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ABSTRACT 

Nowadays, networking and virtualization technology has been developing in 

momentum. Software Defined Networking (SDN) has been popular for research and 

innovation. Universities and research labs are the basic points for innovation because 

innovation by academia and research organizations can accelerate the rate of change in 

industries. SDN construction exercises have been developed in e-Learning. Software-

Defined Networking (SDN) is a networking approach that decouples the control plane 

from the data plane, allowing centralized network management. It remains popular in 

the research field for its benefits that researchers continue to explore various aspects 

such as: network security, traffic management, network virtualization, edge computing, 

machine learning and so forth. SDN's flexibility and programmability keep it relevant 

for emerging technologies and innovative network solutions. 

When performing network construction exercises, novice learners cannot 

understand the behavior of their network and fail to satisfy the requirements for the 

network reachability of communication data. In this system, learners construct SDN 

network construction exercises by using Trema and OpenFlow Protocol is used for 

communication between controllers and switches. Here, some learners cannot find their 

bugs from their settings due to the reasons such as ping cannot find delivery routes 

including switches, switches have no function to log rules used for choosing output 

ports for packets, and Trema cannot find execution statements used for setting rules to 

switches. To satisfy these problems, learners need help and the system will provide 

analysis results for learners in visual way so that they can narrow down executed 

statements that cause incorrect communication. This dissertation presents a 

Dependency Analyzing System for Communication Activities in Network Construction 

Exercises using Trema. It includes four main modules: constructing Software Defined 

Network (SDN) Construction Exercises Using Trema, collecting data packets from 

constructed virtual network, collecting executed statements in controller program, and 

giving the analysis results to learners so that they can narrow down their visualizing 

packet location and executing statement information in chronological order.  
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CHAPTER 1 

INTRODUCTION 

With the rapid growth of science and technology, virtualization technology has 

been developed in momentum and it is still a useful and efficient technology in 

networking era. SDN is a kind of virtualization technology [36]. With the spread of 

SDN, network construction exercises using SDN have been developed in some 

educational institutions. The experience of basic network construction is useful for not 

only network administrators but also for network application programmers and network 

system designers. In this work, when the learners construct SDN with Trema as 

exercises, novice learners cannot understand the behavior of their networks and cannot 

find their bugs from their settings. Therefore, the system can provide analysis results 

that help learners to narrow down missettings in SDN construction exercises. 

SDN, or Software-Defined Networking, refers to a paradigm in network 

management and operations where the control plane is decoupled from the data plane. 

This separation allows network administrators to dynamically manage network traffic 

and resources through software-based controllers rather than relying on traditional 

hardware-based network devices (like routers and switches) with embedded control 

planes. The key concepts of SDN include: 

Centralized Control: SDN centralizes network intelligence in a software-based 

controller, which makes decisions about how data traffic should be forwarded across the 

network. 

Programmability: SDN enables programmable network behavior through APIs 

(Application Programming Interfaces), allowing network administrators and developers 

to automate network management tasks and implement policies more efficiently. 

Virtualization: SDN facilitates network virtualization, where multiple virtual 

networks can run on the same physical infrastructure, enhancing flexibility and resource 

utilization [19]. 

Open Standards: SDN often leverages open standards and protocols (like 

OpenFlow) to ensure interoperability between different vendors' hardware and software 

components. 
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Dynamic Provisioning: With SDN, networks can be dynamically provisioned 

and adjusted based on changing traffic patterns or application requirements, improving 

scalability and responsiveness. 

SDN has gained popularity due to its potential to reduce network operational 

costs, improve agility in deploying new services, and enhance overall network 

performance and security through centralized management and automation. 

1.1  Problem Definition 

Trema [50]is a framework designed for developing OpenFlow controllers using 

Ruby and C. Open vSwitch is a virtual switch that adheres to the OpenFlow standard. 

In the SDN construction exercises discussed in this study, students use Trema to 

implement controller programs and set up software-defined networks on their PCs, 

utilizing these controllers and Open vSwitches. The exercises include configuring data 

plane networks, creating shell scripts to build these networks, designing complete 

network topologies, and ensuring requirements for reachability and communication 

routes are met. Students’ networks must fulfill these requirements. However, students 

often struggle to solve the problems because they fail to identify and correct errors in 

their controller programs. 

There are causal links between packet transmissions in the data plane, 

transmissions in the control plane, and the execution of statements in the controller 

program. For instance, when a switch in the data plane receives a packet, it queries the 

controller on how to handle the packet. The controller receives this query from the 

control plane and processes it by executing specific statements. 

Students are expected to debug their controller programs by analyzing these 

causal connections. However, some learners are unable to identify misconfigurations in 

their controllers due to the following reasons- 

1. ping cannot find delivery routes including switches (Learners cannot narrow 

down switches that cause incorrect communication) 

2. Switches have no function to log rules (PacketOut and flow tables) used for 

choosing output ports for packets (Learners cannot identify rules that cause 

incorrect communication) 
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3. Trema cannot find execution statements (for sending PacketOut and 

FlowMod) used for setting rules to switches. (Learners cannot narrow down 

execution statements that cause incorrect communication) 

1.2  Terminology  

To obtain the student’s network construction exercise and analyze them and 

generate event visualizer, the following general terminologies are required. 

1. SDN 

2. OpenFlow  

3. Trema Open Flow Controller Framework 

4. PlantUML 

1.3  Motivation 

The motivation for this research in building network construction exercises 

stems from the need to address several key challenges in the field of network engineering 

education. As networks become more complex and software-defined networking (SDN) 

gains prominence, there is a pressing need for effective training tools that can help 

learners grasp the intricacies of network behavior and dependencies. While building 

software defined network construction exercises in Universities and research labs, some 

learners who learn SDN network construction exercises as beginners fail to debug their 

controller programs while building with the controller Trema. So, a support tool is 

proposed that collects information of execution statements, in the controller programs 

and packets in their networks, finding relations between them, generates communication 

events logs and then visualize with sequence diagrams. Then, learners can see errors in 

their program and correct them by analyzing the resulted diagrams. Specifically, this 

research aims to: 

Enhance Learning Outcomes: Provide novice learners with practical, hands-on 

experience in constructing and managing SDN networks, thereby improving their 

understanding and skills. 

Address Knowledge Gaps: Fill the gaps in current educational resources by offering 

comprehensive exercises that cover both theoretical and practical aspects of network 

construction. 
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Improve Problem-Solving Skills: Develop exercises that encourage critical thinking 

and problem-solving, enabling learners to identify and address network behavior issues 

effectively. 

Promote Innovation: Encourage the development and testing of new network 

architectures and algorithms in a controlled, educational environment. 

Support Collaboration: Facilitate collaborative learning and knowledge sharing 

among students, fostering a community of practice in network engineering. 

1.4  Objectives  

The main objective for this research is to help learners while they construct SDN 

construction exercises by analyzing dependency in communication activities to narrow 

down misettings and the other objectives of this research area are as follows; 

1 To implement a function to compute the dependency between 

communication routes and flow tables and executed controllers 

2 To implement a function that visualizes the dependency so that learners 

can understand it easily 

3 To evaluate the performance (time, CPU, Memory) while the system 

computes the dependency 

4 To evaluate the effectiveness that the system helps learners find bugs 

1.5  Contributions  

The contributions of this research are as follows: 

1. Finding relations between input packets and their output ports and OpenFlow 

messages by imitating switch actions to treat OpenFlow messages and 

choose output ports that helps learners to identify rules that cause incorrect 

communication. 

2. Estimating delivery routes based on collected packets and the relations of 

item 1 that helps learners to narrow down switches that cause incorrect 

communication. 

3. Finding relations between executed statements and sent OpenFlow messages 

by logging controller and capturing the messages that helps learners to 
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narrow down executed statements that cause incorrect communication and 

showing the analysis result with the sequence diagrams. 

1.6  Organization  

This dissertation is organized into seven chapters.  

• Chapter 1 introduces the thesis by outlining the motivation, problem statements, 

objectives, key focuses, and contributions of the research. 

• Chapter 2 reviews challenges and elements related to network behavior issues 

and communication activity dependencies, especially as novice learners build 

SDN networks, based on existing literature. 

• Chapter 3 explores the theoretical background of software-defined networking, 

OpenFlow Controllers, the Trema OpenFlow controller used in this study, and 

network behavioral issues in creating SDN networks. 

• Chapter 4 discusses the architecture of the proposed system and the algorithms 

developed to analyze communication activity dependencies. 

• Chapter 5 delves into the design and implementation of the proposed system. 

• Chapter 6 details the evaluation of the experimental results. 

• Chapter 7 concludes the research by summarizing the findings and suggesting 

future research directions. 
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CHAPTER 2 

LITERATURE REVIEWS 

This chapter provides an overview of the relevant to the SDN network 

construction, OpenFlow controller framework and learning status of novice learners. 

The advent of Software-Defined Networking (SDN) has revolutionized the networking 

landscape, offering unparalleled flexibility, scalability, and control. Central to the 

educational and research domains is the development and analysis of SDN networks, 

particularly through construction exercises. This literature review delves into the 

concept of a Dependency Analyzing System for Communication Activities in SDN 

Network Construction Exercises, exploring existing research, methodologies, and gaps 

in the literature. 

2.1 Software Defined Networking (SDN) 

SDN decouples the network control plane from the data plane, enabling 

centralized management of network resources. The control plane makes decisions about 

where traffic is sent, while the data plane forwards traffic to the selected destination. 

This separation simplifies network management and allows for more dynamic and 

programmable networks. 

Siamak Azodolmolky’s paper "Software Defined Networking with OpenFlow" 

[36] is a pivotal work that delves into the transformative impact of SDN and OpenFlow 

on modern networking paradigms. The paper provides a comprehensive overview of 

SDN, emphasizing its decoupling of the control plane from the data plane, which allows 

for more flexible and efficient network management. OpenFlow, as a prominent 

protocol in the SDN ecosystem, is highlighted for its role in enabling this separation, 

allowing network administrators to program the behavior of the data plane directly 

through a standardized interface. Azodolmolky elaborates on how OpenFlow facilitates 

fine-grained traffic control, dynamic policy enforcement, and real-time network 

reconfiguration, which are essential for addressing the evolving demands of 

contemporary networks. 

The literature review within the paper explores various implementations and use 

cases of SDN and OpenFlow across different environments, including data centers, 
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enterprise networks, and wide-area networks. It discusses the benefits of SDN with 

OpenFlow, such as improved network agility, reduced operational costs, and enhanced 

scalability. Furthermore, Azodolmolky examines the challenges associated with SDN 

adoption, including issues related to scalability, security, and interoperability. The 

review synthesizes findings from multiple studies, presenting a balanced view of the 

potential and limitations of SDN with OpenFlow. Overall, the paper serves as a crucial 

resource for researchers and practitioners interested in leveraging SDN and OpenFlow 

to innovate and optimize network infrastructure. 

2.1.1 Existing Tools and Frameworks for SDN in Education 

 Several tools and frameworks are commonly used in SDN education, including 

Mininet, POX [43], and Floodlight. Mininet, [30] for instance, allows users to create a 

virtual network environment on their computers, providing a realistic and cost-effective 

way to experiment with network topologies and protocols. POX and Floodlight are 

open-source SDN controllers that offer simple interfaces for developing and deploying 

network applications. 

 Compared to these tools, Trema provides a unique advantage by supporting both 

Ruby and C, making it accessible to a broader range of users with different programming 

skills. Additionally, Trema's modular design allows for the easy integration of new 

functionalities, which is crucial for educational purposes where flexibility and 

extensibility are important  

2.1.2 Importance of SDN in Education and Research 

Universities and research institutions are pivotal in advancing SDN 

technologies. They provide a fertile ground for innovation, enabling the exploration of 

new architectures, protocols, and applications. Research labs and academic institutions 

often employ SDN construction exercises to teach networking concepts and conduct 

experimental research. 

2.1.3 Network Construction Tools and Techniques for Learners 

Network construction tools and techniques are essential for learners to 

understand the intricacies of computer networks. These tools provide practical, hands-
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on experience that complements theoretical learning. Here’s an overview of some 

popular tools and techniques: 

1. Netkit: Netkit is an open-source tool that uses User-Mode Linux (UML) to create 

virtual network environments on personal computers. It allows students to 

simulate complex network topologies, making it an ideal platform for hands-on 

learning without the need for physical hardware (Ricciato et al., 2008; Mongiello 

et al., 2013) [32]. Netkit’s simplicity and extensive documentation   makeit 

accessible for beginners and useful in educational settings (Netkit, n.d.). 

2. Mininet: Mininet is another widely used tool for network emulation, particularly 

 in the study of Software-Defined Networking (SDN). It allows users to create a 

 virtual network on a single machine, where they can run real code, applications, 

 and services. Mininet supports rapid prototyping and is often used in academic 

 research and teaching (Lantz et al., 2010; Handigol et al., 2012) [11]. 

3. GNS3: Graphical Network Simulator-3 (GNS3) [29] is a popular tool that 

 provides a graphical interface for emulating complex networks. It supports a 

 wide range of  network devices and configurations, making it suitable for both 

 beginners and  advanced users. GNS3 is often used for certification training 

 (e.g., Cisco CCNA)  and in educational labs (Antonakakis et al., 2014; Martin 

 et al., 2018) [2]. 

4. Packet Tracer: Cisco Packet Tracer is a network simulation tool developed by 

 Cisco. It is widely used in networking courses and provides a user-friendly 

 interface for building, configuring, and troubleshooting networks. Packet Tracer 

 is especially useful for beginners learning Cisco networking concepts and 

 preparing for Cisco certification exams (Cisco, n.d.) [6]. 

Here are some techniques for learners in building SDN network construction 

exercise problems; 

1. Hands-on Labs: Hands-on labs are essential for applying theoretical knowledge 

 to practical scenarios. Virtual labs using tools like Netkit, Mininet, and GNS3 

 allow learners to experiment with network configurations, troubleshoot issues, 

 and understand the behavior of different network protocols (Forte et al., 2009; 

 Cardenas et al., 2010) [9]. 

2. Step-by-Step Tutorials: Step-by-step tutorials guide learners through the 

 process of setting up and managing network topologies. These tutorials often 
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 include detailed instructions, screenshots, and explanations of key concepts, 

 making complex tasks more approachable (Perkins & Pfleeger, 2005). 

3. Simulation and Emulation: Simulation tools like Netkit and Mininet enable 

 learners to emulate real-world network environments. These tools help in 

 understanding network behavior, performance analysis, and testing new 

 configurations without the risk of disrupting actual networks (Handigol et al., 

 2012; Lantz et al., 2010) [9]. 

4. Collaborative Learning: Collaborative learning involves students working 

 together on network projects, sharing knowledge, and solving problems as a 

 team. Tools that support collaborative features, such as shared virtual labs, 

 enhance the learning experience by fostering peer-to-peer interaction and 

 collective problem-solving (Smith et al., 2009). 

5. Automated Feedback and Hint Systems: Intelligent systems that provide real-

 time feedback and hints can significantly aid learning. These systems analyze 

 student interactions with network simulations, identify common errors, and offer 

 constructive guidance, thereby improving understanding and reducing 

 frustration (Jones et al., 2018; Wang et al., 2021) [22]. In [58],” Yuichiro 

 Tateiwa et al, addressed the challenges faced by novices in mastering the 

 complexities of network construction, particularly in the context of Software-

 Defined Networking (SDN). The paper explored the development of an 

 intelligent system designed to provide real-time, context-specific hints to 

 learners during network construction exercises. Their system utilized an analysis 

 of the students’ actions and the states of the network to identify common 

 mistakes and generate helpful hints, thereby facilitating a more guided and 

 supportive learning environment. The approach aligned with contemporary 

 educational theories that emphasize  the importance of immediate feedback and 

 adaptive learning environments in  enhancing student engagement and 

 understanding (Davis et al., 2020; Smith &  Brown, 2019) [51]. The system’s 

 integration with tools like Trema and Mininet offered a practical and 

 scalable solution for educational institutions, allowing for the widespread 

 adoption of SDN technologies in curricula. By addressing the steep learning 

 curve associated with network construction, Tateiwa’s system not on improves 

 learning outcomes but also encourages a more exploratory and confident 
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approach to mastering SDN concepts (Jones et al., 2018; Wang et al., 2021) [51]. Their 

approach highlights the potential for intelligent tutoring systems to transform technical 

education by providing personalized and adaptive learning experiences. 

2.1.4 The Role of Trema in Network Construction Exercises 

Trema plays a significant role in SDN education by enabling students to 

implement controller programs and build software-defined networks on their own PCs. 

This hands-on approach helps students gain a deeper understanding of SDN concepts 

and principles. In typical network construction exercises, students use Trema to develop 

controllers that manage virtual switches, such as Open vSwitch, and configure data 

plane networks to meet specific requirements. 

These exercises often involve setting up network topologies, writing shell scripts 

for network configuration, and ensuring the networks meet certain reachability and 

communication criteria. However, students frequently encounter difficulties in debugging 

their controller programs due to the complex interactions between the control and data 

planes (Open Networking Foundation) [14]. 

2.1.5 Communication Activities in SDN 

Communication activities in SDN involve interactions between the control plane 

and the data plane, as well as between different network elements. These interactions 

are crucial for the proper functioning of the network, ensuring that data is routed 

efficiently and securely. Understanding these dependencies is essential for optimizing 

network performance and reliability. 

The paper "Determining Learning Status in SDN Construction Exercises" by 

Takashi Yokoyama [47] addressed the challenge of assessing students' learning progress 

in Software-Defined Networking (SDN) construction exercises. This research is 

important for educators in the field of networking, as it seeks to provide a method for 

evaluating whether students have understood and can apply SDN concepts effectively. 

Traditional methods of assessing students' understanding in practical networking 

exercises often rely on manual grading and subjective evaluation, which can be time-

consuming and inconsistent. Yokoyama's research aimed to introduce an automated, 

objective method for determining students' learning status in SDN construction 

exercises. That paper presented an automated tool designed to assess students' progress 

https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/
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and understanding in SDN exercises. That tool leverages data collected from students' 

interactions with the SDN environment to evaluate their performance. It made a 

significant contribution to the field of network education by introducing an automated 

tool for assessing students' progress in SDN exercises. The research addressed the 

limitations of traditional assessment methods and provides a scalable, objective, and 

efficient solution for evaluating student performance. 

“Automatic Test Packet Generation" by Hongyi Zeng et al [13]. focused on the 

challenges and methodologies for generating test packets automatically to diagnose and 

troubleshoot network faults. Their research proposed a system that aims to ensure 

network reliability and performance by automating the generation and deployment of 

test packets, which is crucial for detecting and diagnosing network issues. Traditional 

methods of network troubleshooting often rely on manual packet crafting and 

monitoring, which can be time-consuming and error-prone. As networks grow and 

complexity, the need for automated tools to handle network diagnostics becomes 

increasingly important. The concept of test packet generation (TPG) has been explored 

in various forms, but Zeng et al.'s approach seeks to advance the field by introducing 

automation into the process. 
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2.2 Debugging and Dependency Analysis in SDN 

 One of the significant challenges in SDN is debugging controller programs and 

understanding the dependencies between different network components. Dependency 

analysis is crucial in identifying the cause-and-effect relationships between packet 

transmissions in the data plane and the control plane's responses. Existing approaches 

for dependency analysis in SDN often involve sophisticated tools and techniques that 

may be difficult for beginners to grasp. 

The complexity of debugging SDN applications can be a major hurdle for 

students, who may struggle to identify and correct errors in their controller programs. A 

robust dependency analyzing system can help by providing insights into the interactions 

between different network elements, thereby simplifying the debugging process 

(Wikipedia) (SpringerLink). 

Dependency analysis involves examining the relationships and interactions 

between different components of a system. In the context of SDN, it can help identify 

bottlenecks, potential points of failure, and opportunities for optimization. Dependency 

analysis tools can provide insights into the complex web of interactions within an SDN 

environment, aiding in the design and troubleshooting of networks.  

Dependency analysis is a critical aspect of many fields, including software 

engineering, network management, and system design. It involves understanding and 

managing dependencies among components to ensure system reliability, maintain-

ability, and performance. In complex systems like Software-Defined Networking 

(SDN), effective dependency analysis is crucial for troubleshooting, optimizing 

performance, and ensuring robust operations. The paper "A Practice-Driven Systematic 

Review of Dependency Analysis Solutions" [50] provides an extensive review of 

various dependency analysis solutions across multiple domains, with a particular 

emphasis on how these solutions are applied in practice. The review aims to understand 

the state of the art, identify common challenges, and highlight areas for future research. 

They suggested several areas for future research: 

1.  Scalability Improvements: Developing more scalable dependency 

 analysis techniques to handle large and complex systems. 

2. Dynamic Dependency Analysis: Enhancing methods for capturing and 

 analyzing dynamic dependencies that occur at runtime. 



13 

 

3. Integration with DevOps: Integrating dependency analysis tools with 

 DevOps practices to support continuous integration and delivery. 

4. Advanced Analytics: Leveraging advanced analytics and machine 

 learning to improve the accuracy and efficiency of dependency analysis. 

 Overall, the review highlighted the importance of dependency analysis 

  in ensuring the reliability and performance of complex systems and 

  provides a roadmap for future research in this critical area. 

2.2.1 Existing Systems and Tools for Dependency Analysis 

Several tools and frameworks have been developed for dependency analysis in 

networking. These include: 

1. Network Topology Discovery Tools: Tools like Nmap and Zenmap 

  provide basic network topology discovery and visualization capabilities, 

  which are essential for understanding the structure of an SDN network. 

2. Flow Analyzers: Tools such as Wireshark and OpenFlow Visualizer 

  help in analyzing the flow of packets through the network, providing 

  insights into the communication patterns and dependencies [15]. 

3. Simulation and Emulation Platforms: Platforms like Mininet allow 

  researchers to create virtual SDN networks, enabling the simulation of 

  different network configurations and the analysis of their dependencies. 

2.2.2 Challenges and Gaps in Dependency Analysis of SDN 

While existing tools provide valuable insights, there are several challenges and 

gaps in the current state of dependency analysis in SDN: 

1. Scalability: Many tools struggle to handle large-scale networks, which 

 can limit their applicability in real-world scenarios. 

2. Real-time Analysis: Real-time dependency analysis is critical for 

 dynamic SDN environments but remains a challenging task due to the 

 complexity and volume of data involved. 

3. Integration: There is a need for better integration between different tools 

 and platforms to provide a more comprehensive analysis of SDN 

 networks. 
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 Dependency analysis in Software-Defined Networking (SDN) is crucial for 

understanding the interdependencies among various network components, services, and 

applications. Despite its importance, there are several challenges and gaps that need to 

be addressed to achieve effective dependency analysis in SDN environments. Here are 

some of the key challenges and gaps are explained.  

2.2.2.1 Complexity of Network Topologies 

1. Dynamic Nature of SDN: SDN environments are highly dynamic, with 

frequent changes in network topology, policies, and configurations. This 

dynamism makes it challenging to accurately model and analyze 

dependencies. 

2. Large-Scale Networks: The scale of modern networks, especially in large 

enterprises or data centers, adds to the complexity. Managing and analyzing 

dependencies across thousands of devices and flows is a daunting task. 

2.2.2.2 Data Collection and Integration 

1. Diverse Data Sources: Dependency analysis requires data from multiple 

sources such as network devices, controllers, and applications.  Integrating 

this diverse data into a coherent framework is challenging. 

2. Real-Time Data: To be effective, dependency analysis needs real-time or 

near- real-time data. Collecting and processing such data at scale without 

introducing significant latency is difficult. 

2.2.2.3 Heterogeneity of Network Components 

1. Variety of Devices: SDN networks often consist of heterogeneous devices 

from different vendors, each with its own management interfaces and data 

formats. This heterogeneity complicates dependency analysis. 

2. Compatibility Issues: Ensuring compatibility and interoperability among 

various network components and the SDN controller is essential but 

challenging. 
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2.2.2.4 Policy and Configuration Changes 

1. Frequent Updates: Network policies and configurations in SDN 

environments can change frequently. Tracking these changes and 

understanding their impact on dependencies is complex. 

2. Conflict Resolution: Policy conflicts can arise in multi-tenant or multi-

domain SDN environments, making it difficult to analyze and resolve 

dependencies accurately. 

2.2.2.5 Security and Privacy Concerns 

1. Sensitive Data: Dependency analysis may involve handling sensitive data, 

such as network configurations, flow information, and security policies. 

Ensuring the privacy and security of this data is critical. 

2. Attack Surface: The centralized nature of SDN can introduce new security 

vulnerabilities. Understanding the dependencies among network components 

is essential to identify potential attack vectors. 

2.2.2.6 Scalability Issues 

1. Resource Constraints: Performing dependency analysis at scale can be 

resource-intensive, requiring significant computational and storage resources. 

2. Performance Overheads: The analysis process should not introduce 

significant performance overheads that could impact network operations. 

2.2.2.7 Lack of Standardization 

1. Proprietary Solutions: Many SDN solutions are proprietary, leading to a 

lack of standardization in how dependency information is represented and 

analyzed. 

2. Interoperability Challenges: The lack of standardization can also lead to 

interoperability challenges when integrating different SDN components and 

tools. 
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2.2.2.8 Tooling and Automation 

1. Limited Tools: There is a limited number of tools available for 

comprehensive dependency analysis in SDN environments. Existing tools 

may not cover all aspects of dependency analysis. 

2. Automation Challenges: Automating the dependency analysis process is 

challenging, especially in dynamic and large-scale SDN environments. 

2.2.2.9 Visualization and Interpretation 

1. Complex Dependency Graphs: Visualizing complex dependency graphs in 

a  way that is easy to understand and interpret is a significant challenge. 

2. Actionable Insights: Translating the results of dependency analysis into 

 actionable insights that network operators can use to optimize and secure 

the  network is not straightforward. 

2.2.2.10 Resilience and Fault Tolerance 

1. Failure Impact Analysis: Understanding how failures in one part of the 

network affect other parts is crucial for building resilient SDN networks. This 

requires comprehensive dependency analysis. 

2. Recovery Mechanisms: Designing effective recovery mechanisms that 

consider the dependencies among network components is challenging. 

2.2.3 Potential Solutions and Future Directions 

1. Standardization Efforts: Developing standardized protocols and formats for 

representing and exchanging dependency information in SDN environments. 

2. Advanced Analytics: Leveraging advanced analytics, machine learning, and 

artificial intelligence to improve the accuracy and efficiency of  dependency 

analysis. 

3.  Real-Time Monitoring: Implementing real-time monitoring solutions  that 

can provide up-to-date dependency information without significant 

performance overheads. 
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4. Interoperable Tools: Developing interoperable tools that can work across 

different SDN platforms and integrate with existing network management 

solutions. 

5. Enhanced Visualization: Creating intuitive visualization tools that can 

present complex dependency graphs in an easily interpretable manner. 

  Addressing these challenges and gaps is essential for realizing the full 

 potential of SDN and ensuring efficient, secure, and resilient network operations. 

2.2.4 A Dependency Analyzing System Using Trema 

The proposed dependency analyzing system using Trema aims to address the 

challenges faced by students in debugging their controller programs. By providing 

detailed insights into the causal connections between packet transmissions and 

controller responses, the system can help students identify and correct errors more 

efficiently. 

This system would include features such as real-time monitoring of network 

traffic, logging of control and data plane interactions, and visualization tools to map out 

dependencies and interactions. By integrating these functionalities, the system can 

enhance the learning experience and improve the effectiveness of network construction 

exercises [14]. 

2.3 OpenFlow Switch Specification and Openflow Controllers 

  The Open Networking Foundation's (ONF) specification for OpenFlow and 

switch architectures is a cornerstone document in the realm of Software-Defined 

Networking (SDN). OpenFlow, as delineated by the ONF, provides a standardized 

protocol that allows the separation of the control plane from the data plane in network 

devices. This separation enables more flexible and programmable network management, 

which is crucial for the dynamic requirements of modern networking environments. The 

specification outlines how OpenFlow controllers communicate with network devices 

(switches and routers) to dictate the flow of data packets based on pre-defined policies. 

This protocol allows for granular control over network traffic, facilitating advanced 

features such as load balancing, security policy enforcement, and efficient traffic 

engineering [17]. 
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 The switch specification part of the ONF's document details the architectural 

requirements and functionalities that compliant switches must support to integrate 

seamlessly within an OpenFlow-enabled network. These specifications include support 

for multiple flow tables, group tables, and a wide range of match fields and actions, 

which enhance the switch's capability to handle complex traffic patterns. The ONF's 

comprehensive guidelines ensure interoperability among devices from different 

vendors, fostering a more competitive and innovative ecosystem. This standardization 

is critical for the widespread adoption of SDN, as it reduces the complexity and cost 

associated with deploying and managing network infrastructure. The ONF's work on 

OpenFlow and switch specifications has significantly contributed to the advancement 

and practical implementation of SDN technologies, enabling more agile, scalable, and 

efficient networks. 

OpenFlow controllers play a crucial role in Software-Defined Networking 

(SDN) by serving as the brain of the network. They centralize the control logic and 

manage the flow tables of network devices (switches and routers) using the OpenFlow 

protocol. This centralization allows for a more flexible, programmable, and efficient 

network management approach. The controllers communicate with network devices to 

implement policies that control traffic flow, security measures, and quality of service 

parameters. By decoupling the control plane from the data plane, OpenFlow controllers 

enable dynamic and real-time network configuration adjustments, leading to more 

responsive and adaptive networks. 

There are several types of OpenFlow controllers, each offering different features 

and capabilities. For example, the NOX controller, one of the first OpenFlow 

controllers, provides a platform for rapid development and deployment of new network 

applications. ONOS (Open Network Operating System) is designed for scalability and 

high availability, making it suitable for large-scale carrier and cloud networks. The 

OpenDaylight Project [31], a collaborative open-source project, offers a flexible and 

modular controller framework that supports various network protocols and southbound 

interfaces beyond OpenFlow. These controllers are integral in enabling diverse SDN 

applications, from data center management to network virtualization and beyond [3]. 

The architecture of OpenFlow controllers typically includes several key 

components: the northbound API, the southbound API, and the core controller functions. 

The northbound API allows for communication between the controller and higher-level 
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applications, enabling network automation and orchestration. The southbound API is 

used to communicate with the underlying network devices, implementing the flow rules 

and policies defined by the controller. Core controller functions include topology 

discovery, path computation, and policy enforcement, which are essential for 

maintaining network performance and reliability. This architecture ensures that 

controllers can effectively manage complex and dynamic network environments. 

Security and scalability are major considerations in the design and deployment 

of OpenFlow controllers. Ensuring secure communication between the controller and 

network devices is paramount, often achieved through the use of TLS encryption and 

authentication mechanisms. Scalability is addressed through various techniques, such as 

clustering multiple controller instances to distribute the load and provide redundancy. 

Advanced controllers like ONOS and OpenDaylight incorporate these features to 

support large-scale deployments, ensuring that the network can grow and adapt without 

compromising performance or security. Overall, OpenFlow controllers are essential 

components that drive the capabilities and benefits of SDN, enabling more efficient, 

secure, and flexible network management 

2.4 Chapter Summary 

The proposed Dependency Analyzing System represents a significant 

advancement in SDN and openflow controllers. By addressing the limitations of current 

tools, it aims to enhance the understanding and optimization of SDN networks. Future 

research should focus on refining these capabilities and exploring new applications in 

educational and industrial contexts.  



20 

 

CHAPTER 3 

THEORETICAL BACKGROUND 

This chapter is dedicated to provide the necessary background for research that 

constructs network exercises and analyzes communication activities in Software 

Defined Networking (SDN) for learners in networking. It explains with a theoretical 

background of SDN, describing each layer of the SDN architecture. As OpenFlow is 

integral to SDN, the chapter also outlines the structure and functions of OpenFlow 

switches like Open vSwitch, along with the OpenFlow protocol. Lastly, it offers a 

concise overview of SDN and OpenFlow controllers, with a particular emphasis on the 

Trema Controller framework.  

3.1 The Architecture of Software Defined Networking 

Software Defined Networking (SDN) architecture is a modern approach to 

designing and managing networks that aims to make networks more flexible, agile, and 

easier to manage through software control. Here are the key components of SDN 

architecture: 

1. Infrastructure Layer: This consists of physical network devices, including 

switches, routers, and access points. 

2. Control Plane: Unlike traditional networks where the control plane is 

integrated into each device, in SDN, it is centralized and separated from the 

physical devices, managed by software controllers. 

3. Data Plane: Also known as the forwarding plane, this layer is responsible 

for the actual forwarding of data packets according to instructions from the 

control plane. 

4. SDN Controller: The central component that communicates with the control 

plane of network devices using protocols like OpenFlow. It provides a 

unified network view, managing traffic flows, optimizing performance, and 

enforcing policies. 

5. Southbound Interface: This interface connects the SDN controller to the 

network devices, allowing the controller to program their traffic-handling 

behavior. 
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6. Northbound Interface: Connects the SDN controller to applications or 

orchestration systems, enabling automation, provisioning, and policy-based 

management. 

7. Application Layer: Applications on top of the SDN architecture use the 

centralized control provided by the SDN controller to deliver network 

services, enforce security policies, perform traffic engineering, and more. 

SDN architecture offers advantages such as enhanced network programmability, 

simplified management and automation, greater agility in response to changing network 

conditions, and improved support for new services and applications. It is suitable for use 

in data centers, wide-area networks, and enterprise and campus networks. 

The Open Networking Foundation (ONF), funded by companies such as 

Deutsche Telekom, Google, Microsoft, Facebook, Verizon, and Yahoo, aims to develop 

and standardize the OpenFlow (OF) protocol to advance networking. SDN has attracted 

significant attention from enterprises, service providers, and industry associations. As 

an emerging architecture, SDN meets the demands of high bandwidth and dynamic 

modern applications, offering an adaptive, cost-effective, dynamic, and manageable 

solution. 

  

 

Figure 3. 1 Traditional Network Architecture VS SDN Architecture 

In SDN architecture, the control and data functions are decoupled from network 

devices such as switches and routers. This architecture features global centralized 

control and promotes innovation through network programmability. Conversely, in most 

large enterprise networks, control and data functions are integrated within network 
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devices, creating challenges for network operators when adjusting infrastructure and 

configuring numerous end devices, virtual machines, and virtual networks. Figure 3.1 

contrasts traditional internet and SDN architecture, illustrating how the data plane layer 

(network devices) is simplified into straightforward forwarding elements while the 

control layer (controller) is logically managed. The data plane layer includes network 

devices (programmable switches) that can be implemented in hardware or software, and 

these switches support the OpenFlow protocol for communication and configuration 

with the controller. The benefits of decoupling control and data plane functions in SDN 

architecture include: 

1. Centralized Provisioning: In SDN, centralized provisioning involves 

managing and configuring the network through a centralized control plane, 

unlike traditional networking's distributed control plane. Benefits include: 

• Simplified Management: A centralized controller simplifies 

network management, allowing administrators to handle the entire 

network from one point. 

• Dynamic and Automated Configuration: Real-time network 

configuration adjustments by the centralized controller lead to better 

performance and resource utilization. 

• Improved Network Visibility: The controller's global network view 

is essential for effective monitoring, troubleshooting, and 

optimization. 

• Enhanced Security: Centralized control ensures consistent security 

policy enforcement across the network, improving security. 

2. Reduced Operating Costs: SDN reduces operating costs by improving 

efficiency, automation, and network management: Automation decreases 

manual intervention, lowering labor costs. Efficient resource use reduces 

hardware and energy expenses. 

3. Scalability: Centralized provisioning in SDN enhances scalability, although 

large networks may need multiple SDN controllers due to the practical limits 

of managing devices. 

4. Security: SDN controllers support centralized security management, 

addressing challenges posed by virtualization and allowing administrators to 

manage network security more effectively. 
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5. Direct Programmability: Network managers can program network 

operations directly, using abstract control over forwarding elements to adjust 

traffic flows dynamically. This enables custom application use for managing, 

configuring, securing, and optimizing network resources independently of 

proprietary software. 

6. Openness: Every data plane element (such as OpenFlow-enabled switches 

or routers) has a unified programming interface for the OpenFlow controller 

to collect network status, regardless of vendor. 

The SDN architecture mainly consists of the following three layers: the 

application layer, control layer, and data plane layer as shown in Figure 3.2.  

 

Figure 3. 2 Software Defined Networks Architecture. 

 

The SDN applications are programmed to support all kinds of network services 

such as traffic engineering, load balancing, firewall, routing, and monitoring. The 

control layer is a core layer of the SDN architecture that extracts the data plane layer 

information and communicates to the application layer with an abstract view of the 

network topology, including statistics and events. The application and control layers 

communicate by using northbound APIs. The data plane layer consists of network nodes 

which can forward and processing of the data path. Communications between the data 

plane and control layers use a standardized protocol called OpenFlow. The SDN 

Controller defines the data flows that take place in the SDN Data Plane. When the flow 
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is entered to the network, the flow must first take permission from the controller [38]. 

The controller decides whether the communication is permissible or not according to 

the network policy. If the flow is permitted, the controller decides an appropriate route 

for the permitted flow and adds flow entry for the permitted flow in each switch along 

the path. The SDN controller is responsible for these complex tasks and switches simply 

manage flow tables and focus on forwarding function.  

3.2 Infrastructure Layer (or) Data Plane Layer  

The data plane layer would be the physical layer over which network 

virtualization lays down through the controller. This layer consists of various 

networking equipment which may be OpenFlow-enabled or OpenFlow-complaint 

network devices (routers or switches).  

Table 3. 1 Example of OpenFlow-Complaint Switches  

Vendor  Series 

Arista Arista extensible modular Operating System (EOS), Arista 

7124FX application switch. 

Cisco Cisco cat6k, catalyst 3750, 6500 series 

Cinea Cinea Core director running firmware version 6.1.1 

HP HP procurve series-5400 xzl, 8200 zl, 6200yl, 3500yl 

Juniper Juniper MX-240, T-640 

NEC NEC IP8800 

Toroki Toroki Lightswitch 4810 

Dell Dell z9000 and S4810 

Quanta Quanta LB4G4 

Open vSwitch Software switch, Latest version 1.10.0 

 

The OpenFlow enabled switches are either based on the OpenFlow protocol or 

compatible with it. In the data plane layer, traffic may enter or exit through logical or 

physical ports by forwarding or processing functions. Management of forwarding 

functions performed by an SDN controller or other mechanisms that orchestrated in 

conjunction with the SDN controller. An OpenFlow enabled switch may be a hardware 
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device or software program which are capable of processing and forwarding of the data 

path. The examples of OpenFlow-complaint switches are shown in Table 3.1.  

3.2.1 Open vSwitch 

Open vSwitch (OVS) [42] is a multilayer software switch aimed at providing a 

software switch platform with standard management interfaces and the capability for 

programmatic extension and control of forwarding functions. Ideal for virtual switch 

operations in virtual machine (VM) environments, OVS offers standard control and 

visibility interfaces to the virtual networking layer and supports distribution across 

multiple physical servers. It is compatible with various Linux-based virtualization 

technologies such as VirtualBox and Xen/XenServer. Written in platform-independent 

C, OVS can be easily ported to other environments. The switch can function entirely in 

user space without the need for a kernel module, making user-space implementation 

easier to port than a kernel-based switch. OVS in user space can also interface with 

Linux or DPDK devices. OVS contains the following distributions:  

1. ovsdb-server (database server): ovsdb-server provides remote procedure call 

(RPC) interfaces to one or more OVS databases and supports JSON-RPC client 

connections over Unix domain sockets and TCP/IP. It is a lightweight 

configuration database server that holds information for bridges, interfaces, 

tunnel definitions, OVSDB managers, and an OpenFlow controller address. It 

also allows ovs-vswitchd to query its configuration.  

2. ovs-vswitchd (daemon): It is the core part of the OVS and it manages any 

number of OVS switches on the local machine. The daemon communicates with 

SDN controllers, ovsdb-server, kernel module, and hosting system by using 

OpenFlow, OVSDB protocol, netlink, and netdev interface respectively. 

3. ovs-dpctl: A tool for configuring the switch kernel module. 

4. ovs-vsctl: A utility for updating and querying the configuration of ovs-vswitchd. 

5. ovs-appctl: A utility that sends commands to running OVS daemons.  

3.2.2 OpenFlow Switches Specifications 

OpenFlow-compliant switches come in two main types: OpenFlow-only and 

OpenFlow-hybrid. OpenFlow-only switches are exclusively managed by the OpenFlow 

pipeline and do not support other protocols. In contrast, OpenFlow-hybrid switches offer 
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both OpenFlow and traditional network functionalities [38]. An OpenFlow switch 

typically includes one or more flow tables, one or more OpenFlow channels to external 

controllers, a group table, and a meter table, and shown in Figure 3.3.  

• Ports: Packets traverse through the network interface known as OpenFlow ports, 

facilitating communication between OpenFlow processing and the broader 

network. OpenFlow switches interconnect using these ports. Typically, OpenFlow 

ports are categorized into three types: physical, logical, and reserved ports.  

 

 

Figure 3. 3 Main Components of an OpenFlow Switch 

 

• Flow Table: A flow table is integral to OpenFlow switches, managing packet 

forwarding through network paths. Each flow table consists of flow entries 

encompassing A flow table consists of flow entries and each flow entry consists of: 

▪ Match fields: consists of ingress port, packet header, and metadata to match 

against packets. 

▪ Priority: matching precedence of the flow entry. 

▪ Counters: to update for matching packets.  

▪ Instructions: modify the pipeline processing or action set. 

▪ Timeouts: maximum amount of time before the flow is expired.  

▪ Cookie: Used to provide flow modification, deletion, and statistics by the 

controller. 



27 

 

• Group Table: OpenFlow networks employ group tables for managing multicast, 

broadcast, and load balancing functionalities. Each group entry contains a group 

identifier, type, counters, and action buckets. 

• Meter Table: The meter table houses meter entries that define per-flow meters 

critical for Quality of Service (QoS) operations such as rate-limiting and DiffServ. 

Meters oversee and regulate packet rates assigned to them, directly impacting flow 

entries. Each meter entry is identified by a meter identifier, meter bands specifying 

actions, and counters. 

• OpenFlow Channel: Serving as the communication link between OpenFlow 

switches and controllers, the OpenFlow channel facilitates switch configuration, 

event handling, and packet transmission. OpenFlow channel messages adhere to the 

OpenFlow protocol and can be secured with TLS encryption or transmitted directly 

via TCP. 

The controller can add, delete, and update the flow tables entries in an OpenFlow 

switch via OpenFlow protocol.  

3.2.3 Pipeline Processing of OpenFlow Switches  

In OpenFlow switches, packets are handled by the OpenFlow pipeline. Packets 

are received on an ingress port and processed by the pipeline, which may forward them 

to an output port. Pipeline processing consists of two stages: ingress and egress, as 

depicted in Figure 3.4. For flow tables numbered from 0 to n, pipeline processing always 

starts at the ingress processing of flow table 0. The numbers assigned to ingress flow 

tables must be lower than those assigned to egress flow tables. 

Initially, a packet is matched against the first ingress table, and other tables may 

be used depending on the result of this first match. If the ingress processing outcome is 

to forward the packet to an output port, the OpenFlow switch will begin egress 

processing for that output port. Egress processing is optional; hence, a switch might not 

provide or configure any egress tables. If no valid table is configured at the first egress 

table, the packet may be handled by the output port or forwarded out of the switch. If 

there is a valid configured table at the first egress table, the packet must match against 

the flow entries of that table, and other tables may be used depending on the result of 

this match. 
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Figure 3. 4 Openflow Pipeline Architecture 

3.2.4 Matching Flow Table in OpenFlow Switches 

OpenFlow switches employ flow tables where each entry is uniquely identified 

by its match fields and priority. These match fields, encompassing ingress ports, packet 

headers, and metadata, define the criteria for selecting a specific flow entry within the 

table. Each flow entry includes counters to monitor packet usage and a set of instructions 

specifying actions to be executed. 

Figure 3.4 visualizes the flow matching structure in OpenFlow, illustrating how 

packets interact with flow tables during processing. Upon reaching a flow table, packets 

are scrutinized against its flow entries to identify a suitable match. Upon successful 

matching, the associated instructions of that flow entry are triggered. These instructions, 

such as Apply-actions, Clear-actions, Write-actions, Write-metadata, and GoTo-table, 

determine subsequent actions. If the instruction is GoTo-table, the packet may proceed 

to another flow table for further processing. In the absence of a GoTo-table instruction, 

processing within the current flow table concludes, and the packet is handled based on 

the specified actions. 
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Figure 3.5 Matching and Instruction Extraction in a Flow Table  

 As in Figure 3.5, Every flow entry includes a series of instructions that are 

carried out when a packet matches the entry. These instructions lead to modifications in 

the packet, action set, and/or pipeline processing [38]. 

 

Figure 3. 6 Flow Matching Structure of OpenFlow 

If a flow entry is not matched, known as a table miss, the handling of packets 

depends on the configuration of the flow table. The instruction set for table miss 

scenarios dictates how unmatched packets are processed. These instructions may include 

dropping packets, redirecting to another flow table, or sending packet-in messages back 

to the OpenFlow Controller through the control channel. 
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3.3   Protocol Options for Southbound Interface 

The control layer communicates the data plane layer by using Southbound APIs 

(Application Programming Interfaces). The controller uses these APIs to dynamically 

change forwarding rules that installed in the data plane devices such as switches and 

routers [50]. There are some examples of southbound APIs that are used for managing 

network devices in SDN deployment: NETCONF (standardized by IETF), Opflex 

(supported by Cisco), OF-Config (supported by the Open Network Foundation (ONF)), 

OpenFlow and so on. To support hybrid networks or to utilize traditional networks with 

software-defined manner, some routing protocols (i.e. OSPF, ISIS, and BGP) have been 

developed as southbound interfaces in some OpenFlow controller. Currently, the most 

popular southbound API is OpenFlow. 

3.3.1 The Concept of OpenFlow Protocol 

OpenFlow is a standardized protocol facilitating communication between OpenFlow 

switches and controllers. It serves as a programmable network protocol with an open 

standard-based interface, enabling various vendors to manage and support network 

traffic. Through OpenFlow, SDN controllers can configure data plane devices like 

OpenFlow switches by installing packet forwarding rules. Switches, in turn, 

communicate events and notifications to controllers via the OpenFlow protocol. 

At initialization, switches configure their SDN controller's IP address and TCP port 

number. They establish a secure TLS session for communication. The controller sends 

an OFPT FEATURES REQUEST message to each switch to gather configuration details 

such as port numbers and MAC addresses, essential for network management. 

OpenFlow messages fall into three main types: 

1. Controller to switch messages: These messages, initiated by the controller, 

control or monitor switch states: 

• Features: Establishes the OpenFlow channel by requesting switch 

capabilities, with the switch responding via a feature replies message. 

• Configuration: Allows the controller to set and query switch 

configurations. 

• Modify-State (FLOW_MOD): Used to add, modify, or delete flow or 

group entries. 
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• Read-State: Retrieves various switch information like current 

configurations and port statistics. 

• Packet-Out: Sends packets from the controller to switches. 

• Barrier: Ensures message dependencies are met and receives 

notifications for completed operations. 

• Role-Request: Sets the role of the OpenFlow channel. 

• Asynchronous-Configuration: Defines additional filters for 

asynchronous messages on the OpenFlow channel. 

2. Asynchronous: These types of messages are applied to change the switch state 

and update the controller with the network events changes. These messages are 

initiated by switches. These messages are: 

• Packet-in:  Transfer the control of a packet to the controller. It may be 

table-miss flow entry, TTL checking or packet-in events. 

• Flow-Removed: Inform the controller about the flow has been removed 

because of the controller’s flow delete request or the switch’s flow expiry 

process. 

• Port-Status:  Inform the controller about the status of the port. 

• Error:  The switch enables to notify the problems to controllers using 

error messages. 

3. Symmetric: These types of messages are initiated by either the controller or the 

switch and sent without solicitation. Five symmetric messages have been 

represented as a part of the OpenFlow protocol: 

• Hello:  Hello messages or keep-alive messages exchanged between 

switch and controller upon connection startup. 

• Echo:  To verify the liveness of connection, the controller and switch 

used echo request/reply messages. 

• Experimenter: To supports additional functionality within OpenFlow 

message type space or an area for the features of future OpenFlow 

versions.  

3.4 Control Layer of SDN 

In the context of Software-Defined Networking (SDN), the control layer 

assumes a pivotal role in the centralized management and orchestration of network 
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resources and policies. It effectively separates the control plane from the data plane, 

optimizing network operations. By abstracting data plane details, the control layer 

provides a comprehensive view of the network topology, including key statistics and 

events. Communication between the application layer and the control layer is facilitated 

through northbound APIs. Notable open-source controllers utilized widely today include 

OpenDayLight [31], ONOS, NOX, FloodLight, Ryu, Trema, and other similar 

platforms. In this paper, we won’t introduce one by one but we describe Trema 

Openflow controller which used in the test experiments. Table 3.1 shows some of the 

feature comparisons of popular open-source SDN controllers.  

Table 3. 2 Features Comparison of Popular SDN Controllers 

Controller Centralized/ 

Distributed 

Implementation Developers Application 

Domain 

NOX Centralized Python Nicira 

Networks 

Campus 

POX Centralized Python Nicira 

Networks 

Campus 

Ryu Centralized Python NTT Campus 

Trema Centralized C and Ruby NEC Research, 

Education, 

Prototyping of 

Custom 

Network 

Services 

FloodLight Centralized Java Big Switch 

Networks 

Campus 

OpenDayLight Distributed Java The Linux 

Foundation 

Datacenter 

ONOS Distributed Java Open 

Networks 

Foundation 

Datacenter, 

WAN and 

transport 
 

3.4.1 Trema OpenFlow Controller 

Trema is an open-source framework designed for developing OpenFlow 

controllers. It is known for its ease of use, modularity, and performance, making it 

suitable for research, education, and development of network applications. It was 
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developed with the languages C and Ruby where Trema's core is written in C, providing 

high performance for low-level operations and efficient packet processing and Trema 

offers a high-level API in Ruby, which simplifies the development process. Ruby scripts 

can be used to write network applications, leveraging the flexibility and ease of 

scripting. Trema was developed by NEC Corporation, a company known for its 

contributions to networking and telecommunications technologies.  

Trema is open-source and has a community of contributors who help maintain 

and enhance the framework. This community support ensures that Trema remains up-

to-date with the latest developments in SDN and OpenFlow technologies. It is widely 

used in academic and research environments for SDN experimentation and education. 

Its simplicity and flexibility make it an excellent tool for teaching and learning about 

SDN and OpenFlow. Developers can use Trema to rapidly prototype and test new 

network applications. Its high-level Ruby API allows for quick development cycles and 

easy modification of network logic. Trema can be used to simulate and test OpenFlow 

networks, making it valuable for developers and researchers who need to validate their 

SDN applications and configurations.  

The application use cases are: 

4. Network Function Virtualization (NFV): Prototyping and testing NFV 

applications. 

5. Custom Network Services: Developing custom network services such as load 

balancers, firewalls, and monitoring tools. 

6. Educational Tool: Teaching SDN and OpenFlow programming in academic 

settings. 

The key features of Trema are; 

1. Ease of Use: The Ruby API makes it easy for developers to create and manage 

OpenFlow applications. 

2. Modularity: Trema's modular architecture allows for easy extension and 

customization. 

3. High Performance: The C core ensures efficient packet processing and low-

level operations. 

4. Comprehensive Documentation: Trema offers extensive documentation and 

examples to help developers get started quickly. 
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Trema can be installed from its GitHub repository, where detailed instructions 

are provided. The framework includes various examples and templates to help new users 

begin developing their own OpenFlow applications. 

Trema is a powerful and flexible OpenFlow controller framework suitable for a 

variety of use cases, from academic research to network application development. Its 

combination of high performance and ease of use makes it an attractive option for those 

looking to explore and implement SDN solutions. 

These resources provide detailed information on Trema's capabilities, 

installation, and usage, making it easy for developers and researchers to leverage this 

framework in their SDN projects. Figure (3.7) shows the architecture of Trema 

Controller Framework as in [12]. 

 

 

Figure 3. 7 The Architecture of Trema Controller Framework 

3.5 Application Layer of SDN  

The application layer within Software-Defined Networking (SDN) serves as a 

crucial domain for developing innovative applications that capitalize on global network 

information, including comprehensive data on network topology, statistics, and 

operational status. This layer interacts extensively with the control layer to deploy 

network services and functionalities effectively. It comprises a diverse array of network 

applications that leverage the SDN controller's abstractions to streamline network 

optimization and management. Key components of the SDN application layer 
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encompass northbound APIs, network application development, automation and 

orchestration features, analytics, and policy management capabilities. The benefits of 

application layer are: 

1. Customization and Flexibility: Network operators have the flexibility 

to develop customized applications that meet specific operational needs 

and objectives. 

2. Accelerated Innovation: The programmable environment of the SDN 

application layer promotes rapid innovation, enabling the quick 

deployment of novel services and functionalities. 

3. Improved Operational Efficiency: Automation and orchestration tools 

within the SDN application layer simplify management tasks, leading to 

reduced complexity and enhanced network efficiency 

(Learnenough.com). 

To summarize, the application layer within SDN is pivotal, leveraging SDN's 

flexibility and programmability to deliver advanced network services, improve security, 

optimize performance, and automate network operations. Open standards and APIs play 

a crucial role in enabling diverse application development and integration, driving 

innovation and operational efficiency across modern network environments. 

3.6 Management of Flow Entries in OpenFlow Networks 

In the context of SDN architecture, the controller is mandated to install flow 

table entries in the forwarding tables of switches. The match fields, often utilizing 

wildcard entries, are traditionally housed in ternary content-addressable memory 

(TCAM) for swift packet matching and forwarding. Nonetheless, TCAMs are both 

expensive and spatially restrictive, limiting the number of entries that can be included 

in the flow table. The flow management system in OpenFlow switches is broadly 

classified into two main methodologies: proactive and reactive.  

The proactive approach to flow management involves the controller pre-

calculating and populating flow entries in the switch's flow tables. This strategy 

minimizes setup time and latency because flows do not need constant consultation with 

the controller. However, it lacks flexibility for real-time adjustments to network traffic 

and may encounter challenges with fitting a large number of entries into the flow table's 

TCAM. Reactive installation of flow entries is employed to address the management of 
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large flow tables more adaptively. The basic operations for reactive flow management 

are depicted in Figure 3.8: 

1. Packets arrive at the switch and there are no corresponding flow entries in 

switch’s flow table. 

2. Therefore, the switch informs the controller about the packet. 

3. The controller determines the path for the packet and puts in suitable rules in 

each switch along the path. 

4. Packets are forwarded to the destination. 

 

 

Figure 3. 8 Reactive Flow Management 

 

The reactive approach to flow management operates on a timeout-based 

mechanism with a default expiry timer, typically set to one second by the controller. 

When flows expire, the switch removes them and requests new flow entries from the 

controller to handle subsequent packets. 

Both reactive and proactive mechanisms have their own set of advantages and 

drawbacks. In the reactive method, controller interaction is necessary when a new flow 

arrives or when the switch's flow table lacks an appropriate entry. This approach 

efficiently utilizes flow tables but introduces additional setup time for each flow, which 

depends on the controller's workload and the state of the control channel. Consequently, 

reactive flow management may reduce the number of large flow tables in switches but 

can increase latency and reliability requirements for the control channel and control 

plane software. Failures in the control plane software or control channel can 

significantly impact network performance if flow entries cannot be established 

promptly. 
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In a proactive approach, all required flow entries are pre-installed in the switches' 

flow tables. This minimizes the workload on the controller and enhances resilience 

against failures in the control layer, since the necessary flow entries are already 

programmed into the data plane switches. However, deploying this method in larger 

networks involves handling numerous flow tables, which may face challenges due to 

TCAM limitations. 

 

Figure 3. 9 Proactive Flow Management 

To overcome the limitations of both proactive and reactive approaches, the 

hybrid flow management mechanism has gained popularity. This approach combines 

the advantages of proactive flow rule installation before communication begins with the 

flexibility of reactive adaptation to traffic during communication. 

3.7 Innovation Through Routing based SDN Application 

In the realm of SDN architecture, network managers have the opportunity to 

innovate their applications to align with specific needs. This has led to increased 

research focus on applications such as traffic engineering, routing, load balancing, and 

security. Whether in SDN environments or traditional networks, routing fundamentally 

revolves around two essential components: network state information and routing 

algorithms. Network state information encompasses node and link resources, including 

parameters like link utilization, available bandwidth, delay, and packet loss rate. 

Routing algorithms leverage network state information to determine optimal 

routes based on resource availability and demand. Yet, this information is subject to 

dynamic changes due to fluctuating link statuses, varying loads, and connection statuses. 

In traditional networks, distributed routing protocols handle the acquisition and 

dissemination of network state information among routing devices. In contrast, SDN 
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simplifies this process by allowing controllers to gather and update network state 

information directly from routing devices using OpenFlow connections. 

Routing algorithms involve routers calculating the shortest path between each pair of 

nodes across a network. The Open Shortest Path First (OSPF) Protocol utilizes the 

Shortest Path First (SPF) algorithm as its basis. Within networking, the primary focus 

remains on traffic management and routing, specifically on determining paths that 

adhere to essential constraints such as network QoS parameters. This method is known 

as constraint-based routing. Figure 3.10 depicts the various routing algorithms that are 

widely used in SDN, SDN based IoT networks, SDN based cloud data centers networks, 

and conventional networks. According to Figure 3.10, there are two main types of 

routing: shortest path routing and constrained based routing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 10 Routing Algorithms in SDN and Traditional Networks. 

3.8 Chapter Summary 

This chapter provides a concise overview of the foundational theory behind the 

layer taxonomy of software-defined networks (SDNs) [20]. It details the principal SDN 

protocol, explaining its operational mechanisms. Additionally, the chapter outlines the 

architecture and functionalities of Open vSwitch, a widely-used OpenFlow switch and 

he details about the controller Trema used in this system is presented in this chapter. 
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This chapter also explores various routing methods commonly employed in both SDN 

and traditional networks. 
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CHAPTER 4   

THE ARCHITECTURAL DESIGN OF PROPOSED SYSTEM 

The purposes of this chapter are identifying the problems of student’s network 

construction exercises and proposing to analyze the dependency and visualize them with 

sequence diagrams. The design of the system architecture is explained with step by step 

explanation. 

4.1 Problems Definitions of SDN Network Construction  

These problem definitions aim to cover a broad range of SDN concepts, 

providing learners with hands-on experience in setting up and managing SDN networks, 

implementing flow rules, monitoring and analyzing traffic, ensuring QoS, implementing 

security policies, and dynamically configuring networks.  

4.2 Network Construction Exercise Structure 

In these exercises, novice learners build their networks with the following steps; 

1. Learners receive network construction exercise problems from the 

instructors 

2. Build data plane networks by executing the shell scripts on their own PCs. 

3. Code OpenFlow controllers to satisfy the requirements and then establish 

connections between the controllers and switches in the data plane networks 

by executing Trema. 

4. Evaluate the behavior of the networks with the ping command and the 

proposed system. 

5. Debug the controllers. 

Table 4.1   Devices and Data Structure used in the System 

Device Data structure 

Switch 
Host 

Joint 

Cable 

(Device name name) 
(Device name name, IP address ip) 

(Device name name, Ethernet port number ep) 

{Joint1, Joint2} 
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The ethernet port number ep starts from 1 in switches, and is assigned 1 in hosts. 

4.3 Network Configuration 

Teachers define network configuration in files such as make-dc.sh. The devices 

and links that are used in the constructed networks are implemented by means of the 

following technologies; 

Host: a network namespace [18] 

Switch:  an Open vSwitch process [37] 

Controller: a Tema process [50] 

Link in data-plane: a veth pair [51] 

Link in control-plane: a local loopback interface [18] 

The data structures of these elements are shown in table 4.2. 

Table 4.2   Elements and Data Structure used in the System 

Element Data Structure 

Switch 
Host 

Joint 

Cable 

Controller 

(Device name name, Datapath-ID dpath, network interface names NI) 
(Device name name, network interface name ni, IP address ip) 

(Device name name, Ethernet port number ep) 

{Joint1, Joint2} 
listen port number lstn 

 

The NI in the switch is an array that consists of the network interface name 

implementing an Ethernet port in the switch. The ni in the host is the name implementing 

the Ethernet port in the host. If we define a joint j1 with the switch sw and its network 

interface sw.NI[i], we can describe it as j1 = (sw.name, i + 1). 

4.4 Preliminary of the System Design 

We defined several functions in table 4.3. 
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Table 4.3   The Functions Created for the System 

Function Description 

SrcT CP P ort(pkt) 

OF M sg(pkt) 

IsOFPF C_ ADD(of msg) 

Match(ofmsg) 

Action(of msg)  

P ayload(of msg) 

M_IN_Port(match) 

M_SrcMAC(match) 

M_DstM AC(match) 

A_OUT_P ort(action, a) 

DPath(name) 

getN I(name, ep)  

 

Peer(ni) 

 

DevByNI(ni)  

DevByPort(port) 

It returns the source TCP port number of the packet pkt. 
It returns the OpenFlow message (header and payload) of 

the packet pkt. 

If the OpenFlow message of msg means 

ofp flow mod command::OFPFC ADD, it returns true. 

It returns the match field of of msg. 

It returns the action field of of  msg.  

It returns the payload of of msg. 

It returns the in port field of the match field match.  

It returns the source MAC address field of match. 

It returns the destination MAC address field of match. 

It returns the a-th out port field of the action field action. 

It returns the datapath-ID of the switch whose name is name.  

It returns the network interface name that impliments the 

Eth- ernet port number ep of the switch whose name is name. 

It returns the network interface name that is another edge of 

the network interface name ni in the cable. 

It returns the device name that equips the network 

interface name ni. 

It returns the device name that establishes connections 

using TCP port number port as the source port in the 

control-plane. 

In this section, we describe the detail explanation of the method and functions 

used in the proposed system with its data structure and the formulation of all the 

functions are explained. 

4.4.1 Data structure of the System Design 

Table 4.4 shows data structure used in the system. 

4.4.2 Formulation of Handler Instance 

The file log data.txt includes several lines including ’method start’. Eq.2 extracts 

all lines from the line including ’method start’ to the previous line including ’method 

start’. HI1 stores hander instances that are extracted from the last line including ’method 

start’ to the end line in the file. Eq.4 sets the last line including ’method start’ to i. Eq.5 

sets h so that CP [h] is the closest to SI[i]. The SI[m] is the statement instance that called 

’packet out()’ or ’flow mod()’. The CP [l] is the OpenFlow message that is generated by 

’packet out()’ or ’flow mod()’. 
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HI1 = {(i, Size(SI) − 1, h, l)                         (4.3) 

|  SI[i].is ms = true ∧ max(i)                        (4.4) 

∧ CP [h].time < SI[i].time ∧ min(SI[i].time − C P [h].time)                     (4.5) 

∧ SI[i].method = ‘packet in′ 

∧ SI[i].ARGS[0] = DP ath(DevByP ort(SrcT CP P ort(CP [h].pkt))) 

∧ SI[i].ARGS[1] = OF M sg(CP [h].pkt) 

∧ SI[m].time <= SI[Size(SI) − 1].time < CP [l].time 

∧ min(SI[m].time − CP [l].time) 

∧ SI[m].ARGS[0] = DP ath(DevByP ort(SrcT CP P ort(CP [l].pkt))) 

∧ (SI[m].method = ‘packet out′ ∧ T ype(OF M sg(CP [l].pkt)) = 13 

∨ SI[m].method = ‘flow mod′ ∧ T ype(OF Msg(CP [l].pkt)) = 14)}           (4.6) 

4.4.3 Formulation of Flow Entries 

The current our system supports only flow-entries addition with OpenFlow messages of 

’FLOW MOD’. For this reason, the time e stores just ’null’. 

 

4.4.4 Formulation of Forwarding Instance, Data Plane to Control Plane and 

 Control Plane to Data Plane 

Switches receive packets and send the packets.  After receiving a packet, the 

switch tries to find a flow-entry whose match field matches the packet. 

If it is found, the switch applies the action field to the packet and sends it from 

the out port. The FI store the details. 

(4.1) 

(4.2) 

(4.7) 
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If it is not found, the switch generates a query (OpenFlow message) and sends it 

to the controller. The D2C stores the received packet and the sent query. 

 

After receiving the query, the controller may send the answer to the switch. After 

receiving the answer (OpenFlow message) from the controller, the switch acts based on 

the answer, which may send packets from the out port field in the answer. The C2D 

stores the received answer and the sent packets. 

 

(4.9) 

 

(4.8) 

(4.10) 
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4.4.5 Formula of Packet Chain 

A packet chain pc ∈ PC is formulated with Eq.11 and 12. 

 

       

 

Table 4.4 Explanation of Data structure 

Name Data structure 

DP It is the array consisting of the tuple (ni, time, pkt), where the 

packet pkt was captured from the network interface name ni in 

the data-plane at time time. 

CP It is the array consisting of the tuple (time, pkt), where the 

packet pkt was captured from the network interface name ni in the 

data-plane at time. 

OF PORT It is the set consisting of the tuple (name, port), where the device 

whose name is name establishes OpenFlow connections using the 

TCP port port bin the control-plane. 

(4.11) 

 

(4.12) 

 



46 

 

SI It stores executed statements in the controller. The array of the 

tuple (time, start, end, isms, ismr, method, ARGS), where 

the statement from the start-th line to the end-th line was 

executed at time time. If the statement is the first statement in 

a handler method (start(), switch ready(), packet in()), the 

isms is true; else if the statement called a function (packet out(), 

flow mod())for sending OpenFlow messages, the ismr is true. 

The method stores the name of the executed hander method 

or the called method, and ARGS stores its arguments. We call 

an element in SI a statement instance. 

HI It stores executed handers. It is the set of the tuple (si s, si 

e, cp in, CP OU T ), where the SI[si s] is the first exe cuted 

statement in the hander, and the SI[si e] is the lastly executed 

statement in the hander. And also, the contoller executed - the 

handler to treat the CP [cp in] and CP [cp out], cp out ∈ CP 

OU T was sent by the controller because of executing 

packet out() or flow mod(). 

F E It stores flow-entries with validity periods, meaning 

t i m e -based flow-table. It   is   the   set   of   the   tuple (name, 

time s, time e, match, action, trigger add), where the name 

stores the switch name, the validity period starts from time 

time s to time time e. And also, the match and action store the 

match fields and the action fields respectively. After receiving CP 

[trigger add], the switch added the flow-entry to the flow-table. 

F I It stores forwarding logs in switches based on flow-tables, 

called forwarding instances. It is the set of the tuple (rcv, 

snd, fe, a), where a switch receives DP [rcv] and then sends DP 

[snd] based on the a-th out port in the action of a flow-entry fe. 

D2C It stores causal connections between the data-plane packets and 

the control-plane packets. If switches receive DP [rcv] and then 

send CP [snd], the tuple (rcv, snd) is added to D2C. 
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C2D It stores causal connections between the data-plane packets and 

the control-plane packets. If switches receive CP [rcv] and then 

send DP [snd] from the a-th out port in the action field of 

CP [rcv], the tuple (rcv, snd, a) is added to C2D. 

P C The set of the array that stores the captured packets whose pay 

loads are identical on the assumption that payloads are 

identifiable.  The packets are sorted by captured order.  PC 

stands for Packet Chain. When payloads in DP[i].pkt,  

DP[i+j].pkt, and DP[i+j+k].pkt are identical and different to 

others in DP, pc ∈ P C, pc[0], pc[1], and pc[2] store i, i+j, and 

i+j+k respectively. 

 

In this work, Trema controller is used to implement controller programs and 

build software defined networks. The detailed requirements and implementations of 

software and hardware will be explained in section 5.1.  

Trema can be used in the following area as case studies, such as 

1. University Networks: Trema has been used in university campus 

networks to study and implement dynamic network management and 

security solutions. 

2. Enterprise Networks: Enterprises use SDN controllers like Trema 

to develop custom network management solutions tailored to their 

specific needs. 

In Trema, there are many applications such as; 

1. Educational Tools and Simulations 

2. Network Management and Monitoring 

3. Security Applications 

4. Load Balancing 

5. Network Virtualization 

6. QoS (Quality of Service) Management 

7. Research and Prototyping. 

By leveraging Trema, developers and researchers can create a wide range of 

SDN applications that improve network performance, security, and manageability. 
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4.5 A Dependency Analyzing System Architecture 

 In our system, we design a sample testbed network topology which includes 3 

virtual hosts and 3 virtual switches as in Figure 4.1. 

 

Figure 4. 1. A Sample Network Topology 

4.5.1 Overview Explanation of the System 

The overall system design of the proposed system is depicted in figure 4.2. It is 

a block diagram of the proposed system.  

In the proposed system, the network configuration information of the exercise problem 

and the controller program are first received from the user. In such a case, the data 

collection function starts packet capture and Trema, and logs the communication test 

performed by the user.  

When the user finishes the communication test and makes a termination request, 

the data collection function terminates packet capture and Trema, obtains packets, 

OpenFlow messages, and execution history, and saves them in the log DB as packet 

information, OpenFlow information, and executable statement information to do.  

When the data collection function ends, the time series flow table reproduction 

function, route selection imitation function, and transmission route estimation function 

are executed in order, and the time series flow table, route selection history, and 

transmission route information are created and saved in the log Database. 

There is a clue creation function as a means of obtaining necessary information 

from the log DB, and this function is obtained from the log DB and returns the above 

three clues to the user. 
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Figure 4. 2 The Overall System Design 

4.5.2 Architectural Design of the Proposed System 

The architecture of the proposed system is shown in Figure 4.3. The network 

interface (NI) extractor finds the names of the network interfaces that are used for links. 

Each tcpdump captures packets from each network interface. The IP address port 

resolver finds the names of network interfaces used for links and the names of devices 

equipping the network interfaces by analyzing the network configuration. This 

information enables the resolver to find the names of devices that send/receive the 

packets captured by each tcpdump in the data plane. The resolver also finds the port 

number and name of each Open vSwitch [37] that is used for connecting to Trema. It 

enables the resolver to find the names of Open vSwitches that send/receive packets in 

the control plane. Finally, the resolver writes out all captured packets together with the 

capturing time, the names of the sending devices, and the names of the receiving devices. 

The logging code inserter adds codes that write which statements were executed 

onto the standard outputs. The event extractor finds the logs from the standard outputs. 

The generator sorts all the events by time order and then generates descriptions for 

visualizing them with a sequence diagram. PlantUML [42] converts the description of 

the output log events to the graphics. 
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4.6 Chapter Summary 

 The details about the proposed system architectur design is depicted in this 

chapter. Here we explained the details about the exercise problem, system design and 

the functions used in this system. The system implementation phase will describe in the 

next chapter. 
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 CHAPTER 5 

IMPLEMENTATIONS OF PROPOSED SYSTEM 

In this chapter, the implementations of the proposed system with experimental 

testbed design is explained. The hardware requirements and software requirements used 

in this system are also described in detail in this chapter. Then, the experimental testbed 

topology and the controller programs are designed by using Trema controller with ruby 

script. 

5.1 Design and Implementation of Experimental Testbed 

Figure 5.1 explains the flow of SND Network construction exercises. In the 

exercise, the network configuration is given by the instructor. Given information to 

learners are network configurations, communication examples (data for sending and 

packet delivery routes), shell scripts for constructing networks, procedures for executing 

controllers. The achievement conditions for the learners are while building networks 

that satisfy the following conditions as an example; 

1. The topology is given in Figure 5.2. 

2. All hosts can communicate with ping each other. 

3. No packet-loss 

4. Minimum number of controller events (packet-in and packet-out) 

 

 

Figure 5.1 Logical Testbed Design of Network Exercise Flow 
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To satisfy those conditions the learner proceeds with the exercise using the 

Trema according to the following procedure. Firstly, learners create a controller 

program. Next, they set the virtual network environment using a shell script. And then, 

they execute the controller program according to the controller execution procedure and 

perform a communication test. If this communication test fails to meet the communi-

cation example, the controller program is corrected as necessary. The exercise will 

proceed by repeating this process. 

Table 5.1 describes hardware requirements of experimental testbed and Table 

5.2 describes the software, tools that are used in this research. 

Table 5. 1 Hardware Requirements of Experimental Testbed Area 

Name Specifications 

CPU Core(TM) i7-6500U CPU @ 2.50GHz   

2.59 GHz 

RAM 8.00GB 

HDD 500 GB 

Operating System Linux 16.04 LTS 

Number of PCs 1 

Table 5. 2 Software and Tools Used in the System 

Software Versions Used in 

Trema (SDN Controller) 0.4.7 Implementation and Evaluation 

Open vSwitch 2.9.2 Testbed (Evaluation) 

OpenFlow Protocol Version 1.3 Testbed (Evaluation) 

PlantUML 1.2024.5 Testbed (Evaluation) 

5.2 Testbed Network Topology 

 

Figure 5. 2 Logical Testbed Nnetwork Topologies 
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In Figure 5.2, we set three communication network topologies as a testbed 

network environment. In the first figure A, we set three virtual host and one virtual 

switch. In the second figure B, we set the topology with three virtual hosts and two 

virtual switches. And finally, we set three virtual hosts and three virtual switches as in 

figure C. 

5.3 Requirements of Software for Experimental Testbed 

In this system the following software are required to develop and experiment; 

1. Trema Controller 

2. PlantUML 

5.3.1 Installation and Running of Trema Controller 

 For the implementation of the proposed system, we used Trema controller 

framework with ruby scripts. To install Trema on an Ubuntu system, follow these steps: 

Step 1: Update and Install Dependencies 

Start by updating your package list and installing the required dependencies: 

sh 

sudo apt-get update 

sudo apt-get install build-essential git ruby ruby-dev libpcap-dev 

 

 

Step 2: Install Bundler 

Bundler is a dependency manager for Ruby projects: 

sh 

sudo gem install bundler 

 

 



54 

 

Step 3: Clone the Trema Repository 

Clone the Trema GitHub repository to your local machine: 

sh 

git clone https://github.com/trema/trema.git 

cd trema 

 

 

Step 4: Install Trema 

Install Trema and its dependencies using Bundler: 

sh 

bundle install 

 

 

Step 5: Build Trema 

Build Trema: 

sh 

./build.rb 

 

 

Step 6: Verify Installation 

Verify that Trema is installed correctly by checking the version: 

sh 

trema version 
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If the installation was successful, you should see the Trema version displayed. 

Here we used the trema version 0.4.7 

 

Note: The installation steps mentioned above are for the Ubuntu OS installation because 

this dissertation used Ubuntu OS for implementation and hence explain the required step 

for Ubuntu OS. The detailed installation steps and installation steps for other OS can 

find in the documentation on the Trema GitHub page or website and it can provide 

further assistance.  

5.3.2 Installation and Running of PlantUML 

 PlantUML[42] is a tool to create UML diagrams from plain text descriptions. It 

is widely used for documenting software systems and can generate various types of 

diagrams such as sequence diagrams, use case diagrams, class diagrams, and more. The 

installation process may varies depending on the users’ OS type and version. 

Step by Step Manual Installation Procedures for PlantUML 

For more control over the installation process, you can manually download and set up 

PlantUML. 

1. Install Java: 

As mentioned before, PlantUML requires Java. 

sh 

sudo apt update 

sudo apt install default-jre 
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2. Download PlantUML JAR File: 

Download the plantuml.jar file from the official website. 

sh 

wget http://sourceforge.net/projects/plantuml/files/plantuml.jar/download -O 

plantuml.jar 

 

3. Install Graphviz: 

sh 

sudo apt install graphviz 

 

4. Run PlantUML: 

Use the following command to generate diagrams from a PlantUML file (e.g., 

diagram.puml): 

sh 

java -jar plantuml.jar diagram.puml 

 

5. Example Diagram Description 

Create a sample PlantUML file (example.puml): puml 

@startuml 

Alice -> Bob: Hello 

Bob -> Alice: Hi 

@enduml 

http://sourceforge.net/projects/plantuml/files/plantuml.jar/download%20-O%20plantuml.jar
http://sourceforge.net/projects/plantuml/files/plantuml.jar/download%20-O%20plantuml.jar
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6. Generate the diagram: 

sh 

java -jar plantuml.jar example.puml 

 

By following the above procedures, we can able to install and use PlantUML on 

our Ubuntu system effectively. For more detailed information, refer to the PlantUML 

documentation in [42]. 

5.4 Implementation of the System 

In this system, we implement the dependency analyzing system by using 

functions and methods that are designed and mentioned detailed in Chapter 4. 

There are two methods for transmitting communication data using OpenFlow. 

The first one is transferring data packets by FlowTable and the other is transferring data 

packets by PacketOut function. 

5.4.1 Transferring Packets by FlowTable 

The first method is packet transmission based on the flow table explained in 

figure 5.3. Firstly, FlowMod (Flow Modification Method) is sent by executing the 

controller. The switch updates the flow table according to this FlowMod. When a packet 

arrives, the switch uses this flow table to determine the packet output port and send it 

out. 
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Figure 5.3 Transfer Packets by Flow Table 

5.4.2 Transferring Packets by PacketOut Method 

The second method of packet transmission based on PacketOut method is 

explained in Figure 5.3. Firstly, when a packet arrives, the switch verifies that the packet 

does not match the flow table. The switch then sends a PacketIn containing the packet 

to the controller. PacketOut is sent when the controller that receives this PacketIn is 

executed. The switch determines the packet output port by this PacketOut and sends it 

out. 

 

Figure 5.4 Transfer Packets by PacketOut  
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5.4.3 Data Collection Function 

 In this stage, the network configuration information of the exercise problem and 

the controller program are first received from the user. In such a case, the data collection 

function starts packet capture and Trema, and logs the communication test performed 

by the user.  

The data collection function generates the following logs to the database for future 

analysis and to generate visualize event; 

• Packet information (P) 

• Open flow information (OF) 

• Execution information (E), 

 

Figure 5.5 Flow of Data Collection Function 

In the background, we add logging functions to controller program. And then, 

we add a standard output function (prefix, line number, and clock) to all statements, and 

finally we add a standard output function (packet_in ‘s parameters) to the first line in 

packet_in function 

Describes the data collection function. In this function, input data is created to 

obtain the execution history. Execution history collection programs are regulated by 

prefix line numbers. As an example, if the original executable statement is a packetin 

method definition statement, add a description to output the argument in addition to the 

prefix, line number, and time as shown in figure 5.6 below [57]. 



60 

 

 

Figure 5.6 Data Collector Generate Controller with Logger 

 In figure 5.7, the data collector analyzes execution history into the following 

order; 

 1. Divide execution history into methods 

 2. Find execution start time of methods 

 3. Find sequences of executions of PacketOut and FlowMod 

 

Figure 5.7 Data Collector Analyze Execution History 

The data collection function also associates PacketIn and controller executable 

statements. The controller does not always process PacketIn in the order received. For 

this reason, the following matching is performed. As an example, when three packetins 

are sent from switches 1 and 2 and the packet-in method is executed three times, 

matching is performed as shown in this color coding. 
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Figure 5.8 Data Collector Corresponds PacketIn to Executed Statements 

in Controller 

Also, Packetout and Flowmod are associated with controller executable 

statements. In the controller, PacketOut and FlowMod are sent through the controller to 

switchs. As an example, if a send execution statement is executed in this way with three 

packet-in methods and packetout flowmod is sent in this way, first, execution 1 and 

execution 2, 3 are separated from the first argument. And it associates like this color 

classification from each execution order and transmission order. 

 

Figure 5.9 Data Collector Corresponds PacketOut and FlowMod to 

Executed Statements in Controller 

5.4.4 Time Series Flow Table Reproducer 

 After the data collection function generates the following logs to the log 

database, time series flow table reproducing function has started. It uses the dependency 

of Openflow Information (OF) log and then generates flow tables (FT) to the database. 
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Figure 5.10 Time Series Flow Table Reproducer 

5.4.5 Delivery Route Estimator 

Route selection histories are Logs from receiving packets to choosing output 

devices in switch. 

Here, we estimate delivery routes based on route selection histories  

1. Find route selection history “A” whose sending device is a host 

2. Find route selection history “B” that satisfies the following conditions 

a. Reception device of A == Sending device of B 

b. Sending device of A == Reception device of B 

c. Packet sent from A == Packet received by B 

d. Reception time of A < Reception time of B 

3. If B’s reception device is not a host, then assign B to A and go back to step 

2. 

 

Figure 5.11 Route Selection Histories 

 It describes the transmission path estimation function. This function estimates 

the transmission route from the route selection history. The route selection histories are 

represented by Figure 5.11. This is created by the route selection imitation function.  
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5.5 Chapter Summary 

The implementation of the proposed system with the logical testbed design of 

SDN network construction exercises is described in this chapter. Here we described the 

SDN network topology, hardware and software requirements used in this system and the 

installation and implementation of the system in explained in detail. The experimental 

results of this testbed evaluation with multiple scenarios and multiple methods will be 

presented in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 

 

CHAPTER 6 

EXPERIMENTS AND RESULTS 

This chapter carried out the experiments of the system by using three different 

scenarios with three different controller programs. Firstly, this chapter discussed the 

experiments results of each by conducting Trema Openflow Controller with and without 

logging code. Then, it also discussed the experimental results of each controller program 

with different network construction exercises. 

6.1 Experiment Methods 

In the proposed system, VMWare Workstation and Ubuntu16.04 LTS are used 

for the testbed area. 

6.1.1 The Main Files and Functions Used in the System Scenario 

The following files are used to run the system; 

1. trema_netwdbg2.rb 

 where, it runs tcpdump processes to a SDN controller and a SDN network. 

2. testf2 (source file: pcapanalize_f2.c) 

 where, it analyzes tcpdump outputs (logfiles) and then writes packet 

information and OpenFlow information to files in ./dbglog 

3. contanalize_f2.rb 

 where, it analyzes execution statements in controllers (logfiles) and then 

writes the results to files in ./dbglog 

4. data_analize.rb 

 where, it generates time series flow tables, route selection histories, and 

delivery route information, and then writes them to files in ./dbglog 

respectively 

6.1.2 Library Files Used in the System  

1. External library for Ruby (./clib) 

pktread.c  where it is used for analyzing packets and OpenFlow 

Note: A class name in ruby is PktRead. Refer to section PktRead library. 
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2. Required files for starting system 

• make-dc.sh: a shell script file for building networks 

• dc-data.txt: a file including network configurations used in item A 

• trema-test1.rb: a controller program in Trema 

6.1.3 Operational Flow of the System 

 Destroy the networks built before based on the shell script file “make-dc.sh” 

before creating the new network construction exercises 

$ ./make-dc.sh del 

 

And then build a network with the shell script and the following command; 

$ ./make-dc.sh add 

 

Check the networks built with the following command; 

$ sudo ip netns list 

where we can see the networks build by shell script as shown in Figure 6.1. 

 

Figure 6.1 Building Virtual Networks 

After that, run Trema with the following command to execute the system 

$ sudo ruby trema_netwdbg2.rb trema-test1.rb dc-data.txt 

 

Note: We need to wait approximately 5 seconds after "[screen] trema run" appears on 

the screen. This is because the time is spent for connecting between the controller and 

the switch. 
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Figure 6.2 Running Trema with Controller Programs 

The file network debugger runs tcpdump processes between SDN controller program 

and SDN network. 

 

Figure 6.3 Output of TCPDUMP Files in the Log Database 

Then, try to make network construction test by doing ping with the command ip 

$ sudo ip netns exec vhost1 ping 192.168.0.2. 

 

Figure 6.4 Making Network Communication Test 
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 After testing the network, stop trema by running the following command 

$ sudo trema killall 

6.1.4 Analyzing the System Output Logs 

After testing ping communication with the controller programs, we analyze the 

packets and analyze the dependency between communication routes and flow tables and 

controllers. 

To analyse packets that are generated in section 6.1.3, we run the following files 

$ ./testf2  

After that, the system generates the following log files into the database 

1. pkt_data.txt: packet information 

2. pkt_ofdata.txt: OpenFlow information 

3. pkt_datahead.txt: meta data for packet information and OpenFlow 

information 

 

Figure 6.5 Output Logs for Packet Information and OpenFlow Information 

To analyze execution statements, we run the ruby file naming 

“contanalize_f2.rb” with the following command; 

$ ruby contanalize_f2.rb 

After that, the system generates the file naming 

log_data_2t.txt: execution information  

 

Figure 6.6 Output Logs for Execution Statement Information 
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To generate time series flow table, route selection histories and delivery route 

information, we run the ruby file naming “data_analize.rb” and write the data int dc-

data.txt by the following command; 

$ ruby data_analize.rb dc-data.txt 

After that, the system generates the file naming 

1. tft_data.txt: a time series flow table 

2. rsd_data.txt: a route selection history 

3. prd_data.txt: delivery route information 

 

Figure 6.7 All Generated Output Log Files 

6.2 Running Testbed Evaluation Environment and Visualizing the System 

To highlight the outcome of our proposed system, we compare and analyze three 

controller programs in two different scenarios. As an evaluation experiment, these three 

network configurations were prepared, and using the controller program that succeeded 

in continuity, configurations A to C were configured as in the actual exercise. The 

execution environment criteria are as follows; 

• Controller programs in which ping communications are successful 

• Do ping communications between all pairs of hosts  

• All hosts in each pair send three ICMP echo requests 
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Figure 6.8 Output Event Result Testing with Controller Program 1 
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Figure 6.19 Output Event Result Testing with Controller Program 2 
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Figure 6.10 Output Event Result Testing with Controller Program 3 
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6.3 Performance Evaluation 

 In this system, the evaluation environment includes; 

Host OS: Windows 10,  

Host CPU: Intel(R) Core (TM) i7-6500U CPU @ 2.59GHz,  

Virtual Machine: VMware Workstation 15 Player,  

Guest OS: Ubuntu 16.04LTS and Guest memory assignment is 1 GB.  

The visualizer and data analyzer are implemented with Ruby and C language, 

and Plant UML is used to convert the description to graphics. It might make it possible 

for us to achieve our goals. The analysis results are shown in table 1. 

Table 6.1 Analysis Result 

Controller 

Program 

Controller 

Evets 

Network 

Reachability 

Packet 

Information 

(KB)  

Openflow 

Information 

Executed 

Statement 

Information 

1 High Yes 18 38 49 

2 Medium Yes 22 24 23 

3 Low Yes 25 20 24 

 The analysis results of the system are described in table 6.1 where the system 

was tested with three different controller programs to be tested with the status of 

controller events, the reachability of network communication and the amount of data in 

packet information, OpenFlow information and executed statement information. 

Figure 6.9 to 6.11 are the results of testbed configuration with three different 

controller programs. In the Figures, the upper and lower squares are the device names, 

and the yellow color-coded box is the part where the line number that was executed.  

6.4 Chapter Summary 

In this chapter, the experimental results of a dependency analyzing system has 

been described for learners who learn and writing controllers with SDN network 

construction exercises in universities, research labs and also useful for on job training 
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in business enterprises. The experiments for this research are described in this chapter 

with step by step execution with the analysis results. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

This dissertation implemented a Dependency Analyzing System for 

communication activities in Network Construction Exercises using Trema. In this 

research, we demonstrated significant benefits in aiding students to debug and develop 

their Software Defined Networking (SDN) controller programs. The system provides a 

detailed analysis of the causal connections between packet transmissions in the data 

plane, control plane activities, and the execution of controller program statements. 

System represents a significant advancement in the educational tools available for 

teaching SDN concepts. By providing a robust framework for analyzing and debugging 

network communication activities, it helps bridge the gap between theoretical 

knowledge and practical implementation, ultimately contributing to the development of 

more proficient SDN practitioners. Key findings and conclusions from this study 

include: 

Improved Debugging Efficiency: By leveraging the Dependency Analyzing System, 

students were better able to identify and correct errors in their controller programs. The 

system's ability to trace packet flows and correlate them with specific statements in the 

controller code proved invaluable in the debugging process. 

Enhanced Understanding of SDN Operations: The system facilitated a deeper 

understanding of SDN concepts among students. By visualizing the interactions between 

the data plane, control plane, and controller programs, students gained a clearer insight 

into the operational mechanics of SDN. 

Identification of Common Error Patterns: The analysis revealed common patterns in 

the errors made by students, such as misconfigured network settings or incorrect 

controller logic. This information can be used to refine teaching materials and provide 

targeted guidance to future students. 

Increased Success Rates: With the support of the Dependency Analyzing  System, a 

higher percentage of students were able to meet the exercise requirements and build 

functional SDN networks. This indicates the system's effectiveness in enhancing the 

learning outcomes of network construction exercises. 

Scalability and Adaptability: The system showed potential for scalability and 

adaptability to different SDN frameworks and network configurations. This flexibility 
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makes it a valuable tool for a wide range of educational and practical applications in 

SDN development. 

7.1 Advantages of the System 

 The implementation of the system using Software Defined Networking (SDN) 

offers several advantages, particularly in the context of the modern information age and 

the rapid development of networking and virtualization technologies. Here are the 

advantages, based on the provided factors: 

Promotion of Research and Innovation: Academic and Research Focus: SDN has 

become a prominent area for research and innovation in academic and research fields. 

Universities and research labs serve as hubs for this innovation, driving advancements 

that can rapidly influence industrial practices. By engaging with SDN, these institutions 

can contribute to the development of cutting-edge networking technologies. 

Accelerated Change: Innovations originating from academia and research 

organizations can significantly accelerate the rate of technological change in industries. 

This collaborative environment fosters the exchange of ideas and the development of 

practical solutions that can be quickly adopted in real-world scenarios. 

Enhanced e-Learning Opportunities: Educational Exercises: SDN construction 

exercises have been integrated into e-Learning platforms, providing novice learners with 

hands-on experience in building and managing networks. These exercises help learners 

understand the principles of SDN and gain practical skills that are essential in the 

modern networking landscape. 

Practical Understanding: When performing network construction exercises, learners 

often struggle to understand network behavior and meet communication data 

requirements. The system addresses this issue by allowing learners to construct SDN 

networks using tools like Trema and the OpenFlow protocol for communication between 

controllers and switches. 

Debugging and Problem-Solving Assistance: Visual Clues for Debugging: A 

significant challenge for learners is identifying and fixing bugs in their network settings. 

Issues such as the inability to find delivery routes with ping, switches lacking logging 
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functions for output port selection rules, and Trema's inability to locate execution 

statements for setting rules can hinder learning progress. The system provides visual 

clues to help learners narrow down executed statements that cause incorrect 

communication, facilitating easier debugging and problem-solving. 

Improved Learning Outcomes: By offering visual debugging aids, the system 

enhances learners' ability to identify and resolve issues in their network configurations. 

This leads to a deeper understanding of SDN principles and improves overall learning 

outcomes. 

Hands-On Experience with Advanced Technologies: Use of OpenFlow Protocol: The 

system utilizes the OpenFlow protocol for communication between controllers and 

switches, giving learners hands-on experience with a key component of SDN. This 

practical exposure helps learners become familiar with advanced networking 

technologies and prepares them for future careers in the field. 

Building Real-World Skills: Engaging with SDN exercises and troubleshooting real 

network issues allows learners to build valuable skills that are directly applicable in the 

networking industry. This experience can make them more competitive in the job market 

and better equipped to handle complex networking tasks. 

The advantages of implementing this system using SDN include fostering 

research and innovation in academic settings, enhancing e-Learning opportunities, 

providing effective debugging and problem-solving tools, and offering hands-on 

experience with advanced networking technologies. These benefits collectively 

contribute to a more effective and comprehensive learning experience for students and 

researchers in the field of networking. 

7.2 Limitations of the System 

The limitations of the system using SDN include the complexity faced by novice 

learners, challenges associated with debugging, partial effectiveness of visual aids, 

technical and resource constraints, scalability issues, and the potential gap between 

educational exercises and real-world application. Addressing these limitations is 

essential to enhance the system's educational value and practical relevance. 
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7.3 Future Work 

In this proposed system, there are four main parts; firstly, mentioned the flow of 

the exercise using in the proposed system is mentioned, secondly, the system overview 

is described and the description of the logging code was inserted and finally collect raw 

data and show them in sequence diagram to help learners in visual way of data 

collection.  A function is classified to develop for estimating routes in data planes from 

capture packets. Then that function will help students to detect incorrect communication 

routes in their network. The system performance and effectiveness for students’ 

debugging will also be evaluated. And, it also plans to develop functions in order to 

analyze network traffic for security. 
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vHost  Virtual Host 

vSwitch Virtual Switch 
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OF  Open Flow 

OVS  Open Virtual Switch 

RPC  Remote Procedure Call 

QoS  Quality of Service 

NFV  Network Function Virtualization 

TCAM   Ternary Content-Addressable Memory 

DP  Data Plane  

CP  Control Plane 

SI  Statement Instance 

HI  Handler Instance 

FE  Flow Entries 

FI  Forwarding Instance 

C2D  Control Plane to Data Plane 

D2C  Data Plane to Control Plane 
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FlowMod Flow Modification 

 


