token representations

that consider the surrounding words when the input elements are tokens of a specific

text. By doing this, the transformer generates contextualized word embeddings, in

which the input text as a whole determines how each input token is represented.

21

Transformers have shown effectively in a variety of natural language

processing applications, including question answering, summarization, machine

translation, and more. These jobs are all specific examples of a broader objective,

which is to convert an input text sequence into an output text sequence. This general

task has been addressed by the invention of the sequence-to-sequence model. The two

components of a sequence-to-sequence neural network are an encoder model that

produces a contextualized representation of each input element given an input

sequence, and a decoder model that uses these contextualized representations to

produce an output sequence tailored to a job. The components of both types are many

stacked transformers. Bidirectional self-attention layers are used by the encoder's

transformers on either the input or the output sequence from the preceding

transformer. The decoder's transformers use bidirectional cross-attention on the output

of the final encoder transformer and causal self-attention on the output of the

preceding decoder transformer.

Two particular applications of sequence-to-sequence models have been

investigated in Neural IR: encoder-only models and encoder-decoder models. All of

the tokens in a particular input sentence are fed into encoder-only models, which then

produce contextualized word embeddings for each token in the sentence. The models

BERT [12], RoBERTa [42], and DistilBERT [69] are examples of this family of

models. Depending on the input sentence, encoder-decoder models produce new

output sentences. One token at a time, the decoder model sequentially accesses these

embeddings to produce new output tokens, while the encoder model takes all of the

tokens of a given sequence as input and creates a contextualized representation.

Among these model representatives are BART [39] and T5 [63]. Sequence-to-

sequence models can be trained as language models by computing the token

probabilities using a softmax operation and projecting each output embedding to a

specified vocabulary using a linear layer. A function 𝜎: 𝑅𝑘 → [0, 1]𝑘, which accepts

as input 𝑘 > 1 real numbers 𝑧1, 𝑧2, … , 𝑧𝑘 and transforms each input 𝑧𝑖 as in Equation

(2.2), is known as the softmax operation.

 𝜎(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑘

𝑗=1

 (2.2)

22

The input values are normalized into a probability distribution using the

softmax procedure. Within the domain of deep learning, the inputs of a softmax

operation are commonly referred to as logits. These logits are the unprocessed

predictions produced by a multi-class classification model, which the softmax

operation transforms into a probability distribution across the classes.

A sequence-to-sequence model can be trained as a Casual Language Model

(CLM), like T5, or as a masked language model (MLM), like BERT, depending on

the training goal. While CLM training focuses on predicting the next token in an

output sequence given the previous tokens in the input sequence, MLM training

teaches learners to predict missing tokens in a sequence given the surrounding tokens.

To create pre-trained language models, it is customary to train these models on large

amounts of text data in both situations. By doing this, it enables the model to acquire

general-purpose language knowledge that may subsequently be applied to a

downstream task that is more specialized. This transfer learning strategy uses an

initial model that is pre-trained on a smaller, domain-specific training dataset to refine

it for the downstream target job. To put it another way, fine-tuning is the process of

modifying a pre-trained language model's parameters for the target task and domain

data.

Figure 2.5 illustrates the basic requirements for pre-training: large-scale

general-purpose training corpus (e.g., Wikipedia or Common Crawl web pages),

costly computing resources, and lengthy training periods (e.g., many days or weeks).

However, fine-tuning necessitates a small domain-specific corpus that is concentrated

on the downstream job, reasonably priced computing resources, and a few more hours

or days of training. Two specific instances of fine-tuning are zero-shot learning, in

which a pre-trained language model is applied to a downstream job for which it was

not fine-tuned, and few-shot learning, in which the domain-specific corpus consists of

a relatively small quantity of training data.

23

Figure 2.5 Transfer learning of a pre-trained language model to a fine-tuned

language model

Cross-encoder models are interaction-focused Neural IR systems that employ

pre-trained language models. They take as input a pair (𝑞, 𝑑) of query and document

strings. Different cross-encoders are fine-tuned in different ways depending on the

type of sequence-to-sequence model; nevertheless, generally speaking, their goal is to

compute a relevance score 𝑠(𝑞, 𝑑) to rank documents with respect to a given query.

The most popular cross-encoders using both encoder-only and encoder-decoder types

are shown in the following.

2.2.3 Ranking with Encoder-only Models

BERT, an encoder-only model, is the transformer architecture that is most

frequently used in Neural IR. The WordPiece sub-word tokenizer [79] is used to

tokenize the text input. This tokenizer's vocabulary V consists of 30, 522 terms, with

the uncommon/rare words (like goldfish) divided into smaller words (like gold## and

##fish). The unique [𝐶𝐿𝑆] token—which stands for "classification"—is always the

first input token used in BERT. Other special tokens that indicate the end of a text

supplied as input or divide two distinct texts supplied as a single input are accepted as

input by BERT. One such token is [𝑆𝐸𝑃]. A maximum of 512 tokens can be entered

into BERT, and for each token entered, an output embedding in 𝑅𝑙 is produced. The

most widely used variant of BERT is called BERT base, and it has an output

representation space with dimensions of 𝑙 = 768 and 12 transformer layers stacked.

There are two slightly different approaches to fine-tune BERT as a cross-encoder1:

[49] and [44].

Both texts in a query-document combination are tokenized into the token

Fine-

tuned

Language

Model

Random

Language

Model

Pre-

trained

Language

Model

Huge

corpus

Many

TPUs

Days/weeks

of training

Few

GPUs

Small

corpus

Hours/days

of training

24

sequences 𝑑1, . . . , 𝑑𝑛, 𝑎𝑛𝑑 𝑞1, . . . , 𝑞𝑛. Following that, the tokens and BERT special

tokens are concatenated to create the input configuration seen below:

 [𝐶𝐿𝑆]𝑞1, … , 𝑞𝑚 [𝑆𝐸𝑃] 𝑑1, … , 𝑑𝑛 [𝑆𝐸𝑃]

This will be the input for the BERT. By doing this, the BERT encoders' self-

attention layers are able to consider the semantic relationships between the question

and document tokens. For the input [𝐶𝐿𝑆] token, the output embedding 𝜂[𝐶𝐿𝑆] ∈

 𝑅𝑙 provides a contextual representation of the query-document pair as a whole.

To calculate the query-document relevance score, [50] fine-tune BERT on a

binary classification job, as shown in Figure 2.6. In order to obtain the relevance

score 𝑠(𝑞, 𝑑), BERT processes the query and the document to produce the output

embedding 𝜂[𝐶𝐿𝑆] ∈ 𝑅𝑙. This embedding is then multiplied by a learned set of

classification weights 𝑊2 ∈ 𝑅2∗𝑙 to yield two real scores, 𝑧0 and 𝑧1, which are

subsequently transformed into a probability distribution 𝑝0 and 𝑝1 over the relevant

and non-relevant classes via a softmax operation. The final relevance score is the

probability corresponding to the relevant class, which is often assigned to label 1, or

𝑝1. Through the learnt matrix 𝑊1 ∈ 𝑅1∗𝑙, [44] fine-tune BERT by projecting the

output embedding 𝜂[𝐶𝐿𝑆] ∈ 𝑅𝑙 into a single real value 𝑧, which represents the final

relevance score as in Equations (2.3) – (2.6).

 𝜂[𝐶𝐿𝑆] = 𝐵𝐸𝑅𝑇 (𝑞, 𝑑) (2.3)

 [𝑧0, 𝑧1] = 𝑊2𝜂[𝐶𝐿𝑆] or 𝑧 = 𝑊1𝜂[𝐶𝐿𝑆] (2.4)

 [𝑝0, 𝑝1] = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [𝑧0, 𝑧1] (2.5)

 𝑠(𝑞, 𝑑) = 𝑝1 or 𝑠(𝑞, 𝑑) = 𝑧 (2.6)

25

Figure 2.6 BERT classification model for ad-hoc ranking

2.2.4 Ranking with Encoder-decoder Models

It is possible to use an encoder-decoder model [63] with prompt learning in

place of an encoder-only transformer model to compute the latent representation of a

query-document pair and convert it into a relevance score. This is achieved by

converting the relevance score computation task into a cloze test, or fill-in-the-blank

problem. In tasks involving the summarization of articles [62] and the building of

knowledge bases [58], prompting has been effectively implemented. In quick

learning, the downstream goal is recast as a cloze-like problem while the input texts

are reformed as a natural language template. For subject classification, for instance, if

the phrase text needs to be divided into two classes, 𝑐0 and 𝑐1,, the input template

could be:

𝐼𝑛𝑝𝑢𝑡 ∶ 𝑡𝑒𝑥𝑡 𝐶𝑙𝑎𝑠𝑠 ∶ [𝑂𝑈𝑇]

Two label terms, 𝑤0 and 𝑤1, have been chosen from the lexicon to represent

the classes 𝑐0 and 𝑐1, respectively. It is possible to convert the likelihood that the input

token [𝑂𝑈𝑇] will be allocated to the appropriate label token from the likelihood of

assigning the input 𝑡𝑒𝑥𝑡 to a class:

Encoder Model

Tokenizer Tokenizer

[CLS] q1 ….. qm [SEP] d1 ….. dn [SEP]

ƞ[CLS]

W2
softmax

s(q,d)

26

𝑝(𝑐0|𝑡𝑒𝑥𝑡) = 𝑝([𝑂𝑈𝑇] = 𝑤0|𝐼𝑛𝑝𝑢𝑡 ∶ 𝑡𝑒𝑥𝑡 𝐶𝑙𝑎𝑠𝑠 ∶ [𝑂𝑈𝑇]) (2.7)

𝑝(𝑐1|𝑡𝑒𝑥𝑡) = 𝑝([𝑂𝑈𝑇] = 𝑤1|𝐼𝑛𝑝𝑢𝑡 ∶ 𝑡𝑒𝑥𝑡 𝐶𝑙𝑎𝑠𝑠 ∶ [𝑂𝑈𝑇]) (2.8)

As shown in Figure 2.7, a rapid learning strategy for relevance ranking

utilizing a T5 model [51]. The following input template is created by concatenating

the query with the document texts 𝑞 and 𝑑:

𝑄𝑢𝑒𝑟𝑦 ∶ 𝑞 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 ∶ 𝑑 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 ∶ [𝑂𝑈𝑇]

A downstream job that takes this input configuration as input and produces an

output sequence with the last token equal to True or False, depending on whether the

document 𝑑 is relevant or irrelevant to the query 𝑞, is used to fine-tune an encoder-

decoder model. The calculation of the query-document relevance score involves

applying a softmax operation to normalize solely the False and True output

probabilities, which are calculated throughout the entire vocabulary.

Figure 2.7 T5 model for ad-hoc ranking

Tokenizer

 Query: q Document: d Relevance: [OUT]

Encoder-decoder Model

ƞ[OUT] WV softmax

s(q,d)

false

true

27

The query and the text are processed by T5 to create the output embedding

𝜂[𝑂𝑈𝑇] ∈ 𝑅𝑙, which is projected over the vocabulary 𝑉 by a learnt set of classification

weights 𝑊𝑉 ∈ 𝑅|𝑉|∗𝑙 in order to yield the relevance score 𝑠(𝑞, 𝑑). In order to get the

necessary predictions 𝑝𝐹𝑎𝑙𝑠𝑒 and 𝑝𝑇𝑟𝑢𝑒 over the "non-relevant" and "relevant"

classes, the outputs 𝑧𝐹𝑎𝑙𝑠𝑒 and 𝑧𝑇𝑟𝑢𝑒 , which correspond to the 𝐹𝑎𝑙𝑠𝑒 and 𝑇𝑟𝑢𝑒

terms, respectively, are converted into a probability distribution using a softmax

operation.

The ultimate relevance score is the prediction, or 𝑝𝑇𝑟𝑢𝑒 , that corresponds to

the relevant class.

 𝜂[𝑂𝑈𝑇] = 𝑇5(𝑞, 𝑑) (2.9)

 [… , 𝑧𝐹𝑎𝑙𝑠𝑒 , … , 𝑧𝑇𝑟𝑢𝑒 , …]𝑇 = 𝑊𝑉 𝜂[𝑂𝑈𝑇] (2.10)

 [𝑝𝐹𝑎𝑙𝑠𝑒 , 𝑝𝑇𝑟𝑢𝑒] = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝑧𝐹𝑎𝑙𝑠𝑒 , 𝑧𝑇𝑟𝑢𝑒]) (2.11)

 𝑠(𝑞, 𝑑) = 𝑝𝑇𝑟𝑢𝑒 (2.12)

2.2.5 Fine-tuning Interaction-focused Systems

The pre-trained language models used in IR need to be adjusted for a

particular downstream job. A Neural IR model M(𝜃), parametrized by 𝜃, evaluates an

input query-document pair (𝑞, 𝑑) and returns the score of document 𝑑 with respect to

the query 𝑞, or 𝑠𝜃(𝑞, 𝑑) ∈ 𝑅. Predicting 𝑦 ∈ {+,−} from (𝑞, 𝑑) ∈ 𝑄 × 𝐷 is a task,

with denoting non-relevant and + denoting relevant. One way to describe this issue is

as a binary classification issue. Assuming a joint distribution p over {+,−} × 𝑄 × 𝐷

, it carry out the classification by selecting appropriate pairs (+, 𝑞, 𝑑) ≡ (𝑞, 𝑑+) and

 (−, 𝑞, 𝑑) ≡ (𝑞, 𝑑−). As an example of a metric learning issue [80], it learns a score

function 𝑠𝜃(𝑞, 𝑑) using sampled correct pairs. The score function must provide a high

score to a relevant document and a low score to a non-relevant document, as in

Equations (2.3) - (2.6) and (2.9) - (2.12). Afterwards, it identifies 𝜃∗ such that it

minimizes the (binary) cross entropy 𝑙𝐶𝐸 between the model probability 𝑝𝜃(𝑦|𝑞, 𝑑)

and the conditional probability 𝑝(𝑦|𝑞, 𝑑):

 𝜃∗ = arg𝑚𝑖𝑛𝜃 𝐸[𝑙𝐶𝐸(𝑦, 𝑞, 𝑑)] (2.13)

28

where the cross entropy is determined as, and the expectation is calculated

over (𝑦|𝑞, 𝑑) ~ p as in Equations.

 𝑙𝐶𝐸(𝑦, 𝑞, 𝑑) = {
−log(𝑠𝜃(𝑞, 𝑑)) 𝑖𝑓 𝑦 = +
− log(1 −𝑠𝜃(𝑞, 𝑑)) 𝑖𝑓 𝑦 = −

 (2.14)

A list of triples (𝑞, 𝑑+, 𝑑−) with 𝑞 representing a query, 𝑑+ representing a

relevant document for the query, and 𝑑− representing a non-relevant document for the

query typically makes up a dataset 𝑇 that may be used to fine-tune pre-trained

language models for relevance scoring as in Equation (2.15). In this instance, the

cross entropies calculated for each triple add up to the predicted cross entropy:

 𝐸[𝑙𝐶𝐸(𝑦, 𝑞, 𝑑)] ≈
1

2|𝑇|
 ∑ (−log(𝑠𝜃(𝑞, 𝑑)) − log(1 −𝑠𝜃(𝑞, 𝑑))) (𝑞,𝑑+,𝑑−) ∈ 𝑇 (2.15)

This method is restricted to considering positive and negative triples

independently of each other pairwise. An alternative fine-tuning strategy is frequently

applied to representation-focused systems, which accounts for several irrelevant

documents for every important document.

2.3 Representation-focused Systems

Document representations can be pre-computed and stored that representation-

focused systems construct independent query and document representations. Only the

query representation is computed during query processing; the stored document

representations are searched to get the top documents. By doing this, representation-

based systems which belong to a new class of retrieval techniques known as dense

retrieval systems are able to find the pertinent documents among all the documents in

a collection as opposed to simply a query-dependent sample. In dense retrieval, two

distinct families of representations have so far surfaced.

2.3.1 Single Representations

Because every word in the document can attend to every word in the query

and vice versa, interaction-focused systems concatenate the query and document texts

29

before processing them with sequence-to-sequence models. This results in rich

interactions between the query context and the document context. Every document

must be concatenated with the query and processed through a forward pass of the

entire sequence-to-sequence model during the query processing phase. Despite the

proposal of certain strategies, such as pre-computation of internal representations

[45], interaction-focused systems are not scalable to handle a high volume of

documents. A standard CPU can process a query over the entire document collection

using an inverted index in a matter of milliseconds [74], whereas [44] found that

calculating the relevance score of a single query-document pair using a transformer

model may take several seconds.

As shown in Figure 2.8, representation-focused systems use encoder-only

models to independently compute query representations 𝜙(𝑞) and document

representations 𝛹(𝑑) in the same latent vector space, as opposed to using sequence-

to-sequence models to compute a semantically richer but computationally expensive

interaction representation 𝜂(𝑞, 𝑑) [76]. Next, using an aggregation function 𝑓 between

these representations, the relevance score between them is calculated:

 𝜙(𝑞) = 𝜙[𝐶𝐿𝑆], 𝜙1, … , 𝜙|𝑞|] = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑞) (2.16)

 𝛹(𝑑) = 𝛹[𝐶𝐿𝑆], 𝛹1, … , 𝛹|𝑑|] = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑑) (2.17)

 𝑠(𝑞, 𝑑) = 𝑓(𝜙(𝑞), 𝛹(𝑑)) (2.18)

The representations functions 𝜙 and 𝛹 in neural inference are calculated using

refined encoder-only sequence-to-sequence models, such BERT.

Since the question and document representations are computed using the same

neural model, this model is also referred to as a dual encoder or bi-encoder [3]. A bi-

encoder is a mapping that creates mathematical manipulates representations of queries

and documents in the same vector space 𝑅𝑙. Typically, one assumes that the output

embedding that corresponds to the [𝐶𝐿𝑆] token represents a specific input text as in

Equations. The dot product serves as the score aggregation function when using these

single representations:

 𝑠(𝑞, 𝑑) = 𝜙[𝐶𝐿𝑆], 𝛹[𝐶𝐿𝑆] (2.19)

30

Figure 2.8 Representation-focused system

A variety of single-representation systems have been proposed; the most

generally used ones are DPR (Dense Passage Retrieval) [32], [81], and [83].

2.3.2 Multiple Representations

Previously, this attention has been drawn to representation-focused systems,

wherein documents and queries are represented by a single embedding into the latent

vector space. It is believed that this one representation has all of the meaning text

within that one embedding. On the other hand, multiple representation systems, like

COIL [15], [36], [43], and [28], use more than one embedding to represent a given

text, potentially enabling a richer semantic representation of the content.

Poly-encoders [28] use the first m output embeddings 𝛹0, 𝛹1, … ,𝛹𝑚−1 to

encode a document 𝑑 rather than simply the first output embedding 𝛹[𝐶𝐿𝑆] = 𝛹0.

While it needs to aggregate the 𝑚 output document embeddings into a single

representation 𝛹∗ in order to compute the final relevance score using the dot product

with the output query embedding, a query q is still represented by a single embedding,

𝜙[𝐶𝐿𝑆] = 𝜙0. To do this, poly-encoders use the dot product to first calculate the m

similarity 𝑠0, … , 𝑠𝑚−1 between the query embedding and the first m document

embedding.

ϕ[CLS] = ϕ0 ϕ1 ϕ|q| Ψ[CLS] = Ψ0 Ψ1 Ψ|q|

……

Score Aggregation

……

Encoder Model

……

……

Tokenizer [CLS]

q

Encoder Model

Tokenizer

……

……

[CLS]

d

s(q, d)

31

Using a softmax operation, these similarities are converted into normalized

weights 𝑣0, … , 𝑣𝑚−1 , and the weighted output embeddings are added up to determine

the final document embedding 𝛹∗ that is employed.

 [𝜙0, 𝜙1, …] = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑞) (2.20)

 [𝛹0, 𝛹1, …] = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑑) (2.21)

 [𝑠0, 𝑠1, … , 𝑠𝑚−1] = 𝜙0. 𝛹0, 𝜙0. 𝛹1, … , 𝜙0. 𝛹𝑚−1 (2.22)

[𝑣0, 𝑣1, … , 𝑣𝑚−1] = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝑠0, 𝑠1, … , 𝑠𝑚−1]) (2.23)

 𝛹∗ = ∑ 𝑣𝑖
𝑚−1
𝑖=1 𝛹𝑖 (2.24)

 𝑠(𝑞, 𝑑) = 𝜙0. 𝛹∗ (2.25)

Similarly to poly-encoders, ME-BERT [43] exploits the first m output

embeddings to represent a document d (including the [𝐶𝐿𝑆] embedding), but uses a

different strategy to compute the relevance score 𝑠(𝑞, 𝑑) a query 𝑞. ME-BERT

computes the similarity between the query embedding and the first 𝑚 document

embedding using the dot product, and the maximum similarity, also called maximum

inner product, represents the relevance score:

 𝑠(𝑞, 𝑑) = 𝑚𝑎𝑥𝑖=0,…,𝑚−1 𝜙0. 𝛹𝑖 (2.26)

On the contrary, the relevance scoring function in Equations (2.20) - (2.25),

based on a softmax operation does not permit to decompose the relevance scoring to a

maximum computation over dot products. ColBERT [36] does not impose a

maximum on the number of embeddings that can be utilized to represent a document,

in contrast to poly-encoders and ME-BERT. Rather, it represents a document using all

of the 1 + |𝑑| output embeddings, i.e., one output embedding for each document

token, including the [𝐶𝐿𝑆] special token. Additionally, a query 𝑞 is represented by

numerous 1 + |𝑞| output embeddings, meaning that each query token, including the

[𝐶𝐿𝑆] special token, has an output embedding. To provide “a soft, differentiable

mechanism for learning to expand queries with new terms or to re-weigh existing

terms based on their importance for matching the query,” queries may also be

augmented with additional masked tokens, as in other representation-focused systems

[36]. Currently, up to 32 query token embeddings are included to queries.

32

A learnt weight matrix 𝑊 ∈ 𝑅𝑙′∗𝑙, with 𝑙′ < 𝑙, can project query and

document embeddings in a smaller latent vector space without sacrificing generality.

ColBERT takes advantage of a modified form of the relevance scoring function in

Equations (2.26), where each query embedding adds to the final relevance score by

summing, because there are numerous query embeddings.

 𝑠(𝑞, 𝑑) = ∑ 𝑚𝑎𝑥𝑗=0,…,|𝑑|𝜙𝑖
|𝑞|
𝑖=0 . 𝛹𝑗 (2.27)

In Equation (2.27), also known as sum maxim, ColBERT late interaction

scoring carries out an all-to-all computation: every query embedding, including the

embeddings of the masked tokens is dot-multiplied with every document embedding,

and the maximum computed dot products for each query embedding are then summed

up. By matching a different lexical word to the maximum extent possible, a query

term might so contribute to the final scoring. The COIL system suggests an alternative

method [15]. A learnt matrix 𝑊𝐶 ∈ 𝑅𝑙∗𝑙 is used in COIL to linearly project the query

and document [𝐶𝐿𝑆] embeddings. Using another learnt matrix 𝑊𝑇 ∈ 𝑅𝑙′∗𝑙, the

embeddings corresponding to normal query and document tokens are projected into a

smaller vector space with dimension 𝑙′ < 𝑙. Values for ~ 0 typically fall between 8

and 32.

The total of the two elements is the query-document relevance score. The

projected query and document [𝐶𝐿𝑆] embeddings are multiplied to create the first

component, and the sum of the sub-components, one for each query token, is the

second component. The maximal inner product between a query token and the

document embeddings for the same token is what makes up each sub component as in

Equations:

 [𝜙0
′ , 𝜙1

′ , …] = [𝑊𝐶𝜙0,𝑊𝑇𝜙1, …] (2.28)

 [𝛹0
′ , 𝛹1

′ , …] = [𝑊𝐶𝛹0,𝑊𝑇𝛹1, …] (2.29)

 𝑠(𝑞, 𝑑) = 𝜙0
′ . 𝛹0

′ + ∑ 𝑚𝑎𝑥𝑡𝑗∈𝑑, 𝑡𝑖= 𝑡𝑗
 𝜙𝑖

′.𝑡𝑖∈𝑞 𝛹𝑗
′ (2.30)

33

It can pre-compute the projected document embeddings and, for each term in

the vocabulary, concatenate the embeddings in the same document and in the entire

collection to the COIL's scoring function, which is based on lexical matching between

query and document tokens. These embeddings are then arranged in posting lists of

embeddings, with a special posting list reserved for the [𝐶𝐿𝑆] token and its document

embeddings. This organization uses optimized linear algebra libraries, like BLAS, to

handle posting lists efficiently at query time [2]. It should be noted that computation

of the projected query embeddings occurs during query processing.

2.3.3 Fine-tuning Representation-focused Systems

Fine-tuning of a bi-encoder is equivalent to learning an inner-product function

that is suited for relevance scoring in the ad-hoc ranking challenge. Neural IR

model 𝑀(𝜃), which is parametrized by 𝜃, calculates a score 𝑠𝜃(𝑞, 𝑑) for a document

𝑑 in relation to a query 𝑞. It now formulates the learning task as an estimation

problem using probabilities. In order to achieve this, it applies a softmax operation to

transform the scoring function into a suitable conditional distribution as in Equation:

 𝑝𝜃(𝑑|𝑞) =
exp (𝑠𝜃(𝑞,𝑑))

∑ exp (𝑠𝜃(𝑞,𝑑′))𝑑′∈𝐷

 (2.31)

where the posterior probability of the document being relevant in light of the

query is represented by 𝑝𝜃(𝑑|𝑞). It aims to determine the parameters 𝜃∗ that

minimize the cross entropy 𝐼𝐶𝐸 between the actual probability 𝑝(𝑑|𝑞) and the model

probability 𝑝𝜃(𝑑|𝑞)., assuming that it have a joint distribution 𝑝 over 𝐷 × Q as in

Equation:

 𝜃∗ = arg𝑚𝑖𝑛𝜃 𝐸[𝐼𝐶𝐸(𝑑, 𝑞)] = arg𝑚𝑖𝑛𝜃 𝐸[− log(𝑝0(𝑑|𝑞))] (2.32)

where (𝑑, 𝑞)~𝑝 is the computation of the expectation. If the scoring function

 𝑠𝜃(𝑞, 𝑑) is sufficiently expressive, then 𝑝(𝑑|𝑞) = 𝑝𝜃(𝑑|𝑞) for a given 𝜃. Due to the

enormous number of documents in 𝐷, it is challenging to optimize the cross entropy

loss and computing the denominator, sometimes referred to as the partition function.

34

In noise contrastive estimation, it maximizes the likelihood of 𝑝𝜃(𝑑|𝑞)

contrasting 𝑔(𝑑) by selecting an artificial noise distribution 𝑔 over 𝐷 of negative

samples. It defines the conditional distribution for each of the 𝑘 ≥ 2

documents 𝐷𝑘 = 𝑑1, … , 𝑑𝑘 as in Equation.

 �̂�𝜃(𝑑𝑖|𝑞, 𝐷𝑘) =
exp (𝑠𝜃(𝑞,𝑑𝑖))

∑ exp (𝑠𝜃(𝑞,𝑑′))𝑑′∈𝐷𝑘

 (2.33)

This is much less expensive to calculate than Equation (2.33) if 𝑘 ≪ |D| |. The

goal now is to identify the values of 𝜃+ that minimize the noise contrastive estimation

loss (𝑙𝑁𝐶𝐸), which is expressed as in Equation:

𝜃+ = arg𝑚𝑖𝑛𝜃 𝐸[𝑙𝑁𝐶𝐸(𝐷𝑘, 𝑞)] = arg𝑚𝑖𝑛𝜃 𝐸[− log(�̂�𝜃(𝑑1|𝑞, 𝐷𝑘))] (2.34)

where, for 𝑖 = 2,… , 𝑘, the expectation is calculated over (𝑑1, 𝑞)~𝑝 and

(𝑑𝑖~ 𝑔). The ultimate objective of this fine-tuning is to learn a latent vector space for

query and document representations [32] where a query and its relevant document(s)

are closer than the query and its non-relevant documents, with respect to the dot

product [25]. This fine-tuning approach is also known as contrastive learning. The

noise distributions 𝑔 over 𝐷 yields negative samples. Its outline a few negative

sampling techniques used in Neural IR below.

Random sampling means 𝑞(𝑑) =
1

|𝐷|
, or any random document from the

corpus is regarded as non-relevant with equal probability. One can sample an infinite

number of negative documents. It makes intuitive sense to anticipate that a document

selected at random will have a relevance score that is significantly lower than the

relevance score of a positive document, with a loss value that is near to zero. The

training convergence to determine the parameters 𝜃+ is not significantly impacted by

negative documents with almost minimal loss [29] and [33].

In-batch sampling means in order to speed up training, the queries used to

calculate the loss can be arbitrarily combined into batches of size 𝑏. The positive

passages for the other 𝑏 − 1 inquiries are regarded as negative passages for the

particular query in a specific batch [18]. Although the sampling process is faster, this

sampling strategy has the same near zero loss issue as random sampling [81].

35

Hard negative sampling means using a traditional or trained retrieval system,

negative documents can be produced. The retrieval system receives each query as

input, retrieves the top documents, and treats the documents that do not match the

positive results as negatives. Take note that since it presumes to know the pertinent

document 𝑑1 for the query, it is assuming a conditional noise distribution𝑝(𝑑|𝑞, 𝑑1).

Low-ranking papers that do not affect the user experience or cause loss are given

priority over high-ranking documents in this way. The BM25 relevance model, as in

DPR [32], and the neural model that is presently being trained, as in ANCE [81], can

be utilized by the retrieval system that was used to mine the negative documents, or

another fine-tuned neural model that has been refined, such STAR [83].

2.4 Retrieval architectures

Although they are relatively costly to compute, pre-trained language models

successfully increase the efficiency of IR systems in the ad hoc rating task. The

interaction-focused methods are not employed directly on the document collection,

that is, to rank all documents that match a query, because of these processing costs.

They are used in a pipelined architecture as shown in Figure 2.9, where a more costly

neural re-ranking system, such the cross-encoders, is used after a preliminary ranking

stage that retrieves a restricted number of candidates, usually 1000 documents.

Figure 2.9 Re-ranking pipeline architecture for interaction-focused Neural IR

systems

Candidates

Retriever

Neural

Re-ranker

Document

Collection

Candidates

List

Learned query-

document

representation

𝜂(𝑞,𝑑)

Query Results

List

36

The ability to pre-compute and cache the representations of a sizable corpus of

documents using the learnt document representation encoder 𝜓(𝑑) is the primary

advantage of bi-encoders.

During the query processing phase, the user receives the top 𝑘 documents

whose embeddings have the largest inner product of the query embedding. The

learned query representation encoder only needs to compute the query

representation 𝜓(𝑞). After that, the documents are ranked based on this inner product

as shown in Figure (2.10).

Figure 2.10 Dense Retrieval Architecture for Representation-focused

Neural IR systems

2.5 Application Areas of IR and Neural IR

IR has a broad range of applications across various domains, leveraging the

power of neural networks to enhance the retrieval of relevant information. The

following are the example applied areas from some of them. Fine-tuning models to

improve the ranking of documents based on relevance to a query. Adapt models to

retrieve accurate answers from a corpus in response to user queries. Enhancing

recommendation algorithms by fine-tuning models to understand user preferences and

provide relevant suggestions.

Neural IR has a broad range of applications across various domains,

leveraging the power of neural networks to enhance the retrieval of relevant

information. The following are the example applied areas from some of them.

Learned query

representation

encoder 𝜙(𝑞)

Neural

Ranker

Document

Embeddings

Index

Document

Collection

Learned

document

representation

encoder 𝛹(𝑑)

Online

Offline

Query Results

List

37

Neural IR models like BERT and DPR enhance the relevance of search results

by better understanding user queries and document content in web search engines

improved search relevance. Neural models help in expanding and reformulating user

queries to improve retrieval performance in web search engine as query expansion

and reformulation.

QA systems are open-domain QA, and conversational agents. Open-domain

QA systems like DPR are used to retrieve relevant passages from large corpora to

answer user queries. Conversational agents mean virtual assistants and chat-bots use

Neural IR to fetch relevant information and provide accurate responses to user

questions.

E-commerce are includes the product search, and recommendation systems.

Neural IR enhances product search by understanding user queries and matching them

with product descriptions, reviews, and specifications in product search.

Recommendation systems combine IR with recommendation algorithms to provide

personalized product recommendations based on user behavior and preferences.

Healthcare includes the clinical decision support, and patient query systems.

Neural IR helps healthcare professionals retrieve relevant medical literature, clinical

guidelines, and patient records are patient query systems assisting patients in finding

relevant health information and resourced by understanding natural language queries.

Legal IR is case law and legal documents, and e-discovery. Neural IR aids in

retrieving relevant case laws, statutes, and legal documents based on complex legal

queries in case law and legal documents and E-discovery enhances the efficiency and

accuracy of the electronic discovery process by retrieving relevant documents from

large datasets.

Academic Research and Digital Libraries are research paper retrieval, and

metadata extraction. Research paper retrieval assists researchers in finding relevant

academic papers, articles, and citations, but Metadata extraction extracting and

retrieving metadata information from academic articles are for better organization and

search ability.

Social Media and Content Moderation is content retrieval, and content

moderation. Content retrieval helps finding relevant posts, comments, and user-

generated content based on specific queries or interests. Content moderation uses

Neural IR to identify and retrieve harmful or inappropriate content for review and

moderation.

38

Customer support is including the automated customer service, and help desk

systems. Automated customer service enhances automated customer support systems

by retrieving relevant information from knowledge based on answer customer queries.

Desk systems assisting support agents in finding relevant solutions and documentation

to resolve customer issues quickly.

Multimedia retrieval is including the image and video search, and content-

based retrieval. Neural IR models are used to retrieve relevant images and videos

based on textual or visual queries. Content-based Retrieval leveraging neural

networks to match multimedia content based on content features rather than just

metadata.

Enterprise Search is internal document retrieval, and knowledge management.

Internal document retrieval helps employees retrieve relevant documents, reports, and

internal communications from large corporate databases. Knowledge management

enhances knowledge management systems by retrieving relevant information and

documents for decision-making and operational efficiency.

Personal Assistants and Smart Devices are voice search and command, and

contextual awareness. Voice search and command enhance voice-activated search and

command functionalities by understanding natural language queries and retrieving

relevant information. Contextual awareness using Neural IR to provide contextually

relevant information based on user interactions and preferences.

Media and Entertainment are content recommendation, and semantic search.

Content recommendation enhances content recommendation systems for movies,

music, and articles based on user preferences and behavior. Semantic search enables

semantic search capabilities for large media databases to find relevant content based

on complex queries.

The applications of Neural IR are vast and continuously expanding as neural

network models become more sophisticated and capable. These applications

significantly enhance the efficiency, accuracy, and relevance of IR across various

domains, leading to improve user experiences and operational efficiencies.

39

2.6 Overview of Deep Neural Networks

A Deep Neural Network (DNN) is a type of Artificial Neural Network (ANN)

with multiple layers between the input and output layers. These networks are capable of

learning complex patterns and representations in data through hierarchical processing.

DNNs represent a significant advancement in artificial intelligence, enabling machines

to perform complex tasks with high accuracy. Their development and applications

continue to expand, driven by both academic research and industry innovations.

2.6.1 Applications of DNNs in IR

DNNs can learn complex ranking functions that score documents based on their

relevance to a query. Models like RankNet, LambdaRank and LambdaMART, are

designed for document ranking.

By understanding the context and semantics of a query, DNNs can suggest

additional relevant terms to improve retrieval performance in query expansion.

DNNs can match queries with documents at a semantic level rather than relying

solely on keyword matching. This is particularly useful for understanding synonyms

and contextually similar phrases in semantic matching.

DNNs can model user preferences and search behaviors to provide personalized

search results. This involves learning user profiles and adapting the retrieval process

accordingly personalization.

DL models can understand and generate natural language, making them suitable

for building systems that answer user queries directly instead of retrieving a list of

documents in QA systems.

2.7 Overview of Pre-trained Model

To get pre-trained language models, it is standard practice to train these

models on large amounts of textual data in both scenarios. By doing this, it enables

the model to acquire general-purpose language knowledge that may subsequently be

applied to a downstream task that is more specialized. This transfers learning strategy

uses an initial model that is already learned to refine it on a smaller, domain-specific

training dataset for the downstream target job.

40

Another way is fine-tuning that is the process of modifying a pre-trained

language model's parameters for the target task and domain data. Pre-training

language models typically requires a huge general-purpose training corpus, such as

Wikipedia or Common Crawl web pages, expensive computation resources and long

training times, spanning several days or weeks. On the other side, fine-tuning models

requires a small domain-specific corpus focused on the downstream task, affordable

computational resources and few hours or days of additional training. Special cases of

fine-tuning are few-shot learning, where the domain-specific corpus is composed of a

very limited number of training data, and zero-shot learning, where a pre-trained

language model is used on a downstream task that it was not fine-tuned on. Cross-

encoder models are interaction-focused Neural IR systems that employ pre-trained

language models. They take as input a pair (q, d) of query and document strings.

Different cross-encoders are fine-tuned differently depending on the type of sequence-

to-sequence model; nonetheless, they all strive to rank documents according to a

given query by computing a relevance score s(q, d).

2.7.1 Overview of Fine-tuned Model

Fine-tuning begins with an existing model that has already been trained on a

large, diverse data set to gain a wide range of characteristics and patterns. During this

initial training, the pre-trained model learns to generalize by finding underlying

patterns and characteristics in the training data. Over time, the model gains the ability

to effectively comprehend new data. The process of fine-tuning a machine learning

model involves pre-trained it and then retraining it on a more focused, smaller

collection of data. The goal of fine-tuning is to preserve a pre-trained model's initial

capabilities while modifying it to fit more specific use cases. Machine learning

developers can more quickly and effectively design models for particular use cases by

fine-tuning an already complex model. When there is a shortage of pertinent data or

computational resources, this strategy is quite helpful.

On the tasks for which it was fine-tuned, a fine-tuned model's performance can

outperform the initial pre-trained model. On the other hand, fine-tuning refers to

methods for training a model again after its weights have already been adjusted by

previous training.

41

By training the underlying model on a smaller, task-specific dataset, fine-

tuning adapts the model by starting with its prior knowledge. Although it was

theoretically possible to train a huge model from scratch on a small dataset, doing so

runs the danger of overfitting, the model may learn to perform well on the training

instances but may not translate well to new data. This would negate the benefit of

model training and make the model inappropriate for the task at hand.

Fine-tuning offers the benefits of both worlds: refining the model's

comprehension of more particular, detailed concepts while utilizing the wide

knowledge and stability obtained via pre-training on a large set of data. Owing to the

growing effectiveness of open source foundation models, pre-training can frequently

be benefited from without incurring any additional costs or difficulties with

calculation or logistics. When fine-tuning, a pre-trained model's weights are used as a

basis for additional training on a smaller dataset of instances that more closely match

the particular tasks and use cases the model will be applied to. Although supervised

learning is usually involved, it can also involve semi-supervised, self-supervised, or

reinforcement learning. When the situation necessitates supervised learning but there

are few appropriate labeled instances, semi-supervised learning a type of machine

learning that combines both labeled and unlabeled data is beneficial. For NLP tasks,

semi-supervised fine-tuning has demonstrated promising results and eases the

difficulty of obtaining a sufficient amount of labeled data. The weights of the entire

network can be updated by fine-tuning; however this is not usually the case due to

practical considerations. When a company uses generative AI for customer assistance,

for instance, it might train a Large Language Model (LLM) using data from previous

customer interactions, policies, and product information.

2.7.2 Large Language Model (LLM)

A crucial step in the LLM development cycle is fine-tuning, which enables the

basic foundation models' linguistic capabilities to be modified for a range of

applications, including coding, chat-bots, and other creative and technical fields.

Using a vast corpus of unlabeled data, self-supervised learning is used to pre-train

LLMs. Autoregressive language models are trained to predict the next word or words

in a sequence until it is finished. Examples of these models are OpenAI's GPT

(Generative Pre-trained Transformer), Google's Gemini, and Meta's Llama models.

42

Pre-training involves giving models a sample sentence's beginning from the training

data and asking them to forecast each word in the sequence until the sample's end.

The real word that follows in the original example sentence acts as the ground truth

for each forecast. Although this pre-training produces strong text production

capabilities, it does not produce a true grasp of the intent of the user. Fundamentally,

autoregressive LLMs merely append text to a prompt rather than responding to it.

 A pre-trained LLM (that has not been refined) only predicts, in a

grammatically coherent manner, what might be the next word(s) in a given sequence

that is launched by the prompt, without particularly explicit direction in the form of

prompt engineering. In response to the question, "Teach me how to make a resume,"

and then LLM would say, "using Microsoft Word." Although it is an acceptable

approach to finish the sentence, it does not support the user's objective. The model

may already possess a great deal of resume writing expertise derived from pertinent

information. The fine-tuning process thus serves a crucial role in not only tailoring

foundation models for business’s unique tone and use cases, but in making them

altogether suitable for practical usage.

The model's core knowledge can be expanded or customized, and it can be

made to work in whole new jobs and domains by fine-tuning. Models can be adjusted

to better represent the intended tone of a business. This might involve anything from

subtle changes like starting each conversation with a kind greeting to more intricate

behavioral patterns and unique visual styles. LLMs' general language skills can be

refined for certain activities. For instance, Meta's Llama 2 models were made

available as code-tuned (Code Llama), chatbot-tuned (Llama-2-chat), and base

foundation models. Despite having undergone extensive pre-training on a vast corpus

of data, LLMs lack omniscience includes domain-specific information. Legal,

financial, and medical environments sometimes need the usage of specialized, esoteric

language that may not have been well represented in pre-training, making it more

crucial to apply extra training samples to augment the basic model's understanding in

these domains. Including proprietary data can have a pipeline of confidential data that

is extremely pertinent to the particular use case. This information can be fed into the

model through fine-tuning, saving the need to start from scratch throughout training.

Few-shot learning: Using relatively few demonstrative instances, models with good

generalized knowledge may typically be fine-tuned for more specific categorization

texts. Handling edge cases model respond in a particular way to circumstances that

43

were not covered in pre-training. One good technique to make sure these kinds of

events handled correctly is to fine-tune a model on labeled samples of them.

When compared to its more generic pre-trained cousin, the refined model

generates more relevant and valuable replies because of this enterprise-specific

training. An existing model that has already been trained on a sizable, varied data set

to acquire a broad variety of features and patterns is the starting point for fine-tuning.

Fine-tuning can be viewed as a subset of the more general transfer learning technique,

which is the process of using the prior information that an existing model has acquired

to begin learning new tasks. The idea behind fine-tuning is that, in general, it is less

expensive and easier to refine the capabilities of a basic model that has already been

trained and has gained general knowledge relevant to the task at hand than it is to train

a new model from the beginning for that particular use. This is particularly true for

deep learning models with millions or even billions of parameters, such as the

complex CNNs and Vision Transformers (ViTs) used for computer vision tasks like

object detection, image segmentation, or LLMs that have gained popularity in the

field of NLP. Fine-tuning can lower the quantity of costly processing resources and

labeled data required to produce huge models customized to specialized use cases and

business objectives by utilizing previous model training through transfer learning.

Fine-tuning, for instance, can be used to simply change the illustration style of a pre-

trained image generation model or the conversational tone of a pre-trained LLM. It

can also be used to add proprietary data or specialized, domain-specific knowledge to

the learnings from a model's original training dataset. As a result, fine-tuning is

crucial to the practical use of ML (Machine Learning) models, facilitating more

widespread access to and modification of complex models. Although fine-tuning is

supposedly a method used in model training, it is a separate procedure from what is

typically referred to as "training." In this context, data scientists usually refer to the

latter as pre-training for clarity's sake.

The model has not "learned" anything at the start of training or, pre-training.

The first step in training is to randomly initialize the model's parameters, which are

the different weights and biases applied to the mathematical operations carried out at

each neural network node. Training takes place iteratively in two stages: during

backpropagation, an optimization algorithm typically gradient descent is used to

adjust model weights across the network to reduce loss. In a forward pass, the model

makes predictions for a batch of sample inputs from the training dataset, and a loss

44

function measures the difference (or loss) between the model's predictions for each

input and the “correct” answers (or ground truth). The model "learns" through these

weight modifications. The procedure is carried out again over several training.

Labeled data is used in conventional supervised learning, which is typically used to

pre-train models for Neural IR. The knowledge imparted by these pretext tasks is

helpful for tasks that follow. Usually, they use one of two strategies: Self-prediction

involves hiding a portion of the initial input and giving the model the challenge of

piecing it back together. For LLMs, this is the most common training method.

Training models to acquire similar embeddings for related inputs and distinct

embeddings for unrelated inputs is known as contrastive learning.

2.7.3 Parameter-Efficient Fine-Tuning (PEFT)

Other fine-tuning techniques that update only a subset of the model parameters

are widely available and are commonly referred to as Parameter-Efficient Fine-

Tuning (PEFT). PEFT approaches, which help to reduce catastrophic forgetting (the

phenomena where fine-tuning results in the loss or destabilization of the model's

essential information) and computing demands, typically without causing significant

performance sacrifices. Because there are so many different fine-tuning techniques

and variables that come with them, it is frequently necessary to go through several

iterations of training strategies and setups in order to achieve optimal model

performance. These iterations involve adjusting datasets and hyper-parameters, such

as batch size, learning rate, and regularization terms, until a satisfactory result is

reached, as determined by the metrics that are most pertinent to use case. To fine-tune,

just updating the complete neural network is the most conceptually simple method.

The only significant distinctions between the pre-training and complete fine-tuning

procedures are the model's initial parameter state and the dataset being used. This

straightforward methodology essentially looks like the pre-training process. Certain

hyper-parameters model attributes that impact learning but are not themselves

learnable parameters might be adjusted in relation to their specifications during pre-

training to prevent destabilizing changes from the fine-tuning process. For instance, a

smaller learning rate (which lowers the magnitude of each update to model weights) is

less likely to result in catastrophic forgetting.

Similar to pre-training, full fine-tuning is highly computationally intensive. It

45

is typically too expensive and impracticable for contemporary deep learning models

with hundreds of millions or even billions of parameters. A variety of techniques are

combined under the umbrella of PEFT to minimize the number of trainable

parameters that must be modified in order to successfully tailor a sizable pre-trained

model to particular downstream applications. By doing this, PEFT dramatically

reduces the amount of memory and processing power required to produce a model

that is successfully fine-tuned. Especially for NLP use cases, PEFT approaches have

frequently been shown to be more stable than full fine-tuning methods.

2.7.3.1 Partial Fine-tuning

Partial fine-tuning techniques, also known as selective fine-tuning, are

designed to lower computational demands by adjusting only the specific subset of pre-

trained parameters that are the most important to the model's performance on pertinent

downstream tasks. The remaining settings are guaranteed not to be altered because

they are "frozen". Updating the neural network's outer layers solely is the most logical

partial fine-tuning method. For example, in a CNN used for image classification, early

layers typically discern edges and textures; each subsequent layer discerns

progressively finer features until final classification is predicted at the outermost

layer. In most model architectures, the inner layers of the model (closest to the input

layer) capture only broad, generic features. In general, the pre-trained weights of the

inner layers of the model will already be more beneficial for this new, related work

and the fewer layers need to be updated the more similar the new task (for which the

model is being fine-tuned) is to the original goal. Additional partial fine-tuning

techniques include changing the model's layer-wide bias terms alone (as opposed to

the node-specific weights) and "sparse" fine-tuning techniques that modify just a

portion of the model's total weights.

2.7.3.2 Additive Fine-tuning

Additive approaches add additional parameters or layers to a pre-trained

model, freeze the pre-trained weights, and train only those new components, as

opposed to fine-tuning the existing parameters of a pre-trained model. This method

preserves the model's stability by guaranteeing that the initial pre-trained weights do

46

not change. Because there are fewer gradients and optimization stages to store, this

can lengthen training durations but also drastically lower memory requirements.

Training a whole model set of parameters uses 12–20 times more Graphics Processing

Unit (GPU) memory than training the model weights alone [40]. The six quantization

weights of frozen model can save even more memory by reducing the precision with

which model parameters are represented. This is conceptually comparable to reducing

the bitrate of an audio file. Prompt tuning is one area of additive approaches. From a

conceptual standpoint, it is comparable to prompt engineering, which is the process of

customizing "hard prompts," or human-written prompts in natural language, to direct

the model toward the intended result, including defining a specific tone or offering

instances that help with few-shot learning. AI-authored soft prompts, or learnable

vector embeddings concatenated to the user's hard prompt, are introduced by prompt

tweaking. Prompt tuning involves freezing model weights and training the soft prompt

itself, as opposed to retraining the model. Prompt, effective adjustment reduces

interpretability but makes it easier for models to transition between different tasks.

2.7.3.3 Adapters

An additional subset of additive fine-tuning involves injecting and training

adaptor modules, which are new, task-specific layers introduced to the neural

network, instead of fine-tuning any of the frozen pre-trained model weights. The

original paper measured the outcomes on the BERT masked language model, and

found that adapters trained only 3.6% more parameters while achieving performance

comparable to full fine-tuning.

2.7.3.4 Re-parameterization

Techniques that rely on re-parameterization, such as Low Rank Adaptation

(LoRA), utilize the low-rank transformation of matrices with high dimensions (such

as the large matrix of trained model weights in a transformer model). To capture the

underlying low-dimensional structure of model weights, these low-rank

representations exclude irrelevant higher-dimensional information, resulting in a

significant reduction in the number of trainable parameters. This significantly

minimizes the amount of memory required to store model updates and speeds up fine-

47

tuning. Instead of directly optimizing the matrix of model weights, LoRA inserts a

matrix of updates to model weights, or delta weights, into the model and then

optimizes it. The number of parameters that need to be updated is significantly

decreased by representing that matrix of weight updates as two smaller (i.e., lower

rank) matrices. This decreases the amount of memory required to store model changes

and speeds up fine-tuning. The weights of the pre-trained models themselves stay

fixed. An additional advantage of LoRA is that different task-specific LoRAs can be

"swapped in" as needed to adapt the pre-trained model whose actual parameters

remain unchanged to a given use case. This is because what is being optimized and

stored with LoRA are not new model weights, but rather the difference (or delta)

between the original pre-trained weights and fine-tuned weights.

Numerous variations of LoRA have been created, including Quantized Low Rank

Adaptation (QLoRA), which quantizes the transformer model before Low Rank

Adaptation (LoRA), so reducing computational complexity even further.

2.8 Summary

In this chapter, overview of Neural IR system, pre-trained model, fine-tuned

model and some applied areas of Neural IR are described. By reviewing the related

work, it can be seen that these techniques can promote the quality of Neural IR for

other languages such as English, but there is no research on Neural IR system for

Myanmar Language are described in this chapter. Queries and documents are

represented by a single embedding in single representations systems, multiple

representations systems express queries and/or documents using several embeddings,

and the fine-tuning of representation-focused systems by using noise-contrastive

estimation. The primary distinction between these systems used the method based on

BERT model fine-tuning.

48

CHAPTER 3

D EEP NEURAL RANKING MODELS

This chapter describes the theoretical backgrounds and methodologies to DNN

in detail. It describes about the overviews of DNN as well as the mechanism for its

development and representation. It also describes the Deep Neural Ranking Model

and Fine-tuned Model.

3.1 Models of Neural IR System

Neural IR models aim to understand the relevance between a user's query and

a document by learning a function that scores the similarity between vector

representations. This matching score is used to rank documents based on their

relevance to the query. Neural IR models are trained on labeled data, where

documents are labeled as relevant or non-relevant to specific queries. These labels are

used to optimize the model's parameters so that it can better predict relevance in the

future. The ultimate goal of Neural IR is to rank documents in order of their likely

relevance to a given query. This ranking can be used in search engines to display the

most relevant results to users. The performance of Neural IR models is typically

evaluated using metrics like Precision, Recall, F1-score, and MAP to assess how well

they retrieve relevant documents. Neural IR models often utilize deep learning

architectures like CNNs or Transformers to capture complex patterns in text data and

improve the accuracy of relevance ranking. Some Neural IR models are pre-trained

on large text corpora (e.g., BERT) and then fine-tuned on specific retrieval tasks to

make them more effective at understanding the nuances of IR.

3.2 Deep Neural Networks (DNNs) in Information Retrieval

 DNNs are a class of machine learning algorithms inspired by the human

brain's neural networks. They consist of multiple layers of artificial neurons (nodes),

which process input data to extract features and make predictions. In IR, DNNs are

employed to improve the effectiveness and efficiency of retrieving relevant

information from large datasets.

49

3.2.1 Key Components and Architectures

The input layer represents the raw data fed into the network. In IR, this data

could be text documents, queries, user profiles, or other forms of structured and

unstructured data. Hidden layers are composed of multiple neurons that perform

transformations on the input data. These layers capture various levels of abstractions

and features from the data. In the context of IR, hidden layers can capture semantic

meanings, contextual information, and latent relationships between terms and

documents. The output layer provides the final prediction or classification. In IR, this

could be a relevance score, a ranking position, or a classification of documents into

relevant and non-relevant categories.

3.2.2 Popular DNN Architectures in Information Retrieval

Modeling local patterns and spatial hierarchies are used in text data on CNNs.

An example is CNNs which can be used for document classification, where the

convolutional layers detect features such as important keywords or phrases.

RNNs and LSTM capture long-term dependencies and suitable for sequential

data. Tasks like query understanding and text generation are used. An example is

LSTMs which can model the sequence of words in a query and predict the relevance of

documents based on the entire query context.

State-of-the-art architecture for various NLP tasks due to their ability in

transformers captures contextual information through self-attention mechanisms. An

example is transformers (like BERT) which can be used for query expansion, where the

model understands the context and retrieves more relevant documents.

3.2.3 Advantages of Using DNNs in Information Retrieval

DNNs automatically learn features from raw data, eliminating the need for

manual feature engineering as feature learning:.

DNNs are effective in processing unstructured data such as text, images, and

audio, making them versatile for various IR tasks handling unstructured data.

The multiple layers in DNNs allow them to capture complex patterns and

relationships in the data that traditional models might miss capturing complex

relationships.

50

DNNs can learn complex ranking functions that score documents based on their

relevance to a query. Models like RankNet, LambdaRank, and LambdaMART are

designed for this purpose in document ranking.

DNN have significantly advanced the field of IR by enabling more accurate,

efficient, and context-aware retrieval of information. Their ability to learn from vast

amounts of data and model complex relationships has led to substantial improvements

in tasks like document ranking, query expansion, and semantic matching. However,

challenges such as data requirements and computational demands need to be addressed

to fully leverage their potential in IR applications.

3.2.4 Training Process of DNN

Forward propagation input data is passed through the network layer by layer to

generate an output. Loss function measures the difference between the predicted output

and the actual output. Common loss functions are Mean Squared Error (MSE) and

Cross-Entropy Loss. The error is propagated back through the network to update the

weights and biases using the gradient descent algorithm in backpropagation. Methods

used to minimize the loss function, including Stochastic Gradient Descent (SGD),

Adaptive Moment Estimation (Adam), and Root Mean Square Propagation

(RMSprop) in optimization algorithms.

3.2.5 Types of DNN

Feedforward Neural Networks (FNNs) data flows in one direction from input

to output without cycles. CNNs specialized for processing grid-like data such as images.

They use convolutional layers to automatically detect spatial hierarchies of features.

Convolutional Layers apply filters to extract features from the input. Pooling Layers

reduce the dimensionality of the data, helping to prevent overfitting. RNNs designed for

sequential data. They maintain information across time steps using loops. LSTM is an

advanced type of RNN that can capture long-term dependencies. Gated Recurrent Units

(GRUs) is a simplified version of LSTMs. Autoencoders such as unsupervised learning

models that compress and then reconstruct the input data. Variational Autoencoders

(VAEs) introduce a probabilistic approach to data encoding and decoding. Generative

Adversarial Networks (GANs) consist of two networks, a generator and a discriminator,

that compete to improve data generation.

51

The key concepts of DNN are regularization, hyper-parameters, and transfer

learning. Regularization techniques prevent overfitting, such as dropout and L2

regularization. Hyper-parameters settings that control the learning process, like learning

rate, batch size, and number of epochs. Transfer learning using a pre-trained model on a

new but related task to leverage learned features.

3.3 Deep Neural Ranking Models

 Many neural ranking models have been proposed primarily to solve IR tasks.

Several approaches to ranking are based on traditional machine learning algorithms

using a set of hand-crafted features. Recently, researchers have leveraged deep learning

models in IR. These models are trained end-to-end to extract features from the raw data

for ranking tasks, so that they overcome the limitations of hand-crafted features. A

variety of DL models have been proposed, and each model presents a set of neural

network components to extract features that are used for ranking [75]. Developing

efficient and effective retrieval models have always been at the core of IR [72]. Modern

search engines use a multi-stage cascaded architecture for ranking documents in

response to each query [9].

DNNs play a pivotal role in advancing the capabilities of IR systems, enabling

them to deliver more accurate, relevant, and personalized results to users across various

domains and applications. Ranking models are the main components of IR systems. In

this research, it has applied the following ranking models: Deep Relevance Matching

Model (DRMM) [21], Match-Pyramid (MP) [53], Duetl [48], Kernelized Neural

Ranking Model (KNRM) [82], Position-Aware Convolutional Recurrent Relevance

(PACRR) [26], Convolutional Kernelized Neural Ranking Model (CONV-KNRM)

[11], MatchZoo-CONV-KNRM (MZ-CONV-KNRM) [19].

3.3.1 Deep Relevance Matching Model (DRMM)

A neural network architecture called the Deep Relevance Matching Model

(DRMM) was created with IR tasks in mind. It focuses on relevance matching between

documents and queries. DRMM, created by researchers at Microsoft Research Asia,

attempts to increase the efficiency of retrieval systems such as search engines by better

determining the relevance of documents to specific queries.

52

The main attributes and elements of DRMM are interaction-based approach, and

matching histograms. DRMM places a strong emphasis on the interactions between

query terms and document terms, in contrast to conventional approaches that process

queries and documents independently. By capturing the relevance signals between

every pair of query and document terms, it generates interaction matrices. Using the

interaction matrices, the DRMM creates matching histograms. The distribution of term-

level matches and non-matches between the queries is shown by these histograms. The

DNN that analyzes the matching histograms is the central element of the deep

reinforcement machine model.

The purpose of this network is to use the properties of the histogram to identify

meaningful, complicated patterns. It is made up of several layers of brain units with

varying degrees of matching information. The DRMM has a term gating network that

gives query terms varying relevance weights as term gating network. By prioritizing

more significant terms in the query, the model is able to improve overall relevance

matching. To optimize the model and rank relevant articles higher than irrelevant ones,

DRMM is trained using a ranking loss function as ranking loss function. This loss

function is essential to ensure that the model successfully learns to discriminate between

different levels of relevance. DRMM [21] is a neural model designed for document

ranking. It focuses on modeling the interaction between query terms and document

terms using a histogram-based approach. It is known for its effectiveness in capturing

local term-matching patterns. It represents documents and queries as term frequency

histograms and computes a relevance score.

 𝑚𝑎𝑡𝑐ℎ(𝑇1, 𝑇2) = 𝐹(Φ(T1),Φ(T2)) (3.1)

where two texts 𝑇1 and 𝑇2, the degree of matching is typically measured as a

score produced by a scoring function based on the representation of each text, where 𝛷

is a function to map each text to a representation vector, and 𝐹 is the scoring function

based on the interactions between them by the Equation 3.1. Such a text matching

problem is considered general since it also describes many NLP tasks. These elements

work together to give DRMM a strong framework for relevance matching in IR tasks. It

has been demonstrated to significantly outperform conventional retrieval models,

particularly in situations where it is essential to comprehend the subtle relationships

between query and document terms.

53

Figure 3.1: Architecture of the Deep Relevance Matching Model

As in Figure 3.1, q means a user’s search input, typically component of a

sequence of words or tokens and d means collection of documents. A local interaction

captures interactions layer (eg. Convolution layer) to measure the similarity between

individual terms in the query and documents. Matching histogram mapping constructs

matching histograms based on the local interactions and captures the distribution of

term overlap. Feed-forward matching network to process the matching histograms and

generate a relevance score. Term gating network to assign weights to individual terms

based on their relevance. Score aggregation process combined the weighted terms and

generated the final relevance score for the query-document pair. Finally, outputs are

matching score which results to relevant user queries.

3.3.2 Match-Pyramid (MP)

A deep learning architecture called MatchPyramid (MP) was created for text

matching applications, including IR, QA, and paraphrase recognition. Inspired by the

success of CNNs in image processing, it was proposed to capture the hierarchical

matching patterns between two text sequences (e.g., a query and a document). The main

elements and functionalities of MP are interaction matrix, convolutional layers, and

local matching patterns. MP begins by creating an interaction matrix, just like DRMM

does. The similarity scores between every word pair from the two text sequences are

displayed in this matrix. This matrix can be filled with different similarity metrics, like

54

 dot product or cosine similarity. MP modifies the interaction matrix by applying

convolutional layers. Local matching patterns between the two texts are captured by

these layers, which function as feature extractors.

Convolutional filters are used to detect various n-gram matching patterns by

swiping over the interaction matrix. Pooling layers are applied after the convolutional

layers in order to extract the most prominent matching patterns and lower the

dimensionality of the feature maps. Pooling facilitates the creation of a more condensed

representation and improves model generalization. Fully connected (dense) layers

receive the output from the pooling layers. In order to determine if the two texts match,

these layers must combine the features that were extracted.

The model can learn to its fully connected layers. Hierarchical Structure by

gradually implementing convolutional and pooling processes, MP is able to capture

hierarchical matching patterns. Accurate text matching depends on the model's ability to

learn both local and global matching information, which is made possible by its

hierarchical structure. Because of the way it is built, MP works especially well for

activities where it is crucial to comprehend the subtle relationships between two text

passages. MP can automatically extract pertinent characteristics from the interaction

matrix by utilizing CNNs, which improves performance in a variety of text matching

applications.

MP [53] is a neural model that encodes both the query and document as

matrices and computes their similarity through keep consistency: CNN. It is effective at

capturing local and global matching patterns between queries and documents. It

converts text into matrices and applies convolutions to find matching patterns.

 𝑀𝑖𝑗 = 𝑤𝑖 ⨂ 𝑣𝑗 (3.2)

Matching Matrix is a two-dimension structure where each element 𝑀𝑖𝑗 denotes

the similarity between the 𝑖𝑡ℎ word 𝑤𝑖 in the first piece of text (user query) and the 𝑗𝑡ℎ

word 𝑣𝑗 in the second piece of text (documents), where ⨂ stands for a general

operation to obtain the similarity by the Equation 3.2.

55

Figure 3.2: Model structure of the Match-Pyramid

As shown in Figure 3.2, 𝑇1 and 𝑇2 take two text sequences are composed of

words or tokens as input representing user query and collection of documents. Level-0

matching matrix captures the local similarity information at the word level. Level-1 2D-

convolution capture local matched patterns within a window of adjacent word pairs.

Level-2 2D-pooling capture the most relevant information from the feature maps.

Layer-n MLP (Multilayer Perceptron) captured higher-level semantic information and

relationships. Finally, outputs are matching score results to relevant user query.

3.3.3 Duetl

Duet is a neural ranking model that makes use of both distributed and local

representations of documents and queries in order to enhance IR. Microsoft Research's

Duet leverages deep learning-based semantic matching to complement traditional term-

based matching, with the goal of improving search engine and other retrieval system

efficacy. The main elements and characteristics of Duet are dual representation, local

representation, and distributed representation. Dual representation means Duet

represents queries and documents via two distinct channels. Local Representation

means using precise matches between query and document words, this channel

concentrates on conventional term-based matching.

⨂

T1

T2

w1 w2 … wn

v1 v2 … vn

w1 w2 … wn

 v
1 v

2 …
…
…
 v

n

T1

T2

More 2D-

Convoluti

on and
Pooling

…..

Layer-0
Matching Matrix

Layer-1 2D

Convolution

Layer-2
2D

Pooling

Layer-n

MLP

Matching

Score

56

To represent local relevance signals, it makes the use of convolutional layers

and interaction matrices. Distributed representation captures semantic similarities

between query and document terms, it makes the use of distributed word embeddings

(e.g., word2vec, GloVe). To understand semantic matching patterns, it makes the use of

dense layers.

MP and DRMM-like interaction matrix is built by Duet in the local

representation channel. This matrix captures local matching patterns by displaying the

precise term matches found in the document and the query. To extract features that

capture signals of local importance, the local representation channel applies

convolutional and pooling layers to the interaction matrix. These layers aid in locating

significant patterns of query and document phrase matching.

The word embeddings of the query and document terms are processed by the

dense layers of the distributed representation channel. As a result, high-level

interactions and semantic similarities between the query and the content can be captured

by the model. To create a single representation, the outputs from the distributed and

local representation channels are merged. By combining the benefits of term-based and

semantic matching, this approach offers a thorough comprehension of the relationship

between the query and the document.

Ranking loss function to optimize the model and rank pertinent articles are

higher than irrelevant ones, Duet is trained using a ranking loss function. This loss

function makes sure the model which effectively learns to discriminate between

different levels of relevance. In IR problems, Duet offers a strong foundation for

relevance matching by merging local and distributed representations. It has been

demonstrated to significantly outperform conventional retrieval methods, particularly in

situations where determining the relevance between queries and documents depends on

both exact term matches and semantic similarities.

Duetl [48] is a novel document ranking model composed of two separate deep

neural networks, one that matches the query and the document using a local

representation, and another that matches the query and the document using learned

distributed representations. The two networks are jointly trained as part of a single

neural network. This combination or ‘duet’ performs significantly better than either

neural network individually on a Web page ranking task, and also significantly

outperforms traditional baselines and other recently proposed models based on neural

networks.

57

 𝑓(𝑄, 𝐷) = 𝑓𝑙(𝑄, 𝐷) + 𝑓𝑑(𝑄, 𝐷) (3.3)

where both the query and the document are considered as ordered list of terms,

𝑄 = [𝑞1, . . . , 𝑞𝑛𝑞] and 𝐷 = [𝑑1, . . . , 𝑑𝑛𝑑]. Each query term 𝑞 and document term 𝑑 is

an m × 1 vector where m is the input representation of the text (e.g. the number of terms

in the vocabulary for the local model) by the Equation 3.3.

Figure 3.3: Architecture of the Duetl

As shown in Figure 3.3, user/item features include information about users (e.g.,

represents the user’s preferences, queries, or historical interactions such as a set of

words or tokens that reflect the user’s current interests or preferences) and items (e.g.,

content features such as collection of documents or textual descriptions). Feature

embedding converts textual user and item features convert into continuous vectors using

word embeddings and an embedding layer.

User features Item features

Feature embedding Feature embedding

Neural

Network

Neural

Network

User embedding Item embedding

Similarity

58

Neural Network includes multiple layers allow the model to learn complex

patterns and representations from the feature embeddings. User and item embedding are

continuous vectors that encode the characteristics, preferences, or features of users and

items. Similarity Calculation calculated using cosine similarity, dot product or another

distance metrics. Output is a relevance or similarity score, indicating the predicted

preference or likelihood of interaction between the user and the item.

3.3.4 Kernelized Neural Ranking Model (KNRM)

Neural network architecture called the Kernelized Neural rating Model

(KNRM) was created for IR tasks. It focuses primarily on the relevance rating of

documents in response to a query. In order to capture both exact matches and soft

semantic matches between query and document terms, KNRM blends kernel-based

methods with deep learning. KNRM, created by academics at the University of

Massachusetts Amherst, intends to use neural networks' and kernel methods' advantages

to increase search engines' efficacy. The main elements and characteristics of KNRM

are word embeddings, and interaction matrix. KNRM represents the terms in the query

and the document using pre-trained word embeddings (such as word2vec, GloVe).

These embeddings aid in finding soft matches between keywords and capture the

semantic meanings of the words. The word embeddings of the query and document

terms are used to build an interaction matrix. The similarity between a pair of terms

from the query and the document is represented by each row in this matrix, and is

usually calculated using a similarity measure like the dot product or cosine similarity.

Gaussian kernels converts the interaction matrix into a set of kernel scores,

KNRM uses several Gaussian kernels. Each kernel captures varying degrees of

similarity between the query and document terms are parameterized by a mean and a

variance. The model can capture both precise matches and semantic matches to these

kernels, which are tailored to concentrate on particular similarity ranges. Kernel

pooling throughout the query and document, the matching signals are aggregated by

pooling the kernel scores. A fixed-length feature vector that condenses the relevant

signals that each of the many kernels was able to collect is produced by this pooling

operation. Fully connected (dense) layers receive the pooled kernel scores. In order to

determine the final relevance score for the query-document pair, these layers learn to

aggregate the kernel scores.

59

The model may learn intricate relationships between the kernel scores and

determine a final relevance assessment to the deep layers. A ranking loss function like

pairwise hinge loss or cross-entropy loss, is used to train KNRM. In order to ensure

that the model learns, this loss function optimizes the model to rank pertinent

documents higher than irrelevant ones. Through the integration of neural networks

and kernel approaches, KNRM offers an effective framework for relevance ranking in

IR applications. While the neural network layers allow the model to learn intricate

relevance patterns, the Gaussian kernels allow the model to capture both exact and

soft matches between query and document terms. It has been demonstrated that

KNRM significantly outperforms conventional retrieval models, especially in

situations where capturing fine-grained relevance signals is essential.

KNRM [82] is a neural ranking model that uses a CNN to learn term-to-term

matching signals and applies a kernelized function to measure the importance of terms

in the matching process. A CNN learns the matching signals between these terms. Then,

kernelized functions measure the importance of these matching signals. KNRM uses

CNN to learn matching signals between query and document terms. It then applies

kernelized functions to measure the importance of terms in the matching process.

 𝐾𝑁𝑅𝑀 = ∑ ∑ 𝑓𝑘𝑒𝑟𝑛𝑒𝑙(𝑞𝑖, 𝑑𝑗) ∗ 𝑆𝑜𝑓𝑡 − 𝑇𝐹(𝑞𝑖) ∗ 𝑆𝑜𝑓𝑡 − 𝑇𝐹(𝑑𝑖)
𝐽
𝑗=1

𝐿
𝑖=1 (3.4)

where 𝐿 represents the number of terms in the query, 𝐽 is the number of terms in

the document, 𝑞𝑖 and 𝑑𝑗 denote the embeddings of the 𝑖𝑡ℎ term in the query and 𝑗𝑡ℎ term

in the document, respectively. Additionally, 𝑓𝑘𝑒𝑟𝑛𝑒𝑙 is a kernel function assessing the

similarity between terms by the Equation 3.4.

60

Figure 3.4: Architecture of the Kernelized Neural Ranking Model

As in Figure 3.4, input query n words (include sequence of words or tokens) and

document m words (include collection of documents) in the embedding layer converting

words or terms in the query and document into continuous vector representations.

Translation layer calculates the word-word similarities between the terms in the query

and documents and forms the translation matrix, the kernel pooling layer employs

multiple kernel functions, each designed to capture specific matching patterns between

terms in the translated query and document embeddings and generate soft-TF counts as

ranking features. Soft-TF is a weighting mechanism that aims to model the importance

of terms based on their frequencies. The process of ranking features in the learning-to-

rank phase involves extracting informative features from the kernel pooling output and

using term to train a model that can accurately predict the relevance of documents to

queries and combines the soft-TF to the final ranking score.

3.3.5 Position-aware Convolutional Recurrent Relevance (PACRR)

With an emphasis on relevance matching between queries and documents, the

Position-Aware Convolutional Recurrent Relevance Model (PACRR) is a neural

network architecture created for IR applications.

Embedding

Layer

Translation

Layer

Kernel Soft-TF

Kernel Pooling

Layer

Learning-to-

Rank

Ranking

Features
Final

Ranking

Scores

.

...

...

... Σ

Query

(n words)

.

Translation

Matrix M(n*m)

n*m

...

...
Documents

(m words)

61

In order to capture both long-range dependencies and local matching patterns,

PACRR blends convolutional and recurrent neural networks. Additionally, it

incorporates term positioning information to enhance relevance estimation. The main

elements and characteristics of PACRR are interaction matrix, and convolutional

layers. PACRR creates an interaction matrix that depicts the similarities between

query terms and document terms, much like other relevance models like DRMM and

MP. Usually, cosine similarity or dot product based on word embeddings is used to

populate this matrix. Convolutional layers extract local matching patterns; PACRR

uses convolutional layers to the interaction matrix. In order to find n-gram matches,

the convolutional filters pass across the interaction matrix, catching both exact and

approximatively word matches.

Position-aware pooling is carried out by PACRR following the convolutional

layers. Positional information is preserved as the convolutional features are

aggregated in this stage. Position-aware pooling helps the model grasp the positioning

context of matching words by tracking the locations of maximum values, as opposed

to regular max-pooling, which discards positional information. Layers of a RNN

layers, such as LSTM or GRUs, are used in PACRR to capture long-range

relationships and sequential patterns in the query-document interactions. In order to

learn, these RNN layers process the position-aware pooled features. Dense, fully

connected layers get input from the RNN layers.

A final relevance score for the query-document pair is generated by combining

the features that have been extracted by these layers. The model can learn intricate

relationships between the convolutional and recurrent features because to the deep

layers. Ranking loss function to optimize the model and rank pertinent documents

higher than irrelevant ones, PACRR is trained using a ranking loss function, such as

pairwise hinge loss or cross-entropy loss. This loss function makes sure the model can

discriminate between different levels of relevance. A complete framework for

relevance matching in IR tasks is provided by PACRR, which combines position-

aware pooling with convolutional and recurrent neural networks. Local matching

patterns are captured by the convolutional layers, within the RNN layers.

PACRR [26] is a neural model that combines CNN and RNN to capture

hierarchical matching patterns between queries and documents. It is known for its

ability to capture positional information.

62

A hierarchical structure is visualizing where term pairs are compared at different

levels. Convolutional and recurrent layers analyze these pairs while considering their

positions in the text. PACRR combines CNN and RNN to capture hierarchical matching

patterns. It considers both term similarity and term position in the document.

 𝐿(𝑞, 𝑑+, 𝑑−; 𝜃) = 𝑚𝑎𝑥 (0,1 − 𝑟𝑒𝑙(𝑞, 𝑑+) + 𝑟𝑒𝑙(𝑞, 𝑑−)) (3.5)

where a query 𝑞, relevant document 𝑑+, and non-relevant document 𝑑−,

minimizing a standard pairwise max margin loss by the Equation 3.5.

Figure 3.5: Architecture of the Position-aware Convolutional Recurrent

Relevance

As in Figure 3.5, each query q and document d is first converted into a query-

document similarity matrix 𝑠𝑖𝑚|𝑞|×|𝑑| . Thereafter, a distillation method (first k is

displayed) transforms the raw similarity matrix into unified dimensions, namely,

 𝑠𝑖𝑚|𝑞|×|𝑑|. Here, 𝑙𝑞−1 convolutional layers (CNN) are applied to the distilled

similarity matrices. As 𝑙𝑔 =3 is shown, layers with kernel size 2 and 3 are applied.

Next, max pooling is applied, leading to 𝑙𝑔 matrices 𝐶1 … 𝐶𝑙𝑞. Following this,

 𝑛𝑠 − 𝑚𝑎𝑥 pooling captures the strongest ns signals over each query term and n-

gram size, and the case for ns = 2 is shown here. Finally, the similarity signals from

different n-gram sizes are concatenated, the query terms normalized IDFs are added,

and a recurrent layer combines these signals for each query term into a query-

document relevance score rel(q, d).

63

3.3.6 Convolutional Kernelized Neural Ranking Model (CONV-KNRM)

For IR tasks, an enhanced neural network architecture called the CONV-

KNRM was created. Convolutional layers are added to the KNRM in order to capture

n-gram interactions between query and document terms. This method improves

relevance estimation by strengthening the model's comprehension of intricate

matching patterns and semantic linkages in text. The main elements and

functionalities of CONV-KNRM are word embeddings, and covoluational layers.

Word embeddings represent the terms in the query and the document and CONV-

KNRM uses pre-trained word embeddings (such as word2vec, GloVe). These

embeddings act as the input for the layers that follow, capturing the semantic

meanings of the words. To be Convolutional layers the word embeddings of the query

and document terms, the model adds convolutional layers. By swiping convolutional

filters across the embeddings, these layers provide n-gram representations that capture

local contextual data and term interaction patterns.

The n-gram representations produced by the convolutional layers are the

foundation for building an interaction matrix. The similarity between a pair of n-

grams from the query and the document is represented by each item in this matrix.

This similarity is usually calculated using a similarity measure like the dot product or

cosine similarity. CONV-KNRM converts the interaction matrix into a set of kernel

scores by using many Gaussian kernels, just like KNRM does. Every kernel captures

both precise and approximate similarities within a particular range. Throughout the

query and document, the matching signals are aggregated by pooling the kernel

scores. A fixed-length feature vector that condenses the relevant signals that each of

the many kernels was able to collect is produced by this pooling operation.

 Fully connected (dense) layers receive the pooled kernel scores. In order to

determine the final relevance score for the query-document pair, these layers learn to

aggregate the kernel scores. The model may learn intricate relationships between the

kernel scores and determine a final relevance assessment to the deep layers. A ranking

loss function like pairwise hinge loss or cross-entropy loss is used to train CONV-

KNRM. By optimizing the model to rank pertinent documents higher than irrelevant

ones, this loss function makes sure the model which can distinguish between

documents with differing levels of relevance.

64

Convolutional layers and kernel-based methods are combined to provide

CONV-KNRM, a strong framework for relevance ranking in IR problems. The

Gaussian kernels provide flexible matching of both exact and semantic similarities

while the convolutional layers improve the model's capacity to record n-gram

interactions and local context. This combination improves performance across a range

of retrieval circumstances, especially those that call for a sophisticated comprehension

of textual significance.

CONV-KNRM [11] is an extension of KNRM that incorporates convolutional

layers to better model term interactions. It uses CNN to capture multi-level matching

patterns. An extension of KNRM with convolutional layers added. These convolutional

layers capture more intricate matching patterns between terms. CONV-KNRM extends

KNRM by incorporating convolutional layers. This allows it to capture multi-level

matching patterns in text.

 𝑓(𝑞, 𝑑) = tanh (𝑤𝑟
𝑇 ∅(𝑀) + 𝑏𝑟) (3.6)

The Learning-To-Rank (LeToR) layer combines the soft-TF ranking features

 ∅(𝑀) into a ranking score. 𝑤𝑟 and 𝑏𝑟 are the linear ranking parameters to learn. |wr | =

|∅(M)| and |𝑏𝑟| = 1. 𝑡𝑎𝑛ℎ () is the activation function as in by the Equation 3.6.

65

Figure 3.6: Architecture of the Convolutional Kernelized Neural Ranking

Model

As in Figure 3.6, given input query 𝑇𝑞 and document 𝑇𝑑 , the word embedding

layer maps their words into distributed representations, the convolutional layer

generates n-gram embeddings; the cross-match layer matches the query n-grams and

document n-grams of different lengths, and forms the translation matrices; the kernel

pooling layer generates soft-TF features and the learning-to-rank (LeToR) layer

combines them to the ranking score. The case with Unigrams and Bigrams (hmax = 2)

is shown.

CNN
1
 𝑔 1

1

…

𝑔 3
1

𝑔 1
2

…

𝑔 3
2

CNN
2

Query

Tq

0.4,…,0.6

-

0.5,…,0.1
0.1,..,0.5

0.2,..,0.5

Document

Td

𝑔 1
1

…

…

𝑔 4
1

𝑔 1
2

…

…

𝑔 4
2

CNN
1

CNN
2

𝐺𝑞
1

Uni-

grams

𝐺𝑞
2

Bi-

grams

𝐺𝑑
1

Uni-

grams

𝐺𝑑
1

Bi-

grams

Kernel

Pooling

Kernel

Pooling

Kernel

Pooling

Kernel

Pooling

Word

Embedding

Layer

Convolutional

Layer

Cross-match

Layer

Soft-TF

Features

LeToR

Final

Ranking

Score

0.2,…,0.3

0.1,…,0.7

-0.5,..,0.8

𝑴𝒒𝒉=𝟏,𝒅𝒉=𝟏

𝑴𝒒𝒉=𝟏,𝒅𝒉=𝟐

𝑴𝒒𝒉=𝟐,𝒅𝒉=𝟏

𝑴𝒒𝒉=𝟐,𝒅𝒉=𝟐

66

3.3.7 MatchZoo-CONV-KNRM (MZ-CONV-KNRM)

A toolkit called MatchZoo is intended for text matching in NLP and IR. For a

variety of matching tasks, such as document retrieval and question-answer matching,

it offers a variety of neural network models. CONV-KNRM is one of the models

available in MatchZoo. Convolutional Kernel-based Neural Ranking Model, or

CONV-KNRM, is a neural ranking model intended for use in ad hoc retrieval

applications. CNNs extract local contextual features from text, CONV-KNRM use

convolutional layers. The n-gram characteristics, which are essential for

comprehending the semantic context of words within a sentence, are captured by the

convolutional layers. Kernel Pooling: The model employs a kernel pooling approach

following convolution.

The concept is to quantify the degree of similarity between the query and the

document at different granularities using a set of kernel functions. This aids in

capturing varying levels of query and document term similarity. A neural network is

then fed the combined similarity features to provide a relevance score as neural

ranking. Documents are ranked by the neural network according to how relevant they

are to the query. Benefits of the CONV-KNRM are contextual understanding, and

end-to-end learning. CONV-KNRM can better grasp context by capturing intricate,

local patterns in text through the use of CNNs. Accurate ranking depends on a flexible

and comprehensive measurement of similarity, which is made possible by the kernel

pooling layer. End-to-end learning by training the model from beginning to end, all of

its components may be optimized at the same time to boost performance.

CONV-KNRM is the process of using a query to find pertinent documents

within a sizable corpus for document retrieval. QA is the process of selecting the right

response from a list of possible answers for a given question. Any job that involves

matching text inputs to pertinent textual responses or resources is known as IR.

CONV-KNRM, which combines the benefits of kernel-based similarity measurement

and convolutional networks, is an effective tool for text matching and ranking overall.

MatchZoo is a framework for text-matching tasks, including IR. Models like MZ-

KNRM and MZ-CONV-KNRM [19] are specific implementations of KNRM and

CONV-KNRM within the MatchZoo framework, making them easy to use. It can easily

adapt and experiment with these models for various IR tasks.

67

Figure 3.7: An overview of the Match-Zoo Architecture

In Figure 3.7, data preparation involves organizing and pre-processing the

dataset to make it suitable for training. Model construction involves selecting a text

matching model architecture, configuring its parameters, and building the model.

Training and testing a model provide batches of data during training and evaluating

the model's performance on a separate test set. In MatchZoo, the process of

preparation, parameter tuning, and model selection in automatic machine learning

involve the AutoModel class.

3.4 Fine-tuned Model

A pre-trained machine learning model that has been further trained on a

particular task or dataset to enhance its performance on that specific task is known as

a fine-tuned model. Usually using a smaller, task-specific dataset, fine-tuning applies

the skills and information gained during the first pre-training phase to the current task.

In pre-training, a model is trained on a sizable, varied dataset for a broad purpose, like

image classification on a sizable dataset like ImageNet or language modeling

(guessing the word that will appear in a phrase).

68

The model learns many different traits and patterns that are generally helpful,

such as identifying edges, forms, and textures in picture models or comprehending

grammar, syntax, and semantics in language models. Examples are pre-training on

large datasets is common for models such as BERT, GPT, and ResNet. The model is

adjusted using a smaller, task-specific dataset following pre-training in order to

modify its general knowledge to meet the demands of the novel task. The process of

fine-tuning entails using task-specific data to retrain the previously learned model.

The architecture (if necessary) will alter. Lowering the learning pace in order to

prevent significant updates that can wipe out previously learned information.

Sometimes, only training the final few layers or adding new layers for a given job

while freezing some layers preserves the features that were learned during the pre-

training phase. Examples are included fine-tuning a pre-trained ResNet for a

particular kind of image classification (e.g., medical image analysis) or BERT for

sentiment analysis, Named Entity Recognition (NER), or QA.

Since fine-tuning begins with a model that has already acquired valuable

representations, it is both computationally faster and less expensive than training a

model from scratch. Compared to models trained from scratch using the same quantity

of task-specific data, fine-tuned models frequently perform better on certain tasks.

Fine-tuning might be helpful when there is a shortage of task-specific data because it

takes less data than training from scratch. A model has already been trained and is

suitable for the basic task. For example, models like BERT or GPT might be useful if

users are working on a linguistic task. Users need to prepare the task-specific

Information Collect and then prepare the data that are necessary for the particular task

at hand. If required to modify, modify the model architecture. Adding task-specific

layers may be necessary for this. Use the task-specific dataset to train the previously

trained model, may be with some layers frozen and at a lower learning rate. The

optimized model is analyzed using a validation set, and it can be change as needed to

enhance performance. Use the task-specific dataset to retrain the previously trained

model, usually at a slower learning rate and perhaps with certain layers frozen.

Analyze the optimized model using a validation set, and change as needed to enhance

performance. In contemporary machine learning, fine-tuning is a potent approach that

enables practitioners to take advantage of the advantages of large, pre-trained models

and effectively modify them for particular applications.

69

Language model pre-training has been shown to be effective in improving

many NLP tasks [23], [10], [57], [61]. These include sentence-level tasks such as

natural language inference [78], [60] and paraphrasing [13], which aim to predict the

relationships between sentences by analyzing them holistically, as well as token-level

tasks such as NER and QA, where models are required to produce fine-grained output

at the token level [64], [68]. There are two existing strategies for applying pre-trained

language representations to downstream tasks: feature-based and fine-tuning methods.

The feature-based approach, such as ELMo [77], uses task-specific architectures that

include the pre-trained representations as additional features. The fine-tuning

approach, such as the Generative Pre-trained Transformer (OpenAI GPT) [61],

introduces minimal task-specific parameters, and is trained on the downstream tasks

by simply fine-tuning all pre-trained parameters.

In this research, it improves the fine-tuning-based approaches by applying

BERT: Bidirectional Encoder Representations from Transformers. BERT is

conceptually simple and empirically powerful. For this research, it used a fine-tuned

model, Vanilla-BERT [12], aiming to improve performance scores. Fine-tuning

method is straightforward since the self-attention mechanism in the Transformer

allows BERT to model many downstream tasks whether they involve single text or

text pairs—by swapping out the appropriate inputs and outputs. For applications

involving text pairs, a common pattern is to independently encode text pairs before

applying bidirectional cross attention [70], [55].

 (3.7)

where BERT(X) represent the output embedding for the input sequence X, 𝑋

can be a concatenation of a query and a document, Embeddings(X): This involves

converting the input tokens into embedding. 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(): This refers to the

transformer architecture, which consists of multiple layers of self-attention and

feedforward mechanisms.

70

 Figure 3.8 BERT for query-document matching

In Figure 3.8 shows a query-document pair (q, d), the input to the BERT

model includes query words, document words: “[CLS],q1, . . . , qN , [SEP], d1, . . . ,

dM , [SEP]”, where “[CLS] ” is the token to indicate whether the query-document pair

is relevant or not, “[SEP]” is the token to indicate the separation of query and

document, and qi and dj are the i
th

 query word and the j
th

 document word, respectively.

The query (and document) is padded or truncated to have N (and M) words. Each

word is represented with its embedding. The input embedding of a word is the sum of

the corresponding position embeddings, the segment embeddings, and the word

embeddings. Position embeddings adds information about the position of each token

in the sequence. Segment embeddings adds information about the segment to which

each token belongs. Word embeddings captures the semantic meaning of each token.

Outputs a sequence of high level semantic representations for the special input tokens

and query and document words: “C, T1 , . . . , TN , T[SEP] , T10 , . . . , TM, T[SEP] ”,

where C is the representation of the token [CLS], T1 , . . . , TN of the query words,

T10 , . . . , TM of the document words, T[SEP] and T[SEP] of the two separators. The

representation of the [CLS] token C is fed into an output layer (e.g., single layer

neural network) to obtain p(rel | q, d) , which represents the probability of document’s

being relevant to query.

71

3.4.1 Bidirectional Encoder Representations from Transformers (BERT)

The Bidirectional Encoder Representations from Transformers (BERT)

architecture is utilized by a BERT-based model in an IR system to enhance the

process of locating pertinent documents or information fragments in response to a

user query. This is a thorough rundown of BERT's applications in infrared systems:

Google created the transformer-based BERT paradigm. It is pre-trained using two

training tasks on a big corpus of text; BERT can comprehend a sentence's context in

both directions by learning to anticipate words that are lacking in MLM. Next,

Sentence Prediction (NSP) analyzes the connections between two sentences; BERT

enhances its comprehension of sentence relationships and context. BERT can be used

in an IR system in a number of ways to increase the relevancy and precision of search

results. Understanding a query by identifying the subtleties and context in the query

wording, BERT can be utilized to comprehend the user's inquiry more fully. This

makes it easier to understand the user's intent.

DL models that have been pre-trained on copious quantities of textual data in

order to uncover the underlying patterns and connections between words and phrases

are known as pre-trained text models. These models are intended to capture the context

and meaning of text data, and they are taught using methods like neural networks. They

are the ideal instrument for determining the text embeddings of a document. BERT is

one example of such a model. Based on the training data used to generate the vectors,

static word embeddings map words with multiple senses into an average or most

common-sense representation. A word's vector remains constant regardless of the

other words used in the phrase around it. The employment of a unique neural layer

dubbed self-attention in combination with feed forward and linear layers, the

transformer neural network is able to explicitly consider the context of any length of

text. Sequences of input length are mapped to sequences of output length by the self-

attention layer. The layer can access all n input elements (bidirectional self-attention)

or just the first i input elements (causal self-attention) while calculating the i
th

 output

element. The network is able to consider the relationships between several elements in

the same input to a self-attention layer. A self-attention layer computes token

representations that consider the surrounding words when the input elements are

tokens of a specific text. In doing so, the transformer computes contextualized word

embeddings, in which the input text as whole conditions each input token's

representation.

72

Transformers have shown effective in a variety of natural language processing

applications, including QA, summarization, machine translation, and more. These

jobs are all specific examples of a broader objective, which is to convert an input text

sequence into an output text sequence. This general task has been addressed by the

invention of the sequence-to-sequence model. The two components of a sequence-to-

sequence neural network are an encoder model that produces a contextualized

representation of each input element given an input sequence, and a decoder model

that uses these contextualized representations to produce an output sequence tailored

to a job. The components of both types are many stacked transformers. Bidirectional

self-attention layers are used by the encoder's transformers on either the input or the

output sequence from the preceding transformer. The decoder's transformers use

bidirectional cross-attention on the output of the final encoder transformer and causal

self-attention on the output of the preceding decoder transformer.

Two particular applications of sequence-to-sequence models have been

investigated in Neural IR: encoder-only models and encoder-decoder models. All of

the tokens in a given input sentence are received as input by encoder-only models,

which then compute an output contextualized word embedding for each token in the

phrase. The models BERT [12], Robustly Optimized BERT Pre-training Approach

(RoBERTa) [42], and Distilled BERT (DistilBERT) [69] are examples of this family

of models. Depending on the input sentence provided, encoder-decoder models

produce new output sentences. One token at a time, the decoder model sequentially

accesses these embeddings to produce new output tokens, while the encoder model

takes all of the tokens of a given sequence as input and creates a contextualized

representation. The input values are normalized into a probability distribution using

the soft-max procedure. Within the domain of deep learning, the inputs of a soft-max

operation are commonly referred to as logits. These inputs are the unprocessed

predictions produced by a multi-class classification model, which the soft-max

operation transforms into a probability distribution across the classes. A sequence-to-

sequence model can be trained as a Casual Language Model (CLM), like T5, or as a

Masked Language Model (MLM), like BERT, depending on the training goal. While

CLM training focuses on predicting the next token in an output sequence given the

previous tokens in the input sequence, MLM training teaches learners to predict

missing tokens in a sequence given the surrounding tokens.

73

BERT can be used to determine how similar the texts in the corpus are to the

query as document ordering and semantic matching. BERT has the ability to ascertain

the degree of semantic similarity between the query and documents by encoding them

into high-dimensional vectors. Re-ranking based on a more thorough contextual

understanding; BERT can improve the order of the original list of documents that

were obtained by a conventional IR model (such as BM25). BERT can assist in

locating and prioritizing particular text portions within documents that are most

pertinent to the query, as opposed to retrieving entire documents as retrieve passage.

This is especially helpful for lengthy publications where only a few sections might be

pertinent. BERT can be used in QA systems to extract the document's most pertinent

response as extract the answer. BERT can identify the section of text that most

effectively responds to a given question given the inquiry and its context (such as a

paragraph). An example of the query preprocessing workflow for a BERT-based IR

system transforms the query into input tokens that BERT can process, tokenize it

using the tokenizer built into BERT. To get a starting collection of potentially

pertinent documents, use a conventional IR approach (such as BM25). BERT is used

to encode the query as well as any documents or passages that are obtained. To obtain

contextual embeddings, the text must be fed through BERT. The degree of similarity

is determine between each document/passage embedding and the query.

Cosine similarity or other distance metrics can be used for this. Reordering:

Based on how closely the papers or passages match the query, order them. The things

with the highest scores are deemed to be the most pertinent. BERT is used to

determine the most pertinent text segment among the top-ranked papers if the task

requires locating a specific answer inside a document. Unlike previous models, BERT

is bidirectional, which helps it better understand the text's semantics and context.

BERT's utilization of deep learning enables it to assimilate minute details and

enhance the significance of search outcomes. BERT is adaptable to a range of IR

applications, such as document rating, response extraction, and query interpretation.

Obstacles and Real-time IR systems may face difficulties due to the computationally

demanding nature of BERT models. The memory and processing power limitations of

BERT make it difficult to handle large-scale corpora. Labeled data and computing

resources are needed for BERT to perform better when fine-tuned on domain-specific

data.

74

BERT-based models have significantly advanced the field of IR by providing

more accurate and contextually aware search results. By integrating BERT into IR

systems, developers can leverage its powerful language understanding capabilities to

enhance the user experience and improve the relevance of retrieved information.

3.5 Summary

This chapter discussed the methodologies and theoretical background of Deep

Neural Networks. It explained what about DNNs, architectures of DNNs, type of the

Deep Neural Ranking Models and Fine-tuned Model are described how they work.

75

CHAPTER 4

BUILDING MYANMAR NEWS DATASET

This chapter covers the development of text datasets used in this research.

Text dataset building is an imperative and a very first task for implementing any

Myanmar News retrieval system. Although there are freely and widely available

resources in well-resourced language like English, the text dataset is needed to build

first for Myanmar which has no available text dataset easily to use. Moreover, four

evaluation methods such as MAP, MRR, P@1, and P@3 metrics are described in this

chapter

4.1 Building Myanmar News Dataset

Text data collection is the very first step in any IR tasks especially for under

resourced language which is to gather the text data. The main problem in IR research

for Myanmar language is the lack of proper data. Therefore, the text dataset is

necessary to develop first. The text dataset is an abundant collection of Myanmar

languages and is important for IR. For Myanmar News retrieval, as the first

contribution of this work, the text dataset needs to build first systematically for

Myanmar language. The text data were obtained from main sources:
1
 online source

and collected in this research. The next steps will be exact to features for retrieval

process if the data have been prepared properly. Many IR systems are constructed on

the neural models based on the text data. Therefore, text dataset building is

essentially needed to develop the retrieval related systems. The text dataset used in

this work is constructed by collecting from the main sources: Web based collected

news and for the purpose of training the IR system.

Due to the lack of a large dataset for the retrieval task on Search Engine, it

decided to develop a large Myanmar News dataset containing 118,486 documents

composed in Myanmar Unicode font collected from the Myanmar News webpages.

Types of news are Health, Sport, Entertainment, Political and Economic. Each

document consists of two parts: title and contents. Table 4.1 shows collections of

Myanmar News datasets.

1
Eleven Broadcasting media, Mizzima News Myanmar, Irrawaddy Burmese News, 7days news, Thit

Htoo Lwin Burmese News

76

Table 4.1 Statistics of Myanmar News Datasets

Number of documents

Number of sentences

Number of words

118,486 54,634,415 1,283,260,155

Text collection is the most important effort in every retrieval related system.

Nowadays, Myanmar News is available on many Web sites. From the sites of

2
Eleven Myanmar News,

3
7days Myanmar News,

4
Irrawaddy Myanmar News,

5
Mizzima Myanmar News, and

6
Thit Htoo Lwin Myanmar News.

4.1.1 Data Pre-processing

Textual data from search engine, especially Google, is unstructured and

contains noisy tokens or stop words, which need to be cleaned to improve its quality

and usefulness for training deep learning models. Data pre-processing methods

prepare data for further processing, verify its integrity and consistency, reduce data

noise, fill in missing values, and structure it in databases. To facilitate data cleaning,

preparation techniques of Myanmar dataset are word segmentation and stop word

removal.

2
 https://news.eleven.com/

3
 https://www.7Daynews.com/

4
 https://www.irrawaddy.com/

5
 https://www.mizzimaburmese.com/

6
 http://www.thithtoolwin.com/

http://www.facebook.com/elevenbroadcasting
http://www.facebook.com/elevenbroadcasting
http://www.facebook.com/7DayOnlineTV/
http://www.facebook.com/7DayOnlineTV/
http://www.mizzimaburmese.com/
http://www.mizzimaburmese.com/
http://www.mizzimaburmese.com/
http://www.mizzimaburmese.com/

77

4.1.1.1 Word Segmentation

The foundational task in NLP is word segmentation. This procedure involves

breaking down text into individual words and sentences, where the objective is to

identify word tokens and sentence boundaries. While English word boundaries are

easily defined, the same does not hold true for Myanmar. Myanmar word boundaries

often lack spacing within sentences, making it challenging to discern individual

words. Hence, in the context of IR, effective word segmentation proves invaluable for

navigating sentences and word tokens. To fulfill this objective, the Myanmar word

segmentation tool is employed which is developed by UCSY [52]. Examples of word

segmentation are additionally illustrated in Table 4.2. During the pre-processing stage,

the significance of word segmentation is heightened, particularly in the context of IR

evaluation.

Table 4.2 Example of Word Segmentation

4.1.1.2 Stop-word Removal

The aim of stop word removal is to filter out words that are prevalent in the

Original sentences

After word segmentation

မုိးသည်းထန်စွာ ရွာသည်နှင့်တစ်ပြိုင်နက် ရရလျှမံှုများ

ဖြစ်ရြါ်ရနသည့်ရန်ကုန်

"မုိးသည်းထန်စွာ”, “ ရွာသည်နှင့်", "တစ်ပြိုင်နက်",

"ရရလျှမံှုများ", "ဖြစ်ရြါ်", "ရနသည့်", "ရန်ကုန်"

ကြ္ပလီြင်လယ်ဖြင်နှင့် ဘင် ဂ္လားြင်လယ်ရော်

ရတာင်ြုိင်းတ့ုိတွင် တိမ်ေသင့်ေတင့်မှ

တိမ်ထူထြ်ရနပြီး ကျန်ဘင် ဂ္လားြင်လယ်ရော်တွင်

တိမ်ေနည်းငယ်ဖြစ်ထွန်းရနရ ကာင်းသိရသည်

"ကြ္ပလီ", "ြင်လယ်ဖြင်", "နှင့်", "ဘင် ဂ္လား",

"ြင်လယ်ရော်", "ရတာင်ြုိင်း”, “တ့ုိတွင်”,

“တိမ်”, “ေသင့်ေတင့်”, “မှ”, “တိမ်”, “ထူထြ်”,

“ရန”, “ပြီး”, “ကျန်”, “ ဘင် ဂ္လားရော်”, “တွင်”,

“တိမ်”, “ေနည်းငယ်”, “ဖြစ်ထွန်း”, “ရန”,

“ရ ကာင်း”, “သိရသည်”

ြံုမှန်ရသွးလှူနုိင်ရောင် ကုိယ်ကကျန်းမာရနြ့ုိ လုိေြ်

တ့ဲေတွက် ြံုမှန်ေိြ်၊ ြံုမှန်စား

ေရနေထုိင်သင့်တင့်မျှတရောင် ရနသင့်တယ်

“ြံုမှန်”, “ရသွး”, “လှူ”, “နုိင်”, “ရောင်”, “ကုိယ်က”,

“ကျန်းမာ”, “ရန”, “ြ့ုိ”, “လုိေြ်”, “တ့ဲေတွက်”, “ြံုမှန်”

“ေိြ်”, “၊”, “ြံုမှန်”, “စား”, “ေရနေထုိင်”, “သင့်တင့်”,

“မျှတ”, “ရောင်”, “ရန”, “သင့်”, “တယ်”

78

majority of documents. In Myanmar, stop words encompass ရ, သည်, မ, မှ, နှင့်, ခဲ,့

ရတွ, မည်, မယ်, ရန်, ထ,ံ ြါ, က, များ, ကုိ, တွင်, etc. Illustrations of Myanmar stop words

removal are also presented in Table 4.3, removed the Myanmar stop words are “စွာ,

သည်, နှင့်, များ, သည့,် တ့ုိ, တွင်, ပြီး, ရ ကာင်း, သည်, က", etc. This stage holds

significant importance in the pre-processing techniques applied in NLP methods.

Table 4.3 Example of Stop-word Removal

4.2 Evaluation Metrics for Myanmar News Retrieval

 The performance of the system is measured using MAP, MRR, P@1, and P@3

metric to assess the performance of IR systems by comparing their retrieved results to

the ground truth relevance assessments. These metrics are commonly used in IR

evaluation to assess the quality of ranking systems. Higher values for these metrics

indicate better-performing systems. These performance metrics commonly used for

evaluating neural networks in IR and recommendation tasks: MAP (Mean Average

Precision), MRR (Mean Reciprocal Rank), P@1 (Precision at 1), and P@3 (Precision

at 3).

Original sentences

After stop-word removal

မုိးသည်းထန်စွာ ရွာသည်နှင့်တစ်ပြိုင်နက် ရရလျှမံှုများ

ဖြစ်ရြါ်ရနသည့်ရန်ကုန်

"မုိးသည်းထန်”, “ ရွာ", "တစ်ပြိုင်နက်", "ရရလျှမံှု",

"ဖြစ်ရြါ်", "ရန", "ရန်ကုန်"

ကြ္ပလီြင်လယ်ဖြင်နှင့် ဘင် ဂ္လားြင်လယ်ရော်

ရတာင်ြုိင်းတ့ုိတွင် တိမ်ေသင့်ေတင့်မှ

တိမ်ထူထြ်ရနပြီး ကျန်ဘင် ဂ္လားြင်လယ်ရော်တွင်

တိမ်ေနည်းငယ် ဖြစ်ထွန်းရနရ ကာင်းသိရသည်

"ကြ္ပလီ", "ြင်လယ်ဖြင်", "ဘင် ဂ္လား",

"ြင်လယ်ရော်", "ရတာင်ြုိင်း”, “တိမ်”,

“ေသင့်ေတင့်”, “တိမ်”, “ထူထြ်”, “ရန”,

“ကျန်”, “ဘင် ဂ္လားရော်”, “တိမ်”, “ေနည်းငယ်”,

“ဖြစ်ထွန်း”, “ရန”, “သိရ”

ြံုမှန်ရသွးလှူနုိင်ရောင် ကုိယ်ကကျန်းမာရနြ့ုိ လုိေြ်

တ့ဲေတွက် ြံုမှန်ေိြ်၊ ြံုမှန်စား

ေရနေထုိင်သင့်တင့်မျှတရောင် ရနသင့်တယ်

“ြံုမှန်”, “ရသွးလှူ”, “နုိင်ရောင်”, “ကုိယ်”,

“ကျန်းမာ”, “ရန”, “လုိေြ်”, “ြံုမှန်” “ေိြ်”,

“ြံုမှန်”, “စား”, “ေရနေထုိင်”, “သင့်တင့်”,

“မျှတ”, “ရောင်”, “ရနသင့်”

79

 These equations provide a quantitative measure of the performance of a ranking

system based on different aspects such as precision, average precision and reciprocal

rank. They are used in IR to assess the quality of ranked lists of documents.

4.2.1 MAP (Mean Average Precision)

MAP is a metric used to evaluate the performance of a ranking system. It

calculates the average precision across multiple queries. For each query, calculate

precision at each position where a relevant document is found in the ranked list. These

precision values are averaged, compute the mean (average) precision across all

queries. A higher MAP indicates a better ranking system. MAP ranges from 0 to 1.

 MAP =
1

Q
∑ AveragePrecisioni

Q
i=0 (4.1)

 where 𝑄 is the number of queries and 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 is the average precision

for query 𝑖 as in Equation (4.1).

4.2.2 MRR (Mean Reciprocal Rank)

 MRR is a metric that measures the effectiveness of a ranking system based

on the reciprocal of the rank of the first relevant item. For each query, the rank of the

first relevant document is identified in the ranked list. Taking the reciprocal of this

rank and computing the mean (average) of these reciprocal ranks are across all

queries. A higher MRR indicates a better ranking system. MRR ranges from 0 to 1.

 MRR =
1

Q
∑

1

Ranki

Q
i=1 (4.2)

 where 𝑄 is the number of queries and 𝑅𝑎𝑛𝑘𝑖 is the rank of the first relevant

document for query 𝑖 as in Equation (4.2).

4.2.3 P@1 (Precision at 1)

 P@1 is a metric that evaluates the precision of a ranking system at the top

position. For each query, check if the first document in the ranked list is relevant.

80

If relevant, P@1 is 1; otherwise, it is 0. The mean (average) precision at the top

position is computed across all queries. P@1 measures the precision of the top-ranked

document for each query. P@1 ranges from 0 to 1.

 P@1 =
1

Q
∑ Precisioni@1Q

i=1 (4.3)

 where 𝑄 is the number of queries and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖@1 is the precision at the

top position for query 𝑖 as in Equation (4.3).

4.2.4 P@3 (Precision at 3)

 P@3 is similar to P@1 but considers precision at the top 3 positions. For

each query, check if any of the top 3 documents in the ranked list are relevant.

Calculate precision as the number of relevant documents among the top 3 is divided by

3. The mean (average) precision at the top 3 positions is computed across all queries.

P@3 measures the precision of the top 3 documents for each query. P@3 ranges from 0

to 1.

 P@3 =
1

Q
∑ Precisioni@3Q

i=1 (4.4)

 where 𝑄 is the number of queries and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖@3 is the precision at the

top 3 positions for query 𝑖 as in Equation (4.4).

4.3 Summary

This chapter presents building the Myanmar News dataset for using in IR. It

describes collecting, preparing and segmenting the Myanmar data obtained from Web.

The Myanmar News datasets are also created. The number of news and different type

of the Myanmar News contained in Myanmar dataset are represented and finally

express the information of Myanmar datasets used in this work. Moreover, four

evaluation methods such as MAP, MRR, P@1, and P@3 metrics are described in this

chapter.

81

CHAPTER 5

THE PROPOSED SYSTEM ARCHITECTURE

Myanmar News retrieval is to retrieve query based on a Myanmar phrase. It is

the way to make relevance documents on the basis of collected Myanmar datasets.

There are many perspectives approaching to IR system from the aspects of data point

of view, and state-of-the-art technologies to enhance the retrieval performance. This

work emphasizes from the data point of view to boost the performance of the ranker

models. The basic structure of the Myanmar News retrieval system, including

retrieving and relevance of the documents as well as similarity score, is shown in this

chapter. It also presents the design and implementation processes of proposed system

architecture together with clear understanding of pictorial representation.

5.1 Basic Structure of Information Retrieval System

An IR system is developed in order to help users to discovery relevant

information from a storehouse containing collection of documents. The idea of IR

assumes that there exist several documents or records comprising data have been

arranged in a suitable order for easy retrieval is depicted in Figure 5.1.

Figure 5.1 Basic Structure of Information Retrieval System

IR System Query

Collection of

Documents

Relevant

Documents

82

5.2 Basic Structure of Neural Information Retrieval System

Neural IR is a subfield of IR that leverages neural networks to improve the

search and retrieval of relevant information from large datasets. Traditional IR

systems often rely on techniques such as keyword matching and statistical methods,

but Neural IR aims to enhance these processes by incorporating advanced machine

learning models, particularly deep learning is depicted in Figure 5.2.

Figure 5.2 Basic Structure of Neural Information Retrieval System

5.3 Proposed System Architecture

The process of precisely retrieving documents through analysis of their

relevance query is known as IR. This section describes the design and implementation

of proposed Myanmar News retrieval system architecture with pictorial representation

as shown in Figure 5.3.

As shown in Figure, there are two phases in Myanmar News retrieval system:

training and testing phase.

Query
Neural

Network

Neural

Network
Documents

Query

Representation

Document

Representation

Similarity

Score

83

Figure 5.3 Proposed Architecture of Myanmar News Retrieval System

In pre-processing steps, the original clean data are obtained from the raw data

which come from online source data. As part of online source data, the raw data are

mainly taken in the Zawgyi font. These fonts are converted to Unicode font.

In the process of training neural ranking model, the training data for updating

model weights given a training dataset and designed to continue training from a

previous checkpoint if restarted, by using saved versions of both the ranker weights

and optimizer state and by fast-forwarding a dataset back to its previous state. The

neural ranking model based on DRMM, MP, Duetl, KNRM, PACRR, CONV-KNRM,

MZ-CONV-KNRM is constructed in the training phase. The model corresponding to

each of the individual token is obtained by adapting the parameters with the use of

evaluation metrics such as MAP, MRR, P@1, and P@3.

After the training phase, the neural ranking model is assessed in the testing

phase. At first, the input text query is preprocessed and then retrieved the relevance of

similarity score documents.

5.4 Fine-tuned Model

The process of fine-tuning a machine learning model involves pre-trained it

and then retraining it on a more focused, smaller collection of data. The goal of fine-

tuning is to preserve a pre-trained model's initial capabilities while modifying it to fit

more specific use cases.

84

On the tasks for which it was fine-tuned, a fine-tuned model's performance can

outperform the initial pre-trained model. An existing model that has already been

trained on a sizable, varied data set to acquire a broad variety of features and patterns

are the starting point for fine-tuning. Through the process of identifying underlying

patterns and characteristics in its training data, the pre-trained model gains the ability

to generalize during this initial training. The model learns to accurately understand

fresh data over time. The goal of this procedure is to strike a compromise between

optimizing the model's performance on the fine-tuning use case and preserving its

important basic information. In order to do this, model creators frequently choose a

lower learning rate, a hyper-parameter that specifies the amount by which a model's

weights are changed during training. By preventing significant modifications to the

already learned weights, a reduced learning rate can be set during fine-tuning to help

ensure the model retains its current knowledge.

Fine-tuning involves taking a pre-trained model and continuing its training on

a smaller, task-specific dataset. This process adapts the general knowledge embedded

in the pre-trained model to the specific requirements and nuances of the target task.

Fine-tuning typically involves dataset preparation collecting and preparing a dataset

that reflects the specific IR task or domain, transfer learning leveraging the pre-trained

model and its learned representations, and task-specific training trains the model

further using the prepared dataset, often with a lower learning rate to adjust the pre-

trained weights slightly. Fine-tuning enhances the model's ability to perform the

specific IR task by adjusting it to the specific characteristics of the data. Since the

model starts from a pre-trained state, it requires less time and computational resources

compared to training from scratch. The model retains the broad language

understanding from the pre-training phase while specializing in the specific IR task.

85

Figure 5.4 Example of Fine-tuned Model

5.4.1 Popular Models and Techniques

BERT (Bidirectional Encoder Representations from Transformers) is a widely

used pre-trained language model that can be fine-tuned for various IR tasks, T5 (Text-

to-Text Transfer Transformer) is a model that converts all tasks into a text-to-text

format and can be fine-tuned for specific IR applications, and GPT (Generative Pre-

trained Transformer) though primarily used for text generation, GPT models can be

adapted for IR tasks through fine-tuning.

A fine-tuned model in Neural IR is a powerful tool that combines the general

language understanding of pre-trained models with the specific requirements of IR

tasks, leading to more effective and efficient IR systems.

5.5 Summary

This chapter presents what Myanmar News Retrieval system is, the basic

structures of IR system, and Neural IR system with pictorial representations. The

design and implementation of proposed architecture of this work are explained in

detail together with clear understanding of pictorial representation.

86

CHAPTER 6

PERFORMANCE EVALUATIONS FOR MYANMAR NEWS

RETRIEVAL

This chapter presents the experimental setup regarding with building ranking

models, the promising results derived from assessing the performance of the neural

ranking models and showing the improvement of recognizing quality by Myanmar

News dataset. Building or training the neural ranking models is one of the important

phases of Myanmar News retrieval system employed. This is the process of retrieving

the documents relevant to query and deals with collecting data from the online source.

Only the neural ranking models are constructed, the performance of Myanmar News

retrieval system can be assessed by comparing the different neural ranking models.

The evaluation of Myanmar News retrieval performance is done with MAP, MRR,

P@1, and P@3 with Myanmar News datasets. Moreover, the next experiment is fine-

tuned methods on different datasets: Myanmar News and Antique dataset.

6.1 Building Deep Neural Ranking Models

Retrieval models take as input a user query, and then present a set of

documents that are relevant to the query. In order to return a useful set of documents

to the user, the retrieval model should be able to rank documents based on the given

query. This means that the model ranks the documents using features from both the

query and documents. Machine learning algorithms can learn ranking models, and the

inputs to these models are a set of often hand-crafted features. This setting is known

as learning to rank (LTR) using hand-crafted features. These features are domain

specific and time-consuming in terms of defining, extracting, and validating a set of

specific features for a given task. In order to overcome the limitations of using

handcrafted features, deep ranking models that accept raw text data as an input and

learn suitable representations for inputs and ranking functions. A key feature in IR

models is the relevance judgement.

A ranking model with sufficient capacity is needed to capture the matching

signals, and map document-query pairs to accurate prediction of a real-valued

relevance score. Deep neural networks are known for their ability to capture complex

patterns in both feature extraction and model building phases.

87

Due to the advantages of deep neural networks, designing neural ranking

models to learn both features and model simultaneously. Neural ranking models have

many challenges to address in IR tasks. First, the queries and documents have

different lengths: the query is usually a short text that typically consists of a few

keywords, and the document is long with both relevant and irrelevant parts to the

query. Second, in many cases, the query and documents have different terms, so exact

matching models cannot be used to accurately rank documents; a neural matching

model should be designed to capture semantic matching signals to predict the

relevance score. The semantic similarity is context dependent, and another challenge

for the neural ranking model is to understand the context of both query and documents

in order to generalize across multiple domains.

6.2 Building Fine-tuned Model

Pre-train a neural network model on a source dataset (such as the ImageNet

dataset), also referred to as the source model. As the target model, a new neural

network model is created. With the exception of the output layer, this duplicates all

model designs and parameters on the source model. It expects that the knowledge

gained from the source dataset is contained in these model parameters, and that this

knowledge will also be relevant to the target dataset. Additionally, it is assumes that

the source model's output layer is not employed in the target model because it is

strongly correlated with the labels in the source dataset. To the target model, an output

layer is added with as many outputs as there are categories in the target dataset. Next,

the model parameters are initialized at random. Fine-tuning aids in enhancing the

capacity of models to generalize when target datasets are significantly smaller than

source datasets as shown in Figure 6.1.

 The knowledge acquired from the source dataset is transferred to the target

dataset through transfer learning. One typical method for transfer learning is fine-

tuning. With the exception of the output layer, the target model replicates the source

model's entire model architecture and parameter set, fine-tuning them in light of the

target dataset. On the other hand, the target model's output layer requires initial

training. While training the output layer from scratch can require a higher learning

rate, fine-tuning parameters often requires a lower learning rate.

88

Figure 6.1 Architecture of Fine-tuned Model

6.3 Experiments

Experiments are done on Myanmar News dataset based on deep neural

ranking models.

6.3.1 Experimental Setups

The different deep neural ranking models for creating and training deep neural

networks are conducted on gpu_determ, Ubuntu Linux machine. Python library is

used to implement with Python programming language. When the given amount of

training data is trained, all of the models are set at the 20 epochs.

6.3.2 Data Setups

This section trained different deep neural rankings models on the Myanmar

News dataset as mentioned in Chapter 3. The detailed information of the Myanmar

News dataset is presented in Table 6.1. It applied the DRMM [33], MP [40], Duetl

[72], KNRM [34], PACRR [36], CONV-KNRM [35], MZ-CONV-KNRM [73]

models in advance datasets.

Output

layer

Layer L-1

Layer 1

Source

dataset

Pre-

train
…

Source model

Output

layer

Layer L-1

Layer 1

Target

dataset

…

Target model Random

initialization

copy

copy

copy

Fine-tune

Train

89

6.3.3 Experimental Results

The evaluation results on different deep neural ranking models of Myanmar

News retrieval are represented in this section to prove that the CONV-KNRM

methods can also enhance the system performance. As this result, it can be studied

that the score results are significantly different in MAP and MRR because MAP

measures the average precision at different recall levels, providing an overall

assessment of a ranking model's ability to retrieve relevant items across the entire list

and MRR calculates the average of the reciprocal ranks of the first relevant items in

the ranked lists, emphasizing the model's effectiveness in placing relevant items high

in the list.

Table 6.1 Statistics of Training, Testing and Validation

the Myanmar News Dataset

Number of

documents

Number of

sentences

Number of

words

Training Set 90,607 47,964,418 1,122,242,776

Testing Set 13,940 3,784,204 93,569,044

Validation Set 13,939 2,885,793 67,448,335

The results obtained from the experiments can be seen in Figure 6.2 to 6.5.

The comparisons of neural ranking performance on the Myanmar News dataset are

illustrated in the following Figures: Figure 6.2 shows the performance measured by

MAP, Figure 6.3 shows the performance measured by MRR, Figure 6.4 shows the

performance measured by P@1, and Figure 6.5 shows the performance measured by

P@3. It can be observed that CONV-KNRM performs better than other neural

ranking models. This demonstrates the versatility and adaptability of CONV-KNRM

in addressing the retrieving task across various contexts and the similarity scores of

different deep neural ranking models using the Myanmar News dataset.

90

Figure 6.2 Comparison of neural ranking performance on the

Myanmar News dataset measured by MAP

Figure 6.3 Comparison of neural ranking performance on the

Myanmar News dataset measured by MRR

91

Figure 6.4 Comparison of neural ranking performance on the

Myanmar News dataset measured by P@1

Figure 6.5 Comparison of neural ranking performance on the

Myanmar News dataset measured by P@3

The best neural ranking model “CONV-KNRM” has been used as a baseline

model for in this research work. The comparison was done between the fine-tuned

ranking model and CONV-KNRM. During fine-tuning, it applied Vanilla-BERT fine-

tuned model to improve the performance of ranking.

92

Table 6.2 Comparison of Performance on CONV-KNRM and Fine-tuned

Models on the Myanmar News Dataset measured by Evaluation Metrics

Ranking and fine-tuned

models
MAP MRR P@1 P@3

CONV-KNRM 0.1439 0.4066 0.3150 0.2450

Fine-tuned Model 0.1472 0.4415 0.3700 0.2433

Table 6.3 Comparison of Performance on CONV-KNRM and

Fine-tuned Models on the Antique Dataset measured by Evaluation Metrics

Ranking and fine-tuned

models
MAP MRR P@1 P@3

CONV-KNRM 0.2031 0.5902 0.4800 0.3717

Fine-tuned Model 0.2801 0.7101 0.5950 0.4967

As in Table 6.2, fine-tuning using Vanilla-BERT is found to be better than

CONV-KNRM in all evaluation metrics except P@3 on the Myanmar News dataset.

Specifically, the MRR results were 0.4066 and 0.4415, which is the best statistically

significant different score results on other evaluation metrics (MAP, P@1 and P@3),

whereas for CONV-KNRM and Vanilla-BERT. As this result, it studied that the score

results are significantly different in MAP and MRR because MAP measures the

average precision at different recall levels, providing an overall assessment of a

ranking model's ability to retrieve relevant items across the entire list and MRR

calculates the average of the reciprocal ranks of the first relevant items in the ranked

lists, emphasizing the model's effectiveness in placing relevant items high in the list.

As in Table 6.3, the Antique datasets [22] is also used to see the clear

performance of this ranking model in the experiments. The Antique datasets consists

of 89M questions and answers–pair datasets collection. According to this experiments

and results, observed that the fine-tuned model outperforms CONV-KNRM with the

best score of 0.4415 in the Myanmar News dataset and 0.7101 in the Antique dataset

in terms of MRR.

93

It can be clearly seen in Tables 6.2 and 6.3 that the fine-tuned model achieved

better performance than the CONV-KNRM on the Myanmar News dataset,

specifically, 0.0349 MRR value higher than the CONV-KNRM, and the fine-tuned

model achieved better performance than the CONV-KNRM on the Antique dataset,

specifically, 0.1199 MRR value higher than the CONV-KNRM. The experimental

results provide interesting results while comparing the performance of different deep

neural rankings on the Myanmar News dataset. The results suggest that the choice of

fine-tuned technique can significantly impact the performance of the deep neural

ranking models.

6.4 Results and Discussion

The comparisons of seven different deep neural ranking model architectures

for Myanmar News retrieval are discussed in this chapter. The following is a list of

the models that it experimented on Myanmar News dataset which contains 118,486

documents that are taken from online source. In this chapter, word segmentation and

stop-word removal is considered in text preprocessing step. The models are trained on

GPU and implemented with Python by using Python library. Performance scores of

the models have been evaluated with evaluation metrics. The best result is attained

from comparing different deep neural ranking model as a CONV-KNRM.

6.5 Summary

This chapter presents the experimental results regarding with building deep

neural ranking models, fine-tuned model, the discussion and analysis of promising

results derived from assessing the performance of the different deep neural ranking

models, fine-tuned model and showing the improvement of recognizing quality by

Myanmar News retrieval on Myanmar News dataset.

94

CHAPTER 7

CONCLUSION AND FUTURE WORKS

Summarization of the dissertation, its advantages and limitations of proposed

system are described and future works will be discussed in this chapter.

7.1 Dissertation Summary

This research focused on IR for the Myanmar News dataset which contained

title and contents. Different experiments have been conducted, with a wide variety of

deep neural ranking models, and a fine-tuned model. It was observed that the best-

performing model is fine-tuned model using Vanilla-BERT in this research. The

statistical significance of the superior performance has been confirmed by comparing

the results of the baseline CONV-KNRM and the fine-tuned model on the Myanmar

News and Antique datasets. The experiments also indicate that the use of fine-tuning

techniques can result in significant improvements in the performance of deep neural

ranking models for different datasets. The experiment results suggest that fine-tuning

approach can potentially be extended to other retrieval applications. Concerning

further research as future work, it would be interesting to investigate the effect of

adding more features to the textual data. This study adds valuable insights to the

ongoing discussions within the field, paving the way for future research endeavors

aimed at optimizing models to address a spectrum of challenges in IR.

In this research as objective is to build the Myanmar News dataset first for

applying to IR, Myanmar News dataset for sufficient amount of training data and to

investigate the text quality by using fine-tuned techniques for the retrieving the

similarity score. Myanmar News dataset are created as one of main contributions. The

Myanmar News dataset is built for better performance by using these seven deep

neural ranking model and especially fine-tuned model is the best performance on

different datasets.

This dissertation summarizes effectiveness of the Myanmar News dataset for

retrieving the similarity score results on various deep neural ranking models and a

fine-tuned model built with different training datasets.

95

7.2 Advantages

Neural models, especially those based on deep learning, can capture complex

semantic relationships between queries and documents, leading to more relevant

search results and improved relevance and accuracy semantic understanding. Models

like BERT understand context within queries and documents, improving the retrieval

of contextually appropriate information.

Neural IR systems can process natural language queries more effectively,

handling nuances like synonyms, homonyms, and polysemy, enhanced query

understanding in NLP. Neural networks can suggest relevant query expansions.

Neural IR systems can handle and retrieve information across text data,

providing a more comprehensive search experience.

The ability to build end-to-end models that integrates various retrieval

components (embedding, ranking, relevance feedback) into a single neural network,

optimizing the entire process cohesively as end-to-end learning in unified models.

7.3 Limitations

Training and deploying deep neural networks require significant

computational resources, including powerful GPUs or Tensor Processing Units

(TPUs) and large memory capacities and high computational costs in resource

intensive. The energy consumption of running large-scale neural models can be

substantial, raising concerns about sustainability.

Effective training of neural retrieval models often requires vast amounts of

labeled data, which can be difficult and expensive to obtain and data requirements in

large datasets. The performance of Neural IR systems is heavily dependent on the

quality of the training data, and biases in the data can lead to biased retrieval results

and quality of data.

7.4 Future Works

The results show that, with corresponding relative improvements, the

performance of models using the Myanmar News dataset beats that of models using

different deep neural ranking modeling. By further optimization, these examining

techniques will be used for other research.

96

The retrieval system of different deep neural ranking model and fine-tuned

model will be implemented as extensions of the Myanmar language. End to end

learning approach will be pursued in IR as future work for more improving the

performance of Myanmar News Retrieval.

97

LIST OF ACRONYMS

IR Information Retrieval

IT Information Technology

DRMM Deep Relevance Matching Model

MP Match-Pyramid

Duetl Duet local

KNRM Kernelized Neural Ranking Model

PACRR Position-Aware Convolutional Recurrent Relevance

CONV-KNRM Convolutional Kernelized Neural Ranking Model

MZ-CONV-KNRM MatchZoo-CONV-KNRM

Vanilla-BERT Vanilla-Bidirectional Encoder Representations from

Transformers

MAP Mean Average Precision

MRR Mean Reciprocal Rank

P@1 Precision at 1

P@3 Precision at 3

BM25 Best Matching 25

LTR Learning-To-Rank

NLP Natural Language Processing

Neural IR Neural Information Retrieval

AI Artificial Intelligent

QA Question Answer

DL Deep Learning

Word2Vec Word-to-Vector

GloVe Global Vectors

98

BERT Bidirectional Encoder Representations from Transformers

GPT Generative Pre-trained Transformer

RNNs Recurrent Neural Networks

LSTM Long Short-Term Memory

CBOW Continuous Bag of Words

CNN Convolutional Neural Network

ELMo Embeddings from Language Models

Doc2Vec Document-to-Vector

DSSM Deep Structured Semantic Models

BOW Bag-of-Words

VSM Vector Space Model

LambdaMART combines LambdaRank and Multiple Additive Regression

Trees (MART)

URL Uniform Resource Locator

RoBERTa Robustly Optimized BERT Pre-training Approach

DNNs Deep Neural Networks

T5 Text-to-Text Transfer Transformer

CNN Convolutional Neural Network

IDF-based Inverse Document Frequency-based

DistilBERT Distilled BERT

CLM Casual Language Model

MLM Masked Language Model

CPU Central Processing Unit

DPR Dense Passage Retrieval

COIL Contextualized Inverted List

99

ME-BERT Multi-Vector Encoding from BERT

ColBERT Contextualized Late Interaction over BERT

ANCE Approximate nearest neighbor Negative Contrastive Estimation

STAR Structured Transformer-based Autoencoder for Representation

learning

DNN Deep Neural Network

ANN Artificial Neural Network

LLM Large Language Model

LLMs Large Language Models

GPT Generative Pre-trained Transformer

ViTs Vision Transformers

CNNs Convolutional Neural Networks

ML Machine Learning

PEFT Parameter-Efficient Fine-Tuning

GPU Graphics Processing Unit

LoRA Low Rank Adaptation

QLoRA Quantized Low Rank Adaptation

LoRA Low Rank Adaptation

MSE Mean Squared Error

SGD Stochastic Gradient Descent

Adam Adaptive Moment Estimation

RMSprop Root Mean Square Propagation

FNNs Feedforward Neural Networks

GRUs Gated Recurrent Units

VAEs Variational Auto-encoders

100

GANs Generative Adversarial Networks

MLP Multilayer Perceptron

LeToR Learning-To-Rank

soft-TF soft-Term Frequency

ResNet Residual Network

NER Named Entity Recognition

UCSY University of Computer Studies, Yangon

NSP Next Sentence Prediction

TPUs Tensor Processing Units

101

AUTHOR'S PUBLICATIONS

[P1] Hay Man Oo, Win Pa Pa “Myanmar News Retrieval in Vector Space

Model using Cosine Similarity Measure”. The 18
th

 International

Conference on Computer Applications (IEEE-ICCA2020), 27-28 Feb,

2020. Page [214-218]

 [P2] Hay Man Oo, Win Pa Pa “Myanmar News Retrieval using Kernelized

Neural Ranking Model”, Proceedings of The IEEE 21st International

Conference on Computer Applications 2024, 16th March, 2024. Page

[22-27]

[P3] Hay Man Oo, Win Pa Pa, Aye Mya Hlaing “DEEP NEURAL

RANKING MODEL FOR MYANMAR NEWS RETRIEVAL”, Indian

Journal of Computer Science and Engineering (IJCSE, 2024), e-ISSN :

0976-5166 p-ISSN : 2231-3850, Vol. 15 No. 3 May-Jun 2024. DOI:

10.21817/indjcse/2024/v15i3/241503054. Page [301-308]

102

Bibliography

[1] M. Bendersky, W. B. Croft, and Y. Diao. “Quality-biased ranking of web

document”. 2011. In Proc.WSDM, pp. 95–104.

[2] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J.

Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, et al. “An

Updated Set of Basic Linear Algebra Subprograms (BLAS)”. 2002. ACM

Transanctions on Mathematical Software, 28(2): 135–151.

[3] J. Bromley, I. Guyon, Y. LeCun, E. Sackinger, and R. Shah. Signature

Verification ¨ using a ”Siamese” Time Delay Neural Network. 1993. In

Proc. NIPS.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and

G. Hullender. “Learning to Rank Using Gradient Descent”. 2005. In Proc.

ICML, p. 89–96.

[5] C. J. C Burges, “From RankNet to LambdaRank to LambdaMART: An

overview”. 2010. Microsoft Research Technical Report.

[6] S. Buttcher, C. Clarke, and G. V. Cormack. “Information Retrieval:

Implementing and Evaluating Search Engines”. 2010. The MIT Press.

[7] B. B. Cambazoglu, R. A. Baeza-Yates, “Scalability Challenges in Web

Search Engines”. 2015. Morgan & Claypool Publishers.

[8] Wei. Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, Sanjiv

Kumar. “Pre-training Tasks for Embedding-based Large-scale Retrieval”.

Feb-20. https://www.researchgate.net/publication.

[9] Ruey-Cheng Chen, Luke Gallagher, Roi Blanco, J. Shane Culpepper.

“Efficient Cost-Aware Cascade Ranking in Multi-Stage Retrieval”. Aug-

17. DOI: 10.1145/3077136.3080819, the 40
th

 International ACM SIGIR

Conference

[10] Andrew M Dai, Quoc V Le. “Semi-supervised sequence learning”. 2015.

In Advances in neural information processing systems, pages 3079–3087.

https://www.researchgate.net/publication
https://www.researchgate.net/scientific-contributions/Luke-Gallagher-2163310584?_sg%5B0%5D=VWv0sQjVmqHtSQpSxYXvk6GkOMPsNhar_jSs9RJnVeHPl6dyKyDvOM1SiF87Zdb4mhMntXY.MdCdb5X6lULbDYbFUpxt_COAOYgH2s4yJczVs1WkJG8m7FSSozLoQkzz1yxkIobqhdnZ7FDNo2T1dR-4JSZgEw&_sg%5B1%5D=iRoraXMZOo-KXaI-3AcD0ahBznW7jDS50uFYHxoYggXSu5aRIdvbUVPa7OJ_kchQ8W0WkdY.Ak8259zJroS2VTwhDLf5idDDWSKTm30sLp2XQTbJ5u-CY7YL29N_M3jq-zIyPWbhwO50GoNGIbaCh15G3z58PA&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19

103

[11] Z. Dai, C. Xiong, J. Callan, and Z. Liu, “Convolutional Neural Networks

for Soft-Matching N-Grams in Ad-Hoc Search”, 2018. In Proc. WSDM, p.

126–134.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training

of deep bidirectional transformers for language understanding”, 2019. In

Proc. NAACL, pp. 4171– 4186.

[13] William B. Dolan, Chris Brockett, “Automatically constructing a corpus of

sentential paraphrases”, 2005. In Proceedings of the Third International

Workshop on Paraphrasing (IWP2005).

[14] Y. Fan, J. Guo, Y. Lan, J. Xu, C. Zhai, and X. Cheng, “Modeling Diverse

Relevance Patterns in Ad-Hoc Retrieval”, 2018b. In Proc. SIGIR, p. 375–

384.

[15] L. Gao, Z. Dai, and J. Callan, “COIL: Revisit Exact Lexical Match in

Information Retrieval with Contextualized Inverted List”, 2021. In Proc.

NAACL-HLT, pp. 3030–3042.

[16] Luyu Gao, Zhuyun Dai, Tongfei Chen, Zhen Fan Benjamin Van Durme,

Jamie Callan, “Complement Lexical Retrieval Model with Semantic

Residual Embeddings”, 2021. arXiv:2004.13969v3 [cs.IR]

[17] F. C. Gey, “Inferring Probability of Relevance Using the Method of

Logistic Regression”, 1994. In Proc. SIGIR, p. 222–231

[18] D. Gillick, S. Kulkarni, L. Lansing, A. Presta, J. Baldridge, E. Ie, and D.

Garcia-Olano, “Learning Dense Representations for Entity Retrieval”,

2019. In Proc. CoNLL, pp. 528– 537

[19] Jiafeng Guo, Yixing Fan, Xiang Ji and Xueqi Cheng, “Match-Zoo: A

Learning, Practicing, and Developing System for Neural Text Matching”,

In Proceedings of the 42
nd

 Int’l ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’19), July 21–25, 2019,

Paris, France. ACM, NY, NY, USA.

[20] J. Guo, Y. Fan, L. Pang, L. Yang, Q. Ai, H. Zamani, C. Wu, W. B. Croft,

104

and X. Cheng. “A deep look into neural ranking models for information

retrieval”, 2020. Information Processing & Management, 57(6): 1–20.

[21] J. Guo, Y. Fan, Q. Ai, and W. B. Croft, “A Deep Relevance Matching

Model for Ad-Hoc Retrieval”, 2016. In Proc. CIKM, p. 55–64

[22] Helia Hashemi, Mohammad Aliannejadi, Hamed Zamani, and W. Bruce

Croft, “ANTIQUE: A Non-Factoid Question Answering Benchmark”, 19-

Aug-19. ArXiv:1905.08957v2 [cs.IR]

[23] Jeremy Howard, Sebastian Ruder, “Universal language model fine-tuning

for text classification”, 2018. In ACL. Associations for Computational

Linguistics.

[24] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional Neural Network

Architectures for Matching Natural Language Sentences”, 2014. In Proc.

NIPS, p. 2042–2050.

[25] P.-S Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, “Learning

Deep Structured Semantic Models for Web Search Using Clickthrough

Data”, 2013. In Proc. CIKM, p. 2333–2338

[26] K. Hui, A. Yates, K. Berberich, and G. de Melo, “PACRR: A Position-

Aware Neural IR Model for Relevance Matching”, 2017. In Proc.

EMNLP, pp. 1049–1058

[27] K. Hui, A. Yates, K. Berberich, and G. de Melo, “Co-PACRR: A Context-

Aware Neural IR Model for Ad-Hoc Retrieval”, 2018. In Proc. WSDM, p.

279–287

[28] S. Humeau, K. Shuster, M.-A. Lachaux, and J. Weston, “Real-time

inference in multi-sentence tasks with deep pretrained transformers”, 2019.

DeepAI Technical Report.

[29] T. B. Johnson, C. Guestrin, “Training Deep Models Faster with Robust,

Approximate Importance Sampling”, 2018. In Proc. NeurIPS.

[30] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for

105

Efficient Text Classification”, 2017. In Proc. EACL, pp. 427–431.

[31] Reza Karimpour, Amineh Ghorbani, Azadeh Pishdad, Mitra Mohtarami,

Abolfazl Aleahmad, Hadi Amiri, Farhad Oroumchian, “Using part of

speech tagging in Persian information retrieval”, Jan-08,

https://www.researchgate.net/.

[32] V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and

W.-t. Yih, “Dense Passage Retrieval for Open-Domain Question

Answering”, 2020. In Proc. EMNLP, pp. 6769–6781.

[33] A. Katharopoulos, F. Fleuret, “Not All Samples Are Created Equal: Deep

Learning with Importance Sampling”, 2018. In Proc. ICML.

[34] Tom Kenter, Alexey Borisov, Christophe Van Gysel, Mostafa Dehghani,

Maarten de Rijke, Bhaskar Mitra, “Neural Networks for Information

Retrieval”, 2017. conference: SIGIR ’17; August 07-11, 2017; Shinjuku,

Tokyo, Japan.

[35] Muhammad Hammad Khan, “Neural IR Models”, 18-Jul-22.

https://medium.com/.

[36] O. Khattab, M. Zaharia, “ColBERT: Efficient and Effective Passage

Search via Contextualized Late Interaction over BERT”, 2020. In Proc.

SIGIR, p. 39–48.

[37] PM. Lavanya, E. Sasikala, “Deep Learning Techniques on Text

Classification Using Natural Language Processing (NLP) In Social

Healthcare Network: A Comprehensive Survey”, May-21, DOI:

10.1109/ICSPC51351.2021.9451752. Conference: 2021 3rd International

Conference on Signal Processing and Communication (ICPSC).

[38] Y. LeCun, Y. Bengio, “Convolutional Networks for Images, Speech, and

Time Series”, 1998. In The Handbook of Brain Theory and Neural

Networks, pp. 255–258. MIT Press.

[39] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V.

Stoyanov, and L. Zettlemoyer, “BART: Denoising Sequence-to-Sequence

https://www.researchgate.net/profile/Amineh-Ghorbani?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Amineh-Ghorbani?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/
https://medium.com/@mhammadkhan?source=post_page-----c0a67278f626--------------------------------
https://medium.com/
https://www.researchgate.net/scientific-contributions/E-Sasikala-2127017655?_sg%5B0%5D=xHlUlw4NV84-EOuA5JcHMi2AySLxE7ygFhBOj5yMcSn2mq6W1kKCiRj4F8bX2mBjVGAm-Lc.DU8SpBwu6itHCSSh7bJRBOSubmluL-xOFeLALQd6asEgowiH0fcHzxGYAlRygyozNvZaB-4TF_Q9Xox48eZLLg&_sg%5B1%5D=WITaEuqBo3fJmieQRGjP8_5mAotyaziggV8bYQ8eOYh5FwEu7bHbU8f9dJriqFnp_60C4UA.-iMJLoaZwb4OdkERqp_J0daVU1G1AD5IyCVJrhmmgzJKGICzZubpFl549C3k-9Mm9tVuHfueawBdcEn60NvZaw&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19

106

Pre-training for Natural Language Generation, Translation, and

Comprehension”, 2020. In Proc. ACL, pp. 7871–7880.

[40] Vladislav Lialin, “Scaling Down to Scale Up: A Guide to Parameter-

Efficient Fine-Tuning”, 2024. https://ar5iv.labs.arxiv.org/html/2303.15647

[41] T.-Y. Liu, “Learning to Rank for Information Retrieval”, 2009.

Foundations and Trends in Information Retrieval, 3(3): 225–331.

[42] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L.

Zettlemoyer, and V. Stoyanov, “RoBERTa: A Robustly Optimized BERT

Pretraining Approach”, 2019. ArXiv, abs/1907.11692.

[43] Y. Luan, J. Eisenstein, K. Toutanova, and M. Collins, “Sparse, Dense, and

Attentional Representations for Text Retrieval”, 2021. Transactions of the

Association for Computational Linguistics, 9: 329–34.

[44] S. MacAvaney, A. Yates, A. Cohan, and N. Goharian, “CEDR:

Contextualized Embeddings for Document Ranking”, 2019.In Proc.

SIGIR, p. 1101–1104.

[45] S. MacAvaney, F. M. Nardini, R. Perego, N. Tonellotto, N. Goharian, and

O. Frieder, “Efficient Document Re-Ranking for Transformers by

Precomputing Term Representations”, 2020b. In Proc. SIGIR, pp. 49–58.

[46] C. Macdonald, R. L. T. Santos, and I. Ounis, “The whens and hows of

learning to rank for web search”, 2012. Information Retrieval, 16(5): 584–

628.

[47] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed Representations of Words and Phrases and their

Compositionality”, 2013. In Proc. NIPS.

[48] Bhaskar Mitra, Fernando Diaz, and Nick Craswell, “Learning to Match

using Local and Distributed Representations of Text for Web Search”,

2016, In WWW.

[49] R. Nogueira, K. Cho, “Passage Re-ranking with BERT”, 2019. arXiv

https://ar5iv.labs.arxiv.org/html/2303.15647

107

1901.04085.

[50] R. Nogueira, W. Yang, K. Cho, and J. Lin, “Multi-stage document ranking

with BERT”, 2019a. arXiv 1910.14424.

[51] R. Nogueira, Z. Jiang, R. Pradeep, and J. Lin, “Document Ranking with a

Pretrained Sequence-to-Sequence Model”, 2020. In Proc. EMNLP, pp.

708–718.

[52] Win Pa Pa, Ye Kyaw Thu, Andrew Finch, and Eiichiro Sumita, “Word

boundary identification for Myanmar text using conditional random

fields”, 2008. In International Conference on Genetic and Evolutionary

Computing.

[53] L. Pang, Y. Lan, J. Guo, J. Xu, and X. Cheng, “A Study of MatchPyramid

Models on Ad-hoc Retrieval”, 2016. arXiv 1606.04648.

[54] L. Pang, Y. Lan, J. Guo, J. Xu, and X. Cheng, “DeepRank: A New Deep

Architecture for Relevance Ranking in Information Retrieval”, 2017. In

Proc. CIKM, pp. 257–266.

[55] Ankur P Parikh, Oscar Tackstrom, Dipanjan Das, and Jakob Uszkoreit, “A

decomposable attention model for natural language inference”, 2016. In

EMNLP.

[56] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global Vectors for

Word Representation”, 2014. In Proc. EMNLP, pp. 1532–1543.

[57] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer, “Deep contextualized word

representations”, 2018a. In NAACL.

[58] F. Petroni, T. Rocktaschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu, and A.

Miller, “Language Models as Knowledge Bases?”, 2019. In Proc.

EMNLP-IJCNLP, pp. 2463–2473.

[59] J. M. Ponte, W. B. Croft, “A Language Modeling Approach to Information

Retrieval”, 1998. In Proc. SIGIR, pp. 275–281.

108

[60] Samuel R, Bowman, Gabor Angeli, Christopher Potts, and Christopher D.

Manning, “A large annotated corpus for learning natural language

inference”, 2015. In EMNLP. Association for Computational Linguistics.

[61] A. Radford, K. Narasimhan, “Improving Language Understanding by

Generative Pre-training”, 2018. OpenAI Techical Report.

[62] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,

“Language Models are Unsupervised Multitask Learners”, 2019. OpenAI

Technical report.

[63] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,

W. Li, and P. J. Liu, “Exploring the Limits of Transfer Learning with a

Unified Text-to-Text Transformer”, 2020. Journal of Machine Learning

Research, 21(140): 1–67.

[64] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang,

“Squad: 100,000+ questions for machine comprehension of text”, 2016. In

Proceedings of the Conference on Empirical Methods in Natural Language

Processing, pages 2383–2392.

[65] S. E. Robertson, “The Probability Ranking Principle in IR”, 1977. Journal

of Documentation, 33(4): 294–304.

[66] S. Robertson, H. Zaragoza, “The Probabilistic Relevance Framework:

BM25 and Beyond”, 2009. Foundations and Trends in Information

Retrieval, 3(4): 333–389.

[67] G. Salton, A. Wong, and C. S. Yang, A Vector Space Model for Automatic

indexing”, 1975. Communications of the ACM, 18(11): 613–620.

[68] Erik F Tjong Kim, Sang, Fien De Meulder, “Language-independent named

entity recognition”, 2003. Introduction to the conll - 2003 shared task. In

CoNLL.

[69] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled

version of BERT: smaller, faster, cheaper and lighter”, 2019. In Proc. 5th

Workshop on Energy Efficient Machine Learning and Cognitive

109

Computing @ NeurIPS 2019.

[70] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh

Hajishirzi, “Bidirectional attention flow for machine comprehension”,

2017. In ICLR.

[71] Prashant Sharma, “Dependency Parsing in Natural Language Processing

with Examples”, Aug, 2023. https://www.analyticsvidhya.com/

[72] Simple Sharma, Supriya P. Panda, “Efficient information retrieval model:

overcoming challenges in search engines-an overview”, November 2023.

Indonesian Journal of Electrical Engineering and Computer Science Vol.

32, No.2, pp.925~932 ISSN:2502-4752, DOI:

10.11591/ijeecs.v32.i2.pp925-932.

[73] N. Tonellotto, C. Macdonald, and I. Ounis, “Efficient query processing for

scalable web search”, 2018. Foundations and Trends in Information

Retrieval, 12(4–5): 319–492.

[74] Nicola Tonellotto, “Lecture Notes on Neural Information Retrieval”, Sep-

22. arXiv:2207.13443v2 [cs.IR]

[75] Mohamed Trabels, Zhiyu Chen, Brian D. Davison, Jef Hefin, “Neural

ranking models for document retrieval”, Oct-21. Information Retrieval

Journal https://doi.org/10.1007/s10791-021-09398-0.

[76] J. Urbanek, A. Fan, S. Karamcheti, S. Jain, S. Humeau, E. Dinan, T.

Rocktaschel, ¨ D. Kiela, A. Szlam, and J. Weston, “Learning to speak and

act in a fantasy text adventure game”, 2019. In Proc. EMNLP-IJCNLP, pp.

673–683.

[77] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and

Samuel Bowman, “Glue: A multi-task benchmark and analysis platform

for natural language understanding”, 2018a, In Proceedings of the EMNLP

Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for

NLP, pages 353–355.

[78] Adina Williams, Nikita Nangia, and Samuel R Bowman, “A broad-

https://www.analyticsvidhya.com/blog/author/prashantsharma16/
https://www.analyticsvidhya.com/
https://doi.org/10.1007/s10791-021-09398-0

110

coverage challenge corpus for sentence understanding through inference”,

2018. In NAACL.

[79] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M.

Krikun, Y. Cao, Q. Gao, K. Macherey, et al, “Google’s neural machine

translation system: Bridging the gap between human and machine

translation”, 2016. arXiv preprint arXiv:1609.08144.

[80] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance Metric

Learning, with Application to Clustering with Side-Information”, 2002. In

Proc. NIPS, pp. 521–528.

[81] L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. Bennett, J. Ahmed, and

A. Overwijk, “Approximate Nearest Neighbor Negative Contrastive

Learning for Dense Text Retrieval”, 2021. In Proc. ICLR.

[82] C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power, “End-to-End Neural Ad-

Hoc Ranking with Kernel Pooling”, 2017. In Proc. SIGIR, p. 55–64.

[83] J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma, “Optimizing Dense

Retrieval Model Training with Hard Negatives”, 2021b. In Proc. SIGIR,

pp. 1503–1512.

