

A DEPENDENCY ANALYZING SYSTEM FOR

COMMUNICATION ACTIVITIES IN NETWORK

CONSTRUCTION EXERCISES USING TREMA

HLWAM MAINT HTET

UNIVERSITY OF COMPUTER STUDIES, YANGON

JULY, 2024

A Dependency Analyzing System for Communication

Activities in Network Construction Exercises using Trema

Hlwam Maint Htet

University of Computer Studies, Yangon

A thesis submitted to the University of Computer Studies, Yangon in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy

July, 2024

Statement of Originality

I hereby certify that the work embodied in this thesis is the result of original

research and has not been submitted for a higher degree to any other University or

Institution.

…..…………………………… .…………........…………………………

Date Hlwam Maint Htet

i

ACKNOWLEDGEMENTS

First and foremost, I am deeply grateful to the Ministry of Science and

Technology for granting me the opportunity to pursue my Ph.D. by providing the

support that enabled me to conduct my research at the University of Computer Studies,

Yangon, Myanmar.

I would like to extend my heartfelt thanks to Dr. Mie Mie Khin, the Rector of

the University of Computer Studies, Yangon, for allowing me to develop this thesis and

for her general support during my study period.

Special thanks are due to Dr. Mie Mie Thet Thwin, the former Rector of the

University of Computer Studies, Yangon, for her overall support throughout my Ph.D.

coursework, seminars, and thesis.

I am particularly grateful to my supervisor, Dr. Amy Tun, Professor at the

Faculty of Computer Systems and Technologies, University of Computer Studies,

Yangon, for her patience, motivation, constant encouragement, and invaluable

guidance and suggestions throughout the process of writing both my papers and this

thesis.

I owe a debt of gratitude to my former supervisor, Dr. Khin Than Mya, Professor

at the University of Computer Studies, Yangon, for her guidance, advice, and

encouragement throughout my Ph.D. studies.

I sincerely would like to express my deepest gratitude to my former co-

supervisor and advisor, Dr. Yuichiro Tateiwa, Associate Professor at Nagoya Institute

of Technologies, for providing the foundation of this research, as well as for his helpful

guidance and suggestions throughout our research collaboration.

My sincere gratitude and special thanks go to Dr. Si Si Mar Win, Course-

Coordinator of the Ph.D. 11th batch, for her excellent guidance, care, and support

throughout my Ph.D. journey.

I would also like to express my respectful gratitude to Dr. Tin Thein Thwel,

Professor and Former Course-Coordinator of the Ph.D. 11th batch at the University of

Computer Studies, for her support and encouragement during various stages of my

research.

ii

My heartfelt thanks and respect are extended to Dr. Sabai Phyu, Professor and

Former Course-Coordinator of the Ph.D. 11th batch at the University of Computer

Studies, Yangon, for her general guidance, kindness, and encouragement throughout

my Ph.D. studies. She also provided patient teaching during my coursework.

Special thanks go to Professor Daw Aye Aye Khine, Head of the English

Department, for her patience and valuable suggestions, which greatly improved my

thesis writing.

I am grateful to U Min Htut, Deputy Minister of the Ministry of Planning and

Finance, and former Director General of the Internal Revenue Department, for his

permission to attend the Ph.D. course in line with my duties.

I would also like to thank my superior, U Tin Maung Thant, Deputy Director

General of the Internal Revenue Department and former Director of the IT Directorate,

for his kind support, encouragement, and permission to pursue my research throughout

this journey.

My appreciation extends to all my Ph.D. 11th batch colleagues for their

kindness, motivation, knowledge sharing, constant care, and the unforgettable

memories we created over the past five years.

Lastly, my deepest gratitude and love go to my parents and family members for

their eternal love, kindness, patience, physical and mental support, and constant

encouragement throughout my life. Without their efforts, none of this would have been

possible.

iii

ABSTRACT

Nowadays, networking and virtualization technology has been developing in

momentum. Software Defined Networking (SDN) has been popular for research and

innovation. Universities and research labs are the basic points for innovation because

innovation by academia and research organizations can accelerate the rate of change in

industries. SDN construction exercises have been developed in e-Learning. Software-

Defined Networking (SDN) is a networking approach that decouples the control plane

from the data plane, allowing centralized network management. It remains popular in

the research field for its benefits that researchers continue to explore various aspects

such as: network security, traffic management, network virtualization, edge computing,

machine learning and so forth. SDN's flexibility and programmability keep it relevant

for emerging technologies and innovative network solutions.

When performing network construction exercises, novice learners cannot

understand the behavior of their network and fail to satisfy the requirements for the

network reachability of communication data. In this system, learners construct SDN

network construction exercises by using Trema and OpenFlow Protocol is used for

communication between controllers and switches. Here, some learners cannot find their

bugs from their settings due to the reasons such as ping cannot find delivery routes

including switches, switches have no function to log rules used for choosing output

ports for packets, and Trema cannot find execution statements used for setting rules to

switches. To satisfy these problems, learners need help and the system will provide

analysis results for learners in visual way so that they can narrow down executed

statements that cause incorrect communication. This dissertation presents a

Dependency Analyzing System for Communication Activities in Network Construction

Exercises using Trema. It includes four main modules: constructing Software Defined

Network (SDN) Construction Exercises Using Trema, collecting data packets from

constructed virtual network, collecting executed statements in controller program, and

giving the analysis results to learners so that they can narrow down their visualizing

packet location and executing statement information in chronological order.

iv

TABLES OF CONTENTS

ACKNOWLEDGEMENTS .. i

ABSTRACT ... iii

TABLES OF CONTENTS .. iv

LIST OF FIGURES .. viii

LIST OF TABLES .. x

LIST OF EQUATIONS .. xi

INTRODUCTION ... 1

1.1 Problems Definition .. 2

1.2 Terminology.. 3

1.3 Motivation .. 3

 1.4 Objectives ... 4

1.5 Contribution …………………………………………………………...4

 1.6 Organization ………………...…………………….………….……….4

LITERATURE REVIEWS .. 6

2.1 Software Defined Networking (SDN) ... 6

 2.1.1 Existing Tools and Framework for SDN in Education7

 2.1.2 Importance of SDN in Education and Research..........................7

 2.1.3 Network Construction Tools and Techniques for Learners7

 2.1.4 The Role of Trema in Network Construction Exercises10

 2.1.5 Communication Activities in SDN.. 10

2.2 Debugging and Dependency Analysis in SDN 12

 2.2.1 Existing Systems and Tools for Dependency Analysis.............13

 2.2.2 Challenges and Gaps in Dependency Analysis of SDN...........13

 2.2.2.1 Complexity of Network Topologies.............................14

 2.2.2.2 Data Collection and Integration14

 2.2.2.3 Heterogeneity of Network Components 14

 2.2.2.4 Policy and Configuration Changes...............................15

 2.2.2.5 Security and Privacy Concerns 15

v

 2.2.2.6 Scalability Issues ..15

 2.2.2.7 Lack of Standardization..15

 2.2.2.8 Tooling and Automation.. 16

 2.2.2.9 Visualization and Interpretation16

 2.2.2.10 Resilience and Fault Tolerance16

 2.2.3 Potential Solutions and Future Direction 16

 2.2.4 A Dependency Analyzing System using Trema........................17

2.3 Openflow Switch Specification and Openflow Controllers..................17

2.4 Chapter Summary .. 19

THEORETICAL BACKGROUND .. 20

3.1 Software Defined Networks Architecture .. 20

3.2 Infrastructure Layer (or) Data Plane Layer .. 24

3.2.1 Open vSwitch ... 25

3.2.2 OpenFlow Switches Specifications .. 25

3.2.3 Pipeline Processing of OpenFlow Switches 27

3.2.4 Matching Flow Table in OpenFlow Switches 28

3.3 Protocol Options for Southbound Interface .. 30

3.3.1 The Concept of OpenFlow Protocol... 30

3.4 Control Layer of SDN .. 31

3.4.1 Trema OpenFlow Controller .. 32

3.5 Application Layer of SDN ... 34

3.6 Management of Flow Entries in OpenFlow Networks 35

3.7 Innovation Through Routing based SDN Application......................... 37

3.8 Chapter Summary .. 38

THE ARCHITECTURAL DESIGN OF PROPOSED SYSTEM 40

4.1 Problems Definitions of SDN Network Construction 40

4.2 Network Construction Exercise Structure ... 40

4.3 Network Configuration .. 41

4.4 Preliminary of the System Design ... 41

vi

 4.4.1 Data Structure of the System Design.. 42

 4.4.2 Formulation of Handler Instance ..42

 4.4.3 Formulation of Flow Entries ……………………………..…. 43

 4.4.4 Formulation of Forwarding Instances, D2C and C2D43

 4.4.5 Formulation of Packet Chain …………………………………45

4.5 A Dependecy Analysing System Architecture 48

 4.5.1 Overview Explanation of the System 48

 4.5.2 Architectural Design of the Proposed System 49

4.6 Chapter Summary .. 50

IMPLEMENTATIONS OF PROPOSED SYSTEM ... 51

5.1 Design and Implementations of Experimental Testbed 51

5.2 Testbed Topology .. 52

5.3 Requirements of Software for Experimental Testbed 53

 5.3.1 Installation and Running of Trema Controller 53

 5.3.2 Installation and Running of PlantUML55

5.4 Implementation of the System..57

 5.4.1 Transferring Packets by FlowTable ...58

 5.4.2 Transferring Packets by PacketOut ..55

 5.4.3 Data Collection Function .. 59

 5.4.4 Time Series Flow Table Reproducer ..61

 5.4.5 Delivery Route Estimator ……………………..…………… 62

 5.5 Chapter Summary ………………………………………………..63

EXPERIMENTS AND RESULTS .. 64

6.1 Experiment Methods .. 64

 6.1.1 The Main Files and Functions Used in the System Scenario .. 64

 6.1.2 Library Files Used in the System ..64

 6.1.3 Operational Flow of the System .. 65

 6.1.4 Analyzing the System Output Logs .. 67

6.2 Running Testbed Evaluation Environment and Visualizing the System

 ... 68

6.3 Performance Evaluation …………………………………………….. 72

vii

6.4 Chapter Summary …………………………………………………... 72

CONCLUSIONS AND FUTURE WORK .. 74

 7.1 Advantages of the System ... 75

 7.2 Limitations of the System ……………………………………………76

 7.3 Future Work ………………………………………………………… 77

AUTHOR’S PUBLICATIONS .. 78

BIBLIOGRAPHY ... 79

LIST OF ACRONYMS .. 85

viii

LIST OF FIGURES

3. 1 Traditional Network Architecture VS SDN Architecture……………………. 21

3. 2 Software Defined Networks Architecture. .. 23

3. 3 Main Components of an OpenFlow Switch .. 26

3. 4 Openflow Pipeline Architecture ... 28

3. 5 Matching and Instruction Extraction in a Flow Table. .. 29

3. 6 Flow Matching Structure of OpenFlow ... 29

3. 7 The Architecture of Trema Contorller Framework .. 34

3. 8 Reactive Flow Management. ... 36

3. 9 Proactive Flow Management. .. 37

3. 10 Routing Algorithms in SDN and Traditional Networks. 38

4.1 A Sample Network Topology...48

4.2 The Overall System Design..49

5.1 Logical Testbed Design of Network Exercise Flow...51

5.2 Logical Testbed Netwrok Topologies...52

5.3 Transfer Packets by FlowTable..58

5.4 Transfer Packets by PacketOut ... 58

5.5 Flow of Data Collection Function .. 59

5.6 Data Collector Generate Controller with Logger... 60

5.7 Data Collector Analyze Execution History.. 60

5.8 Data Collector Corresponds PacketIn to Executed Statements in Controller61

5.9 Data Collector Corresponds PacketOut and FlowMod to Executed Statements in

Controller ... 61

5.10 Time Series Flow Table Reproducer.. 62

5.11 Route Selection Histories...62

6.1 Building Virtual Networks .. 65

6.2 Running Trema with Controller Porgrams.. 66

6.3 Output TCPDUMP Files in the Log Database .. 66

6.4 Making Network Communication Test .. 66

6.5 Output Logs for Packet Informatin and OpenFlow Information........................... 67

6.6 Output Logs for Execution Statement Information .. 67

6.7 All Generated Output Logs Files ... 68

ix

6.8 Output Event Result Testing with Controller Program 169

6.9 Output Event Result Testing with Controller Program 2 70

6.10 Output Event Result Testing with Controller Program 371

x

LIST OF TABLES

Table 3. 1 Example of Openflow-Complaint Switches .. 24

Table 3. 2 Features Comparison of Popular SDN Controllers 32

Table 4.1 Devices and Data Structure Used in the System ...40

Table 4.2 Elements- and Data Structure Used in the System 41

Table 4.3 The Functions Created for the System..42

Table 4.4 Explanation of Data Structure.. 45

Table 5.1 Hardware Requirements of Experimental Testbed Area 52

Table 5.2 Software and Tools Used in the System ..52

Table 6.1 Analysis Results... 72

xi

LIST OF EQUATIONS

Equation 4.1 …………………………………………………….…………... 42

Equation 4.2 …………………………………………………………………... 43

Equation 4.3 …………………………………………………………………... 43

Equation 4.4 …………………………………………………………………... 43

Equation 4.5 …………………………………………………………………... 43

Equation 4.6 ……………………………………………………………….…. 43

Equation 4.7………………………………………………………………….... 43

Equation 4.8 …………………………………………………………………... 44

Equation 4.9…………………………………………………………………... 44

Equation 4.10 ………………………………………………………………… 44

Equation 4.11 ………………………………………………………………... 45

Equation 4.12 ………………………………………………………………... 45

1

CHAPTER 1

INTRODUCTION

With the rapid growth of science and technology, virtualization technology has

been developed in momentum and it is still a useful and efficient technology in

networking era. SDN is a kind of virtualization technology [36]. With the spread of

SDN, network construction exercises using SDN have been developed in some

educational institutions. The experience of basic network construction is useful for not

only network administrators but also for network application programmers and network

system designers. In this work, when the learners construct SDN with Trema as

exercises, novice learners cannot understand the behavior of their networks and cannot

find their bugs from their settings. Therefore, the system can provide analysis results

that help learners to narrow down missettings in SDN construction exercises.

SDN, or Software-Defined Networking, refers to a paradigm in network

management and operations where the control plane is decoupled from the data plane.

This separation allows network administrators to dynamically manage network traffic

and resources through software-based controllers rather than relying on traditional

hardware-based network devices (like routers and switches) with embedded control

planes. The key concepts of SDN include:

Centralized Control: SDN centralizes network intelligence in a software-based

controller, which makes decisions about how data traffic should be forwarded across the

network.

Programmability: SDN enables programmable network behavior through APIs

(Application Programming Interfaces), allowing network administrators and developers

to automate network management tasks and implement policies more efficiently.

Virtualization: SDN facilitates network virtualization, where multiple virtual

networks can run on the same physical infrastructure, enhancing flexibility and resource

utilization [19].

Open Standards: SDN often leverages open standards and protocols (like

OpenFlow) to ensure interoperability between different vendors' hardware and software

components.

2

Dynamic Provisioning: With SDN, networks can be dynamically provisioned

and adjusted based on changing traffic patterns or application requirements, improving

scalability and responsiveness.

SDN has gained popularity due to its potential to reduce network operational

costs, improve agility in deploying new services, and enhance overall network

performance and security through centralized management and automation.

1.1 Problem Definition

Trema [50]is a framework designed for developing OpenFlow controllers using

Ruby and C. Open vSwitch is a virtual switch that adheres to the OpenFlow standard.

In the SDN construction exercises discussed in this study, students use Trema to

implement controller programs and set up software-defined networks on their PCs,

utilizing these controllers and Open vSwitches. The exercises include configuring data

plane networks, creating shell scripts to build these networks, designing complete

network topologies, and ensuring requirements for reachability and communication

routes are met. Students’ networks must fulfill these requirements. However, students

often struggle to solve the problems because they fail to identify and correct errors in

their controller programs.

There are causal links between packet transmissions in the data plane,

transmissions in the control plane, and the execution of statements in the controller

program. For instance, when a switch in the data plane receives a packet, it queries the

controller on how to handle the packet. The controller receives this query from the

control plane and processes it by executing specific statements.

Students are expected to debug their controller programs by analyzing these

causal connections. However, some learners are unable to identify misconfigurations in

their controllers due to the following reasons-

1. ping cannot find delivery routes including switches (Learners cannot narrow

down switches that cause incorrect communication)

2. Switches have no function to log rules (PacketOut and flow tables) used for

choosing output ports for packets (Learners cannot identify rules that cause

incorrect communication)

3

3. Trema cannot find execution statements (for sending PacketOut and

FlowMod) used for setting rules to switches. (Learners cannot narrow down

execution statements that cause incorrect communication)

1.2 Terminology

To obtain the student’s network construction exercise and analyze them and

generate event visualizer, the following general terminologies are required.

1. SDN

2. OpenFlow

3. Trema Open Flow Controller Framework

4. PlantUML

1.3 Motivation

The motivation for this research in building network construction exercises

stems from the need to address several key challenges in the field of network engineering

education. As networks become more complex and software-defined networking (SDN)

gains prominence, there is a pressing need for effective training tools that can help

learners grasp the intricacies of network behavior and dependencies. While building

software defined network construction exercises in Universities and research labs, some

learners who learn SDN network construction exercises as beginners fail to debug their

controller programs while building with the controller Trema. So, a support tool is

proposed that collects information of execution statements, in the controller programs

and packets in their networks, finding relations between them, generates communication

events logs and then visualize with sequence diagrams. Then, learners can see errors in

their program and correct them by analyzing the resulted diagrams. Specifically, this

research aims to:

Enhance Learning Outcomes: Provide novice learners with practical, hands-on

experience in constructing and managing SDN networks, thereby improving their

understanding and skills.

Address Knowledge Gaps: Fill the gaps in current educational resources by offering

comprehensive exercises that cover both theoretical and practical aspects of network

construction.

4

Improve Problem-Solving Skills: Develop exercises that encourage critical thinking

and problem-solving, enabling learners to identify and address network behavior issues

effectively.

Promote Innovation: Encourage the development and testing of new network

architectures and algorithms in a controlled, educational environment.

Support Collaboration: Facilitate collaborative learning and knowledge sharing

among students, fostering a community of practice in network engineering.

1.4 Objectives

The main objective for this research is to help learners while they construct SDN

construction exercises by analyzing dependency in communication activities to narrow

down misettings and the other objectives of this research area are as follows;

1 To implement a function to compute the dependency between

communication routes and flow tables and executed controllers

2 To implement a function that visualizes the dependency so that learners

can understand it easily

3 To evaluate the performance (time, CPU, Memory) while the system

computes the dependency

4 To evaluate the effectiveness that the system helps learners find bugs

1.5 Contributions

The contributions of this research are as follows:

1. Finding relations between input packets and their output ports and OpenFlow

messages by imitating switch actions to treat OpenFlow messages and

choose output ports that helps learners to identify rules that cause incorrect

communication.

2. Estimating delivery routes based on collected packets and the relations of

item 1 that helps learners to narrow down switches that cause incorrect

communication.

3. Finding relations between executed statements and sent OpenFlow messages

by logging controller and capturing the messages that helps learners to

5

narrow down executed statements that cause incorrect communication and

showing the analysis result with the sequence diagrams.

1.6 Organization

This dissertation is organized into seven chapters.

• Chapter 1 introduces the thesis by outlining the motivation, problem statements,

objectives, key focuses, and contributions of the research.

• Chapter 2 reviews challenges and elements related to network behavior issues

and communication activity dependencies, especially as novice learners build

SDN networks, based on existing literature.

• Chapter 3 explores the theoretical background of software-defined networking,

OpenFlow Controllers, the Trema OpenFlow controller used in this study, and

network behavioral issues in creating SDN networks.

• Chapter 4 discusses the architecture of the proposed system and the algorithms

developed to analyze communication activity dependencies.

• Chapter 5 delves into the design and implementation of the proposed system.

• Chapter 6 details the evaluation of the experimental results.

• Chapter 7 concludes the research by summarizing the findings and suggesting

future research directions.

6

CHAPTER 2

LITERATURE REVIEWS

This chapter provides an overview of the relevant to the SDN network

construction, OpenFlow controller framework and learning status of novice learners.

The advent of Software-Defined Networking (SDN) has revolutionized the networking

landscape, offering unparalleled flexibility, scalability, and control. Central to the

educational and research domains is the development and analysis of SDN networks,

particularly through construction exercises. This literature review delves into the

concept of a Dependency Analyzing System for Communication Activities in SDN

Network Construction Exercises, exploring existing research, methodologies, and gaps

in the literature.

2.1 Software Defined Networking (SDN)

SDN decouples the network control plane from the data plane, enabling

centralized management of network resources. The control plane makes decisions about

where traffic is sent, while the data plane forwards traffic to the selected destination.

This separation simplifies network management and allows for more dynamic and

programmable networks.

Siamak Azodolmolky’s paper "Software Defined Networking with OpenFlow"

[36] is a pivotal work that delves into the transformative impact of SDN and OpenFlow

on modern networking paradigms. The paper provides a comprehensive overview of

SDN, emphasizing its decoupling of the control plane from the data plane, which allows

for more flexible and efficient network management. OpenFlow, as a prominent

protocol in the SDN ecosystem, is highlighted for its role in enabling this separation,

allowing network administrators to program the behavior of the data plane directly

through a standardized interface. Azodolmolky elaborates on how OpenFlow facilitates

fine-grained traffic control, dynamic policy enforcement, and real-time network

reconfiguration, which are essential for addressing the evolving demands of

contemporary networks.

The literature review within the paper explores various implementations and use

cases of SDN and OpenFlow across different environments, including data centers,

7

enterprise networks, and wide-area networks. It discusses the benefits of SDN with

OpenFlow, such as improved network agility, reduced operational costs, and enhanced

scalability. Furthermore, Azodolmolky examines the challenges associated with SDN

adoption, including issues related to scalability, security, and interoperability. The

review synthesizes findings from multiple studies, presenting a balanced view of the

potential and limitations of SDN with OpenFlow. Overall, the paper serves as a crucial

resource for researchers and practitioners interested in leveraging SDN and OpenFlow

to innovate and optimize network infrastructure.

2.1.1 Existing Tools and Frameworks for SDN in Education

 Several tools and frameworks are commonly used in SDN education, including

Mininet, POX [43], and Floodlight. Mininet, [30] for instance, allows users to create a

virtual network environment on their computers, providing a realistic and cost-effective

way to experiment with network topologies and protocols. POX and Floodlight are

open-source SDN controllers that offer simple interfaces for developing and deploying

network applications.

 Compared to these tools, Trema provides a unique advantage by supporting both

Ruby and C, making it accessible to a broader range of users with different programming

skills. Additionally, Trema's modular design allows for the easy integration of new

functionalities, which is crucial for educational purposes where flexibility and

extensibility are important

2.1.2 Importance of SDN in Education and Research

Universities and research institutions are pivotal in advancing SDN

technologies. They provide a fertile ground for innovation, enabling the exploration of

new architectures, protocols, and applications. Research labs and academic institutions

often employ SDN construction exercises to teach networking concepts and conduct

experimental research.

2.1.3 Network Construction Tools and Techniques for Learners

Network construction tools and techniques are essential for learners to

understand the intricacies of computer networks. These tools provide practical, hands-

8

on experience that complements theoretical learning. Here’s an overview of some

popular tools and techniques:

1. Netkit: Netkit is an open-source tool that uses User-Mode Linux (UML) to create

virtual network environments on personal computers. It allows students to

simulate complex network topologies, making it an ideal platform for hands-on

learning without the need for physical hardware (Ricciato et al., 2008; Mongiello

et al., 2013) [32]. Netkit’s simplicity and extensive documentation makeit

accessible for beginners and useful in educational settings (Netkit, n.d.).

2. Mininet: Mininet is another widely used tool for network emulation, particularly

 in the study of Software-Defined Networking (SDN). It allows users to create a

 virtual network on a single machine, where they can run real code, applications,

 and services. Mininet supports rapid prototyping and is often used in academic

 research and teaching (Lantz et al., 2010; Handigol et al., 2012) [11].

3. GNS3: Graphical Network Simulator-3 (GNS3) [29] is a popular tool that

 provides a graphical interface for emulating complex networks. It supports a

 wide range of network devices and configurations, making it suitable for both

 beginners and advanced users. GNS3 is often used for certification training

 (e.g., Cisco CCNA) and in educational labs (Antonakakis et al., 2014; Martin

 et al., 2018) [2].

4. Packet Tracer: Cisco Packet Tracer is a network simulation tool developed by

 Cisco. It is widely used in networking courses and provides a user-friendly

 interface for building, configuring, and troubleshooting networks. Packet Tracer

 is especially useful for beginners learning Cisco networking concepts and

 preparing for Cisco certification exams (Cisco, n.d.) [6].

Here are some techniques for learners in building SDN network construction

exercise problems;

1. Hands-on Labs: Hands-on labs are essential for applying theoretical knowledge

 to practical scenarios. Virtual labs using tools like Netkit, Mininet, and GNS3

 allow learners to experiment with network configurations, troubleshoot issues,

 and understand the behavior of different network protocols (Forte et al., 2009;

 Cardenas et al., 2010) [9].

2. Step-by-Step Tutorials: Step-by-step tutorials guide learners through the

 process of setting up and managing network topologies. These tutorials often

9

 include detailed instructions, screenshots, and explanations of key concepts,

 making complex tasks more approachable (Perkins & Pfleeger, 2005).

3. Simulation and Emulation: Simulation tools like Netkit and Mininet enable

 learners to emulate real-world network environments. These tools help in

 understanding network behavior, performance analysis, and testing new

 configurations without the risk of disrupting actual networks (Handigol et al.,

 2012; Lantz et al., 2010) [9].

4. Collaborative Learning: Collaborative learning involves students working

 together on network projects, sharing knowledge, and solving problems as a

 team. Tools that support collaborative features, such as shared virtual labs,

 enhance the learning experience by fostering peer-to-peer interaction and

 collective problem-solving (Smith et al., 2009).

5. Automated Feedback and Hint Systems: Intelligent systems that provide real-

 time feedback and hints can significantly aid learning. These systems analyze

 student interactions with network simulations, identify common errors, and offer

 constructive guidance, thereby improving understanding and reducing

 frustration (Jones et al., 2018; Wang et al., 2021) [22]. In [58],” Yuichiro

 Tateiwa et al, addressed the challenges faced by novices in mastering the

 complexities of network construction, particularly in the context of Software-

 Defined Networking (SDN). The paper explored the development of an

 intelligent system designed to provide real-time, context-specific hints to

 learners during network construction exercises. Their system utilized an analysis

 of the students’ actions and the states of the network to identify common

 mistakes and generate helpful hints, thereby facilitating a more guided and

 supportive learning environment. The approach aligned with contemporary

 educational theories that emphasize the importance of immediate feedback and

 adaptive learning environments in enhancing student engagement and

 understanding (Davis et al., 2020; Smith & Brown, 2019) [51]. The system’s

 integration with tools like Trema and Mininet offered a practical and

 scalable solution for educational institutions, allowing for the widespread

 adoption of SDN technologies in curricula. By addressing the steep learning

 curve associated with network construction, Tateiwa’s system not on improves

 learning outcomes but also encourages a more exploratory and confident

10

approach to mastering SDN concepts (Jones et al., 2018; Wang et al., 2021) [51]. Their

approach highlights the potential for intelligent tutoring systems to transform technical

education by providing personalized and adaptive learning experiences.

2.1.4 The Role of Trema in Network Construction Exercises

Trema plays a significant role in SDN education by enabling students to

implement controller programs and build software-defined networks on their own PCs.

This hands-on approach helps students gain a deeper understanding of SDN concepts

and principles. In typical network construction exercises, students use Trema to develop

controllers that manage virtual switches, such as Open vSwitch, and configure data

plane networks to meet specific requirements.

These exercises often involve setting up network topologies, writing shell scripts

for network configuration, and ensuring the networks meet certain reachability and

communication criteria. However, students frequently encounter difficulties in debugging

their controller programs due to the complex interactions between the control and data

planes (Open Networking Foundation) [14].

2.1.5 Communication Activities in SDN

Communication activities in SDN involve interactions between the control plane

and the data plane, as well as between different network elements. These interactions

are crucial for the proper functioning of the network, ensuring that data is routed

efficiently and securely. Understanding these dependencies is essential for optimizing

network performance and reliability.

The paper "Determining Learning Status in SDN Construction Exercises" by

Takashi Yokoyama [47] addressed the challenge of assessing students' learning progress

in Software-Defined Networking (SDN) construction exercises. This research is

important for educators in the field of networking, as it seeks to provide a method for

evaluating whether students have understood and can apply SDN concepts effectively.

Traditional methods of assessing students' understanding in practical networking

exercises often rely on manual grading and subjective evaluation, which can be time-

consuming and inconsistent. Yokoyama's research aimed to introduce an automated,

objective method for determining students' learning status in SDN construction

exercises. That paper presented an automated tool designed to assess students' progress

https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/

11

and understanding in SDN exercises. That tool leverages data collected from students'

interactions with the SDN environment to evaluate their performance. It made a

significant contribution to the field of network education by introducing an automated

tool for assessing students' progress in SDN exercises. The research addressed the

limitations of traditional assessment methods and provides a scalable, objective, and

efficient solution for evaluating student performance.

“Automatic Test Packet Generation" by Hongyi Zeng et al [13]. focused on the

challenges and methodologies for generating test packets automatically to diagnose and

troubleshoot network faults. Their research proposed a system that aims to ensure

network reliability and performance by automating the generation and deployment of

test packets, which is crucial for detecting and diagnosing network issues. Traditional

methods of network troubleshooting often rely on manual packet crafting and

monitoring, which can be time-consuming and error-prone. As networks grow and

complexity, the need for automated tools to handle network diagnostics becomes

increasingly important. The concept of test packet generation (TPG) has been explored

in various forms, but Zeng et al.'s approach seeks to advance the field by introducing

automation into the process.

12

2.2 Debugging and Dependency Analysis in SDN

 One of the significant challenges in SDN is debugging controller programs and

understanding the dependencies between different network components. Dependency

analysis is crucial in identifying the cause-and-effect relationships between packet

transmissions in the data plane and the control plane's responses. Existing approaches

for dependency analysis in SDN often involve sophisticated tools and techniques that

may be difficult for beginners to grasp.

The complexity of debugging SDN applications can be a major hurdle for

students, who may struggle to identify and correct errors in their controller programs. A

robust dependency analyzing system can help by providing insights into the interactions

between different network elements, thereby simplifying the debugging process

(Wikipedia) (SpringerLink).

Dependency analysis involves examining the relationships and interactions

between different components of a system. In the context of SDN, it can help identify

bottlenecks, potential points of failure, and opportunities for optimization. Dependency

analysis tools can provide insights into the complex web of interactions within an SDN

environment, aiding in the design and troubleshooting of networks.

Dependency analysis is a critical aspect of many fields, including software

engineering, network management, and system design. It involves understanding and

managing dependencies among components to ensure system reliability, maintain-

ability, and performance. In complex systems like Software-Defined Networking

(SDN), effective dependency analysis is crucial for troubleshooting, optimizing

performance, and ensuring robust operations. The paper "A Practice-Driven Systematic

Review of Dependency Analysis Solutions" [50] provides an extensive review of

various dependency analysis solutions across multiple domains, with a particular

emphasis on how these solutions are applied in practice. The review aims to understand

the state of the art, identify common challenges, and highlight areas for future research.

They suggested several areas for future research:

1. Scalability Improvements: Developing more scalable dependency

 analysis techniques to handle large and complex systems.

2. Dynamic Dependency Analysis: Enhancing methods for capturing and

 analyzing dynamic dependencies that occur at runtime.

13

3. Integration with DevOps: Integrating dependency analysis tools with

 DevOps practices to support continuous integration and delivery.

4. Advanced Analytics: Leveraging advanced analytics and machine

 learning to improve the accuracy and efficiency of dependency analysis.

 Overall, the review highlighted the importance of dependency analysis

 in ensuring the reliability and performance of complex systems and

 provides a roadmap for future research in this critical area.

2.2.1 Existing Systems and Tools for Dependency Analysis

Several tools and frameworks have been developed for dependency analysis in

networking. These include:

1. Network Topology Discovery Tools: Tools like Nmap and Zenmap

 provide basic network topology discovery and visualization capabilities,

 which are essential for understanding the structure of an SDN network.

2. Flow Analyzers: Tools such as Wireshark and OpenFlow Visualizer

 help in analyzing the flow of packets through the network, providing

 insights into the communication patterns and dependencies [15].

3. Simulation and Emulation Platforms: Platforms like Mininet allow

 researchers to create virtual SDN networks, enabling the simulation of

 different network configurations and the analysis of their dependencies.

2.2.2 Challenges and Gaps in Dependency Analysis of SDN

While existing tools provide valuable insights, there are several challenges and

gaps in the current state of dependency analysis in SDN:

1. Scalability: Many tools struggle to handle large-scale networks, which

 can limit their applicability in real-world scenarios.

2. Real-time Analysis: Real-time dependency analysis is critical for

 dynamic SDN environments but remains a challenging task due to the

 complexity and volume of data involved.

3. Integration: There is a need for better integration between different tools

 and platforms to provide a more comprehensive analysis of SDN

 networks.

14

 Dependency analysis in Software-Defined Networking (SDN) is crucial for

understanding the interdependencies among various network components, services, and

applications. Despite its importance, there are several challenges and gaps that need to

be addressed to achieve effective dependency analysis in SDN environments. Here are

some of the key challenges and gaps are explained.

2.2.2.1 Complexity of Network Topologies

1. Dynamic Nature of SDN: SDN environments are highly dynamic, with

frequent changes in network topology, policies, and configurations. This

dynamism makes it challenging to accurately model and analyze

dependencies.

2. Large-Scale Networks: The scale of modern networks, especially in large

enterprises or data centers, adds to the complexity. Managing and analyzing

dependencies across thousands of devices and flows is a daunting task.

2.2.2.2 Data Collection and Integration

1. Diverse Data Sources: Dependency analysis requires data from multiple

sources such as network devices, controllers, and applications. Integrating

this diverse data into a coherent framework is challenging.

2. Real-Time Data: To be effective, dependency analysis needs real-time or

near- real-time data. Collecting and processing such data at scale without

introducing significant latency is difficult.

2.2.2.3 Heterogeneity of Network Components

1. Variety of Devices: SDN networks often consist of heterogeneous devices

from different vendors, each with its own management interfaces and data

formats. This heterogeneity complicates dependency analysis.

2. Compatibility Issues: Ensuring compatibility and interoperability among

various network components and the SDN controller is essential but

challenging.

15

2.2.2.4 Policy and Configuration Changes

1. Frequent Updates: Network policies and configurations in SDN

environments can change frequently. Tracking these changes and

understanding their impact on dependencies is complex.

2. Conflict Resolution: Policy conflicts can arise in multi-tenant or multi-

domain SDN environments, making it difficult to analyze and resolve

dependencies accurately.

2.2.2.5 Security and Privacy Concerns

1. Sensitive Data: Dependency analysis may involve handling sensitive data,

such as network configurations, flow information, and security policies.

Ensuring the privacy and security of this data is critical.

2. Attack Surface: The centralized nature of SDN can introduce new security

vulnerabilities. Understanding the dependencies among network components

is essential to identify potential attack vectors.

2.2.2.6 Scalability Issues

1. Resource Constraints: Performing dependency analysis at scale can be

resource-intensive, requiring significant computational and storage resources.

2. Performance Overheads: The analysis process should not introduce

significant performance overheads that could impact network operations.

2.2.2.7 Lack of Standardization

1. Proprietary Solutions: Many SDN solutions are proprietary, leading to a

lack of standardization in how dependency information is represented and

analyzed.

2. Interoperability Challenges: The lack of standardization can also lead to

interoperability challenges when integrating different SDN components and

tools.

16

2.2.2.8 Tooling and Automation

1. Limited Tools: There is a limited number of tools available for

comprehensive dependency analysis in SDN environments. Existing tools

may not cover all aspects of dependency analysis.

2. Automation Challenges: Automating the dependency analysis process is

challenging, especially in dynamic and large-scale SDN environments.

2.2.2.9 Visualization and Interpretation

1. Complex Dependency Graphs: Visualizing complex dependency graphs in

a way that is easy to understand and interpret is a significant challenge.

2. Actionable Insights: Translating the results of dependency analysis into

 actionable insights that network operators can use to optimize and secure

the network is not straightforward.

2.2.2.10 Resilience and Fault Tolerance

1. Failure Impact Analysis: Understanding how failures in one part of the

network affect other parts is crucial for building resilient SDN networks. This

requires comprehensive dependency analysis.

2. Recovery Mechanisms: Designing effective recovery mechanisms that

consider the dependencies among network components is challenging.

2.2.3 Potential Solutions and Future Directions

1. Standardization Efforts: Developing standardized protocols and formats for

representing and exchanging dependency information in SDN environments.

2. Advanced Analytics: Leveraging advanced analytics, machine learning, and

artificial intelligence to improve the accuracy and efficiency of dependency

analysis.

3. Real-Time Monitoring: Implementing real-time monitoring solutions that

can provide up-to-date dependency information without significant

performance overheads.

17

4. Interoperable Tools: Developing interoperable tools that can work across

different SDN platforms and integrate with existing network management

solutions.

5. Enhanced Visualization: Creating intuitive visualization tools that can

present complex dependency graphs in an easily interpretable manner.

 Addressing these challenges and gaps is essential for realizing the full

 potential of SDN and ensuring efficient, secure, and resilient network operations.

2.2.4 A Dependency Analyzing System Using Trema

The proposed dependency analyzing system using Trema aims to address the

challenges faced by students in debugging their controller programs. By providing

detailed insights into the causal connections between packet transmissions and

controller responses, the system can help students identify and correct errors more

efficiently.

This system would include features such as real-time monitoring of network

traffic, logging of control and data plane interactions, and visualization tools to map out

dependencies and interactions. By integrating these functionalities, the system can

enhance the learning experience and improve the effectiveness of network construction

exercises [14].

2.3 OpenFlow Switch Specification and Openflow Controllers

 The Open Networking Foundation's (ONF) specification for OpenFlow and

switch architectures is a cornerstone document in the realm of Software-Defined

Networking (SDN). OpenFlow, as delineated by the ONF, provides a standardized

protocol that allows the separation of the control plane from the data plane in network

devices. This separation enables more flexible and programmable network management,

which is crucial for the dynamic requirements of modern networking environments. The

specification outlines how OpenFlow controllers communicate with network devices

(switches and routers) to dictate the flow of data packets based on pre-defined policies.

This protocol allows for granular control over network traffic, facilitating advanced

features such as load balancing, security policy enforcement, and efficient traffic

engineering [17].

18

 The switch specification part of the ONF's document details the architectural

requirements and functionalities that compliant switches must support to integrate

seamlessly within an OpenFlow-enabled network. These specifications include support

for multiple flow tables, group tables, and a wide range of match fields and actions,

which enhance the switch's capability to handle complex traffic patterns. The ONF's

comprehensive guidelines ensure interoperability among devices from different

vendors, fostering a more competitive and innovative ecosystem. This standardization

is critical for the widespread adoption of SDN, as it reduces the complexity and cost

associated with deploying and managing network infrastructure. The ONF's work on

OpenFlow and switch specifications has significantly contributed to the advancement

and practical implementation of SDN technologies, enabling more agile, scalable, and

efficient networks.

OpenFlow controllers play a crucial role in Software-Defined Networking

(SDN) by serving as the brain of the network. They centralize the control logic and

manage the flow tables of network devices (switches and routers) using the OpenFlow

protocol. This centralization allows for a more flexible, programmable, and efficient

network management approach. The controllers communicate with network devices to

implement policies that control traffic flow, security measures, and quality of service

parameters. By decoupling the control plane from the data plane, OpenFlow controllers

enable dynamic and real-time network configuration adjustments, leading to more

responsive and adaptive networks.

There are several types of OpenFlow controllers, each offering different features

and capabilities. For example, the NOX controller, one of the first OpenFlow

controllers, provides a platform for rapid development and deployment of new network

applications. ONOS (Open Network Operating System) is designed for scalability and

high availability, making it suitable for large-scale carrier and cloud networks. The

OpenDaylight Project [31], a collaborative open-source project, offers a flexible and

modular controller framework that supports various network protocols and southbound

interfaces beyond OpenFlow. These controllers are integral in enabling diverse SDN

applications, from data center management to network virtualization and beyond [3].

The architecture of OpenFlow controllers typically includes several key

components: the northbound API, the southbound API, and the core controller functions.

The northbound API allows for communication between the controller and higher-level

19

applications, enabling network automation and orchestration. The southbound API is

used to communicate with the underlying network devices, implementing the flow rules

and policies defined by the controller. Core controller functions include topology

discovery, path computation, and policy enforcement, which are essential for

maintaining network performance and reliability. This architecture ensures that

controllers can effectively manage complex and dynamic network environments.

Security and scalability are major considerations in the design and deployment

of OpenFlow controllers. Ensuring secure communication between the controller and

network devices is paramount, often achieved through the use of TLS encryption and

authentication mechanisms. Scalability is addressed through various techniques, such as

clustering multiple controller instances to distribute the load and provide redundancy.

Advanced controllers like ONOS and OpenDaylight incorporate these features to

support large-scale deployments, ensuring that the network can grow and adapt without

compromising performance or security. Overall, OpenFlow controllers are essential

components that drive the capabilities and benefits of SDN, enabling more efficient,

secure, and flexible network management

2.4 Chapter Summary

The proposed Dependency Analyzing System represents a significant

advancement in SDN and openflow controllers. By addressing the limitations of current

tools, it aims to enhance the understanding and optimization of SDN networks. Future

research should focus on refining these capabilities and exploring new applications in

educational and industrial contexts.

20

CHAPTER 3

THEORETICAL BACKGROUND

This chapter is dedicated to provide the necessary background for research that

constructs network exercises and analyzes communication activities in Software

Defined Networking (SDN) for learners in networking. It explains with a theoretical

background of SDN, describing each layer of the SDN architecture. As OpenFlow is

integral to SDN, the chapter also outlines the structure and functions of OpenFlow

switches like Open vSwitch, along with the OpenFlow protocol. Lastly, it offers a

concise overview of SDN and OpenFlow controllers, with a particular emphasis on the

Trema Controller framework.

3.1 The Architecture of Software Defined Networking

Software Defined Networking (SDN) architecture is a modern approach to

designing and managing networks that aims to make networks more flexible, agile, and

easier to manage through software control. Here are the key components of SDN

architecture:

1. Infrastructure Layer: This consists of physical network devices, including

switches, routers, and access points.

2. Control Plane: Unlike traditional networks where the control plane is

integrated into each device, in SDN, it is centralized and separated from the

physical devices, managed by software controllers.

3. Data Plane: Also known as the forwarding plane, this layer is responsible

for the actual forwarding of data packets according to instructions from the

control plane.

4. SDN Controller: The central component that communicates with the control

plane of network devices using protocols like OpenFlow. It provides a

unified network view, managing traffic flows, optimizing performance, and

enforcing policies.

5. Southbound Interface: This interface connects the SDN controller to the

network devices, allowing the controller to program their traffic-handling

behavior.

21

6. Northbound Interface: Connects the SDN controller to applications or

orchestration systems, enabling automation, provisioning, and policy-based

management.

7. Application Layer: Applications on top of the SDN architecture use the

centralized control provided by the SDN controller to deliver network

services, enforce security policies, perform traffic engineering, and more.

SDN architecture offers advantages such as enhanced network programmability,

simplified management and automation, greater agility in response to changing network

conditions, and improved support for new services and applications. It is suitable for use

in data centers, wide-area networks, and enterprise and campus networks.

The Open Networking Foundation (ONF), funded by companies such as

Deutsche Telekom, Google, Microsoft, Facebook, Verizon, and Yahoo, aims to develop

and standardize the OpenFlow (OF) protocol to advance networking. SDN has attracted

significant attention from enterprises, service providers, and industry associations. As

an emerging architecture, SDN meets the demands of high bandwidth and dynamic

modern applications, offering an adaptive, cost-effective, dynamic, and manageable

solution.

Figure 3. 1 Traditional Network Architecture VS SDN Architecture

In SDN architecture, the control and data functions are decoupled from network

devices such as switches and routers. This architecture features global centralized

control and promotes innovation through network programmability. Conversely, in most

large enterprise networks, control and data functions are integrated within network

22

devices, creating challenges for network operators when adjusting infrastructure and

configuring numerous end devices, virtual machines, and virtual networks. Figure 3.1

contrasts traditional internet and SDN architecture, illustrating how the data plane layer

(network devices) is simplified into straightforward forwarding elements while the

control layer (controller) is logically managed. The data plane layer includes network

devices (programmable switches) that can be implemented in hardware or software, and

these switches support the OpenFlow protocol for communication and configuration

with the controller. The benefits of decoupling control and data plane functions in SDN

architecture include:

1. Centralized Provisioning: In SDN, centralized provisioning involves

managing and configuring the network through a centralized control plane,

unlike traditional networking's distributed control plane. Benefits include:

• Simplified Management: A centralized controller simplifies

network management, allowing administrators to handle the entire

network from one point.

• Dynamic and Automated Configuration: Real-time network

configuration adjustments by the centralized controller lead to better

performance and resource utilization.

• Improved Network Visibility: The controller's global network view

is essential for effective monitoring, troubleshooting, and

optimization.

• Enhanced Security: Centralized control ensures consistent security

policy enforcement across the network, improving security.

2. Reduced Operating Costs: SDN reduces operating costs by improving

efficiency, automation, and network management: Automation decreases

manual intervention, lowering labor costs. Efficient resource use reduces

hardware and energy expenses.

3. Scalability: Centralized provisioning in SDN enhances scalability, although

large networks may need multiple SDN controllers due to the practical limits

of managing devices.

4. Security: SDN controllers support centralized security management,

addressing challenges posed by virtualization and allowing administrators to

manage network security more effectively.

23

5. Direct Programmability: Network managers can program network

operations directly, using abstract control over forwarding elements to adjust

traffic flows dynamically. This enables custom application use for managing,

configuring, securing, and optimizing network resources independently of

proprietary software.

6. Openness: Every data plane element (such as OpenFlow-enabled switches

or routers) has a unified programming interface for the OpenFlow controller

to collect network status, regardless of vendor.

The SDN architecture mainly consists of the following three layers: the

application layer, control layer, and data plane layer as shown in Figure 3.2.

Figure 3. 2 Software Defined Networks Architecture.

The SDN applications are programmed to support all kinds of network services

such as traffic engineering, load balancing, firewall, routing, and monitoring. The

control layer is a core layer of the SDN architecture that extracts the data plane layer

information and communicates to the application layer with an abstract view of the

network topology, including statistics and events. The application and control layers

communicate by using northbound APIs. The data plane layer consists of network nodes

which can forward and processing of the data path. Communications between the data

plane and control layers use a standardized protocol called OpenFlow. The SDN

Controller defines the data flows that take place in the SDN Data Plane. When the flow

24

is entered to the network, the flow must first take permission from the controller [38].

The controller decides whether the communication is permissible or not according to

the network policy. If the flow is permitted, the controller decides an appropriate route

for the permitted flow and adds flow entry for the permitted flow in each switch along

the path. The SDN controller is responsible for these complex tasks and switches simply

manage flow tables and focus on forwarding function.

3.2 Infrastructure Layer (or) Data Plane Layer

The data plane layer would be the physical layer over which network

virtualization lays down through the controller. This layer consists of various

networking equipment which may be OpenFlow-enabled or OpenFlow-complaint

network devices (routers or switches).

Table 3. 1 Example of OpenFlow-Complaint Switches

Vendor Series

Arista Arista extensible modular Operating System (EOS), Arista

7124FX application switch.

Cisco Cisco cat6k, catalyst 3750, 6500 series

Cinea Cinea Core director running firmware version 6.1.1

HP HP procurve series-5400 xzl, 8200 zl, 6200yl, 3500yl

Juniper Juniper MX-240, T-640

NEC NEC IP8800

Toroki Toroki Lightswitch 4810

Dell Dell z9000 and S4810

Quanta Quanta LB4G4

Open vSwitch Software switch, Latest version 1.10.0

The OpenFlow enabled switches are either based on the OpenFlow protocol or

compatible with it. In the data plane layer, traffic may enter or exit through logical or

physical ports by forwarding or processing functions. Management of forwarding

functions performed by an SDN controller or other mechanisms that orchestrated in

conjunction with the SDN controller. An OpenFlow enabled switch may be a hardware

25

device or software program which are capable of processing and forwarding of the data

path. The examples of OpenFlow-complaint switches are shown in Table 3.1.

3.2.1 Open vSwitch

Open vSwitch (OVS) [42] is a multilayer software switch aimed at providing a

software switch platform with standard management interfaces and the capability for

programmatic extension and control of forwarding functions. Ideal for virtual switch

operations in virtual machine (VM) environments, OVS offers standard control and

visibility interfaces to the virtual networking layer and supports distribution across

multiple physical servers. It is compatible with various Linux-based virtualization

technologies such as VirtualBox and Xen/XenServer. Written in platform-independent

C, OVS can be easily ported to other environments. The switch can function entirely in

user space without the need for a kernel module, making user-space implementation

easier to port than a kernel-based switch. OVS in user space can also interface with

Linux or DPDK devices. OVS contains the following distributions:

1. ovsdb-server (database server): ovsdb-server provides remote procedure call

(RPC) interfaces to one or more OVS databases and supports JSON-RPC client

connections over Unix domain sockets and TCP/IP. It is a lightweight

configuration database server that holds information for bridges, interfaces,

tunnel definitions, OVSDB managers, and an OpenFlow controller address. It

also allows ovs-vswitchd to query its configuration.

2. ovs-vswitchd (daemon): It is the core part of the OVS and it manages any

number of OVS switches on the local machine. The daemon communicates with

SDN controllers, ovsdb-server, kernel module, and hosting system by using

OpenFlow, OVSDB protocol, netlink, and netdev interface respectively.

3. ovs-dpctl: A tool for configuring the switch kernel module.

4. ovs-vsctl: A utility for updating and querying the configuration of ovs-vswitchd.

5. ovs-appctl: A utility that sends commands to running OVS daemons.

3.2.2 OpenFlow Switches Specifications

OpenFlow-compliant switches come in two main types: OpenFlow-only and

OpenFlow-hybrid. OpenFlow-only switches are exclusively managed by the OpenFlow

pipeline and do not support other protocols. In contrast, OpenFlow-hybrid switches offer

26

both OpenFlow and traditional network functionalities [38]. An OpenFlow switch

typically includes one or more flow tables, one or more OpenFlow channels to external

controllers, a group table, and a meter table, and shown in Figure 3.3.

• Ports: Packets traverse through the network interface known as OpenFlow ports,

facilitating communication between OpenFlow processing and the broader

network. OpenFlow switches interconnect using these ports. Typically, OpenFlow

ports are categorized into three types: physical, logical, and reserved ports.

Figure 3. 3 Main Components of an OpenFlow Switch

• Flow Table: A flow table is integral to OpenFlow switches, managing packet

forwarding through network paths. Each flow table consists of flow entries

encompassing A flow table consists of flow entries and each flow entry consists of:

▪ Match fields: consists of ingress port, packet header, and metadata to match

against packets.

▪ Priority: matching precedence of the flow entry.

▪ Counters: to update for matching packets.

▪ Instructions: modify the pipeline processing or action set.

▪ Timeouts: maximum amount of time before the flow is expired.

▪ Cookie: Used to provide flow modification, deletion, and statistics by the

controller.

27

• Group Table: OpenFlow networks employ group tables for managing multicast,

broadcast, and load balancing functionalities. Each group entry contains a group

identifier, type, counters, and action buckets.

• Meter Table: The meter table houses meter entries that define per-flow meters

critical for Quality of Service (QoS) operations such as rate-limiting and DiffServ.

Meters oversee and regulate packet rates assigned to them, directly impacting flow

entries. Each meter entry is identified by a meter identifier, meter bands specifying

actions, and counters.

• OpenFlow Channel: Serving as the communication link between OpenFlow

switches and controllers, the OpenFlow channel facilitates switch configuration,

event handling, and packet transmission. OpenFlow channel messages adhere to the

OpenFlow protocol and can be secured with TLS encryption or transmitted directly

via TCP.

The controller can add, delete, and update the flow tables entries in an OpenFlow

switch via OpenFlow protocol.

3.2.3 Pipeline Processing of OpenFlow Switches

In OpenFlow switches, packets are handled by the OpenFlow pipeline. Packets

are received on an ingress port and processed by the pipeline, which may forward them

to an output port. Pipeline processing consists of two stages: ingress and egress, as

depicted in Figure 3.4. For flow tables numbered from 0 to n, pipeline processing always

starts at the ingress processing of flow table 0. The numbers assigned to ingress flow

tables must be lower than those assigned to egress flow tables.

Initially, a packet is matched against the first ingress table, and other tables may

be used depending on the result of this first match. If the ingress processing outcome is

to forward the packet to an output port, the OpenFlow switch will begin egress

processing for that output port. Egress processing is optional; hence, a switch might not

provide or configure any egress tables. If no valid table is configured at the first egress

table, the packet may be handled by the output port or forwarded out of the switch. If

there is a valid configured table at the first egress table, the packet must match against

the flow entries of that table, and other tables may be used depending on the result of

this match.

28

Figure 3. 4 Openflow Pipeline Architecture

3.2.4 Matching Flow Table in OpenFlow Switches

OpenFlow switches employ flow tables where each entry is uniquely identified

by its match fields and priority. These match fields, encompassing ingress ports, packet

headers, and metadata, define the criteria for selecting a specific flow entry within the

table. Each flow entry includes counters to monitor packet usage and a set of instructions

specifying actions to be executed.

Figure 3.4 visualizes the flow matching structure in OpenFlow, illustrating how

packets interact with flow tables during processing. Upon reaching a flow table, packets

are scrutinized against its flow entries to identify a suitable match. Upon successful

matching, the associated instructions of that flow entry are triggered. These instructions,

such as Apply-actions, Clear-actions, Write-actions, Write-metadata, and GoTo-table,

determine subsequent actions. If the instruction is GoTo-table, the packet may proceed

to another flow table for further processing. In the absence of a GoTo-table instruction,

processing within the current flow table concludes, and the packet is handled based on

the specified actions.

29

Figure 3.5 Matching and Instruction Extraction in a Flow Table

 As in Figure 3.5, Every flow entry includes a series of instructions that are

carried out when a packet matches the entry. These instructions lead to modifications in

the packet, action set, and/or pipeline processing [38].

Figure 3. 6 Flow Matching Structure of OpenFlow

If a flow entry is not matched, known as a table miss, the handling of packets

depends on the configuration of the flow table. The instruction set for table miss

scenarios dictates how unmatched packets are processed. These instructions may include

dropping packets, redirecting to another flow table, or sending packet-in messages back

to the OpenFlow Controller through the control channel.

30

3.3 Protocol Options for Southbound Interface

The control layer communicates the data plane layer by using Southbound APIs

(Application Programming Interfaces). The controller uses these APIs to dynamically

change forwarding rules that installed in the data plane devices such as switches and

routers [50]. There are some examples of southbound APIs that are used for managing

network devices in SDN deployment: NETCONF (standardized by IETF), Opflex

(supported by Cisco), OF-Config (supported by the Open Network Foundation (ONF)),

OpenFlow and so on. To support hybrid networks or to utilize traditional networks with

software-defined manner, some routing protocols (i.e. OSPF, ISIS, and BGP) have been

developed as southbound interfaces in some OpenFlow controller. Currently, the most

popular southbound API is OpenFlow.

3.3.1 The Concept of OpenFlow Protocol

OpenFlow is a standardized protocol facilitating communication between OpenFlow

switches and controllers. It serves as a programmable network protocol with an open

standard-based interface, enabling various vendors to manage and support network

traffic. Through OpenFlow, SDN controllers can configure data plane devices like

OpenFlow switches by installing packet forwarding rules. Switches, in turn,

communicate events and notifications to controllers via the OpenFlow protocol.

At initialization, switches configure their SDN controller's IP address and TCP port

number. They establish a secure TLS session for communication. The controller sends

an OFPT FEATURES REQUEST message to each switch to gather configuration details

such as port numbers and MAC addresses, essential for network management.

OpenFlow messages fall into three main types:

1. Controller to switch messages: These messages, initiated by the controller,

control or monitor switch states:

• Features: Establishes the OpenFlow channel by requesting switch

capabilities, with the switch responding via a feature replies message.

• Configuration: Allows the controller to set and query switch

configurations.

• Modify-State (FLOW_MOD): Used to add, modify, or delete flow or

group entries.

31

• Read-State: Retrieves various switch information like current

configurations and port statistics.

• Packet-Out: Sends packets from the controller to switches.

• Barrier: Ensures message dependencies are met and receives

notifications for completed operations.

• Role-Request: Sets the role of the OpenFlow channel.

• Asynchronous-Configuration: Defines additional filters for

asynchronous messages on the OpenFlow channel.

2. Asynchronous: These types of messages are applied to change the switch state

and update the controller with the network events changes. These messages are

initiated by switches. These messages are:

• Packet-in: Transfer the control of a packet to the controller. It may be

table-miss flow entry, TTL checking or packet-in events.

• Flow-Removed: Inform the controller about the flow has been removed

because of the controller’s flow delete request or the switch’s flow expiry

process.

• Port-Status: Inform the controller about the status of the port.

• Error: The switch enables to notify the problems to controllers using

error messages.

3. Symmetric: These types of messages are initiated by either the controller or the

switch and sent without solicitation. Five symmetric messages have been

represented as a part of the OpenFlow protocol:

• Hello: Hello messages or keep-alive messages exchanged between

switch and controller upon connection startup.

• Echo: To verify the liveness of connection, the controller and switch

used echo request/reply messages.

• Experimenter: To supports additional functionality within OpenFlow

message type space or an area for the features of future OpenFlow

versions.

3.4 Control Layer of SDN

In the context of Software-Defined Networking (SDN), the control layer

assumes a pivotal role in the centralized management and orchestration of network

32

resources and policies. It effectively separates the control plane from the data plane,

optimizing network operations. By abstracting data plane details, the control layer

provides a comprehensive view of the network topology, including key statistics and

events. Communication between the application layer and the control layer is facilitated

through northbound APIs. Notable open-source controllers utilized widely today include

OpenDayLight [31], ONOS, NOX, FloodLight, Ryu, Trema, and other similar

platforms. In this paper, we won’t introduce one by one but we describe Trema

Openflow controller which used in the test experiments. Table 3.1 shows some of the

feature comparisons of popular open-source SDN controllers.

Table 3. 2 Features Comparison of Popular SDN Controllers

Controller Centralized/

Distributed

Implementation Developers Application

Domain

NOX Centralized Python Nicira

Networks

Campus

POX Centralized Python Nicira

Networks

Campus

Ryu Centralized Python NTT Campus

Trema Centralized C and Ruby NEC Research,

Education,

Prototyping of

Custom

Network

Services

FloodLight Centralized Java Big Switch

Networks

Campus

OpenDayLight Distributed Java The Linux

Foundation

Datacenter

ONOS Distributed Java Open

Networks

Foundation

Datacenter,

WAN and

transport

3.4.1 Trema OpenFlow Controller

Trema is an open-source framework designed for developing OpenFlow

controllers. It is known for its ease of use, modularity, and performance, making it

suitable for research, education, and development of network applications. It was

33

developed with the languages C and Ruby where Trema's core is written in C, providing

high performance for low-level operations and efficient packet processing and Trema

offers a high-level API in Ruby, which simplifies the development process. Ruby scripts

can be used to write network applications, leveraging the flexibility and ease of

scripting. Trema was developed by NEC Corporation, a company known for its

contributions to networking and telecommunications technologies.

Trema is open-source and has a community of contributors who help maintain

and enhance the framework. This community support ensures that Trema remains up-

to-date with the latest developments in SDN and OpenFlow technologies. It is widely

used in academic and research environments for SDN experimentation and education.

Its simplicity and flexibility make it an excellent tool for teaching and learning about

SDN and OpenFlow. Developers can use Trema to rapidly prototype and test new

network applications. Its high-level Ruby API allows for quick development cycles and

easy modification of network logic. Trema can be used to simulate and test OpenFlow

networks, making it valuable for developers and researchers who need to validate their

SDN applications and configurations.

The application use cases are:

4. Network Function Virtualization (NFV): Prototyping and testing NFV

applications.

5. Custom Network Services: Developing custom network services such as load

balancers, firewalls, and monitoring tools.

6. Educational Tool: Teaching SDN and OpenFlow programming in academic

settings.

The key features of Trema are;

1. Ease of Use: The Ruby API makes it easy for developers to create and manage

OpenFlow applications.

2. Modularity: Trema's modular architecture allows for easy extension and

customization.

3. High Performance: The C core ensures efficient packet processing and low-

level operations.

4. Comprehensive Documentation: Trema offers extensive documentation and

examples to help developers get started quickly.

34

Trema can be installed from its GitHub repository, where detailed instructions

are provided. The framework includes various examples and templates to help new users

begin developing their own OpenFlow applications.

Trema is a powerful and flexible OpenFlow controller framework suitable for a

variety of use cases, from academic research to network application development. Its

combination of high performance and ease of use makes it an attractive option for those

looking to explore and implement SDN solutions.

These resources provide detailed information on Trema's capabilities,

installation, and usage, making it easy for developers and researchers to leverage this

framework in their SDN projects. Figure (3.7) shows the architecture of Trema

Controller Framework as in [12].

Figure 3. 7 The Architecture of Trema Controller Framework

3.5 Application Layer of SDN

The application layer within Software-Defined Networking (SDN) serves as a

crucial domain for developing innovative applications that capitalize on global network

information, including comprehensive data on network topology, statistics, and

operational status. This layer interacts extensively with the control layer to deploy

network services and functionalities effectively. It comprises a diverse array of network

applications that leverage the SDN controller's abstractions to streamline network

optimization and management. Key components of the SDN application layer

35

encompass northbound APIs, network application development, automation and

orchestration features, analytics, and policy management capabilities. The benefits of

application layer are:

1. Customization and Flexibility: Network operators have the flexibility

to develop customized applications that meet specific operational needs

and objectives.

2. Accelerated Innovation: The programmable environment of the SDN

application layer promotes rapid innovation, enabling the quick

deployment of novel services and functionalities.

3. Improved Operational Efficiency: Automation and orchestration tools

within the SDN application layer simplify management tasks, leading to

reduced complexity and enhanced network efficiency

(Learnenough.com).

To summarize, the application layer within SDN is pivotal, leveraging SDN's

flexibility and programmability to deliver advanced network services, improve security,

optimize performance, and automate network operations. Open standards and APIs play

a crucial role in enabling diverse application development and integration, driving

innovation and operational efficiency across modern network environments.

3.6 Management of Flow Entries in OpenFlow Networks

In the context of SDN architecture, the controller is mandated to install flow

table entries in the forwarding tables of switches. The match fields, often utilizing

wildcard entries, are traditionally housed in ternary content-addressable memory

(TCAM) for swift packet matching and forwarding. Nonetheless, TCAMs are both

expensive and spatially restrictive, limiting the number of entries that can be included

in the flow table. The flow management system in OpenFlow switches is broadly

classified into two main methodologies: proactive and reactive.

The proactive approach to flow management involves the controller pre-

calculating and populating flow entries in the switch's flow tables. This strategy

minimizes setup time and latency because flows do not need constant consultation with

the controller. However, it lacks flexibility for real-time adjustments to network traffic

and may encounter challenges with fitting a large number of entries into the flow table's

TCAM. Reactive installation of flow entries is employed to address the management of

36

large flow tables more adaptively. The basic operations for reactive flow management

are depicted in Figure 3.8:

1. Packets arrive at the switch and there are no corresponding flow entries in

switch’s flow table.

2. Therefore, the switch informs the controller about the packet.

3. The controller determines the path for the packet and puts in suitable rules in

each switch along the path.

4. Packets are forwarded to the destination.

Figure 3. 8 Reactive Flow Management

The reactive approach to flow management operates on a timeout-based

mechanism with a default expiry timer, typically set to one second by the controller.

When flows expire, the switch removes them and requests new flow entries from the

controller to handle subsequent packets.

Both reactive and proactive mechanisms have their own set of advantages and

drawbacks. In the reactive method, controller interaction is necessary when a new flow

arrives or when the switch's flow table lacks an appropriate entry. This approach

efficiently utilizes flow tables but introduces additional setup time for each flow, which

depends on the controller's workload and the state of the control channel. Consequently,

reactive flow management may reduce the number of large flow tables in switches but

can increase latency and reliability requirements for the control channel and control

plane software. Failures in the control plane software or control channel can

significantly impact network performance if flow entries cannot be established

promptly.

37

In a proactive approach, all required flow entries are pre-installed in the switches'

flow tables. This minimizes the workload on the controller and enhances resilience

against failures in the control layer, since the necessary flow entries are already

programmed into the data plane switches. However, deploying this method in larger

networks involves handling numerous flow tables, which may face challenges due to

TCAM limitations.

Figure 3. 9 Proactive Flow Management

To overcome the limitations of both proactive and reactive approaches, the

hybrid flow management mechanism has gained popularity. This approach combines

the advantages of proactive flow rule installation before communication begins with the

flexibility of reactive adaptation to traffic during communication.

3.7 Innovation Through Routing based SDN Application

In the realm of SDN architecture, network managers have the opportunity to

innovate their applications to align with specific needs. This has led to increased

research focus on applications such as traffic engineering, routing, load balancing, and

security. Whether in SDN environments or traditional networks, routing fundamentally

revolves around two essential components: network state information and routing

algorithms. Network state information encompasses node and link resources, including

parameters like link utilization, available bandwidth, delay, and packet loss rate.

Routing algorithms leverage network state information to determine optimal

routes based on resource availability and demand. Yet, this information is subject to

dynamic changes due to fluctuating link statuses, varying loads, and connection statuses.

In traditional networks, distributed routing protocols handle the acquisition and

dissemination of network state information among routing devices. In contrast, SDN

38

simplifies this process by allowing controllers to gather and update network state

information directly from routing devices using OpenFlow connections.

Routing algorithms involve routers calculating the shortest path between each pair of

nodes across a network. The Open Shortest Path First (OSPF) Protocol utilizes the

Shortest Path First (SPF) algorithm as its basis. Within networking, the primary focus

remains on traffic management and routing, specifically on determining paths that

adhere to essential constraints such as network QoS parameters. This method is known

as constraint-based routing. Figure 3.10 depicts the various routing algorithms that are

widely used in SDN, SDN based IoT networks, SDN based cloud data centers networks,

and conventional networks. According to Figure 3.10, there are two main types of

routing: shortest path routing and constrained based routing.

Figure 3. 10 Routing Algorithms in SDN and Traditional Networks.

3.8 Chapter Summary

This chapter provides a concise overview of the foundational theory behind the

layer taxonomy of software-defined networks (SDNs) [20]. It details the principal SDN

protocol, explaining its operational mechanisms. Additionally, the chapter outlines the

architecture and functionalities of Open vSwitch, a widely-used OpenFlow switch and

he details about the controller Trema used in this system is presented in this chapter.

Shortest-path Routing

Constrained-based Routing

 Routing

Widest shortest path

Bandwidth guaranteed paths

Delay guaranteed paths

Delay-Constrained

multipaths

Maximum ABW paths

Bandwidth-delay-constrained

least cost path

Bandwidth-Constrained

multipaths

39

This chapter also explores various routing methods commonly employed in both SDN

and traditional networks.

40

CHAPTER 4

THE ARCHITECTURAL DESIGN OF PROPOSED SYSTEM

The purposes of this chapter are identifying the problems of student’s network

construction exercises and proposing to analyze the dependency and visualize them with

sequence diagrams. The design of the system architecture is explained with step by step

explanation.

4.1 Problems Definitions of SDN Network Construction

These problem definitions aim to cover a broad range of SDN concepts,

providing learners with hands-on experience in setting up and managing SDN networks,

implementing flow rules, monitoring and analyzing traffic, ensuring QoS, implementing

security policies, and dynamically configuring networks.

4.2 Network Construction Exercise Structure

In these exercises, novice learners build their networks with the following steps;

1. Learners receive network construction exercise problems from the

instructors

2. Build data plane networks by executing the shell scripts on their own PCs.

3. Code OpenFlow controllers to satisfy the requirements and then establish

connections between the controllers and switches in the data plane networks

by executing Trema.

4. Evaluate the behavior of the networks with the ping command and the

proposed system.

5. Debug the controllers.

Table 4.1 Devices and Data Structure used in the System

Device Data structure

Switch
Host

Joint

Cable

(Device name name)
(Device name name, IP address ip)

(Device name name, Ethernet port number ep)

{Joint1, Joint2}

41

The ethernet port number ep starts from 1 in switches, and is assigned 1 in hosts.

4.3 Network Configuration

Teachers define network configuration in files such as make-dc.sh. The devices

and links that are used in the constructed networks are implemented by means of the

following technologies;

Host: a network namespace [18]

Switch: an Open vSwitch process [37]

Controller: a Tema process [50]

Link in data-plane: a veth pair [51]

Link in control-plane: a local loopback interface [18]

The data structures of these elements are shown in table 4.2.

Table 4.2 Elements and Data Structure used in the System

Element Data Structure

Switch
Host

Joint

Cable

Controller

(Device name name, Datapath-ID dpath, network interface names NI)
(Device name name, network interface name ni, IP address ip)

(Device name name, Ethernet port number ep)

{Joint1, Joint2}
listen port number lstn

The NI in the switch is an array that consists of the network interface name

implementing an Ethernet port in the switch. The ni in the host is the name implementing

the Ethernet port in the host. If we define a joint j1 with the switch sw and its network

interface sw.NI[i], we can describe it as j1 = (sw.name, i + 1).

4.4 Preliminary of the System Design

We defined several functions in table 4.3.

42

Table 4.3 The Functions Created for the System

Function Description

SrcT CP P ort(pkt)

OF M sg(pkt)

IsOFPF C_ ADD(of msg)

Match(ofmsg)

Action(of msg)

P ayload(of msg)

M_IN_Port(match)

M_SrcMAC(match)

M_DstM AC(match)

A_OUT_P ort(action, a)

DPath(name)

getN I(name, ep)

Peer(ni)

DevByNI(ni)

DevByPort(port)

It returns the source TCP port number of the packet pkt.
It returns the OpenFlow message (header and payload) of

the packet pkt.

If the OpenFlow message of msg means

ofp flow mod command::OFPFC ADD, it returns true.

It returns the match field of of msg.

It returns the action field of of msg.

It returns the payload of of msg.

It returns the in port field of the match field match.

It returns the source MAC address field of match.

It returns the destination MAC address field of match.

It returns the a-th out port field of the action field action.

It returns the datapath-ID of the switch whose name is name.

It returns the network interface name that impliments the

Eth- ernet port number ep of the switch whose name is name.

It returns the network interface name that is another edge of

the network interface name ni in the cable.

It returns the device name that equips the network

interface name ni.

It returns the device name that establishes connections

using TCP port number port as the source port in the

control-plane.

In this section, we describe the detail explanation of the method and functions

used in the proposed system with its data structure and the formulation of all the

functions are explained.

4.4.1 Data structure of the System Design

Table 4.4 shows data structure used in the system.

4.4.2 Formulation of Handler Instance

The file log data.txt includes several lines including ’method start’. Eq.2 extracts

all lines from the line including ’method start’ to the previous line including ’method

start’. HI1 stores hander instances that are extracted from the last line including ’method

start’ to the end line in the file. Eq.4 sets the last line including ’method start’ to i. Eq.5

sets h so that CP [h] is the closest to SI[i]. The SI[m] is the statement instance that called

’packet out()’ or ’flow mod()’. The CP [l] is the OpenFlow message that is generated by

’packet out()’ or ’flow mod()’.

43

HI1 = {(i, Size(SI) − 1, h, l) (4.3)

| SI[i].is ms = true ∧ max(i) (4.4)

∧ CP [h].time < SI[i].time ∧ min(SI[i].time − C P [h].time) (4.5)

∧ SI[i].method = ‘packet in′

∧ SI[i].ARGS[0] = DP ath(DevByP ort(SrcT CP P ort(CP [h].pkt)))

∧ SI[i].ARGS[1] = OF M sg(CP [h].pkt)

∧ SI[m].time <= SI[Size(SI) − 1].time < CP [l].time

∧ min(SI[m].time − CP [l].time)

∧ SI[m].ARGS[0] = DP ath(DevByP ort(SrcT CP P ort(CP [l].pkt)))

∧ (SI[m].method = ‘packet out′ ∧ T ype(OF M sg(CP [l].pkt)) = 13

∨ SI[m].method = ‘flow mod′ ∧ T ype(OF Msg(CP [l].pkt)) = 14)} (4.6)

4.4.3 Formulation of Flow Entries

The current our system supports only flow-entries addition with OpenFlow messages of

’FLOW MOD’. For this reason, the time e stores just ’null’.

4.4.4 Formulation of Forwarding Instance, Data Plane to Control Plane and

 Control Plane to Data Plane

Switches receive packets and send the packets. After receiving a packet, the

switch tries to find a flow-entry whose match field matches the packet.

If it is found, the switch applies the action field to the packet and sends it from

the out port. The FI store the details.

(4.1)

(4.2)

(4.7)

44

If it is not found, the switch generates a query (OpenFlow message) and sends it

to the controller. The D2C stores the received packet and the sent query.

After receiving the query, the controller may send the answer to the switch. After

receiving the answer (OpenFlow message) from the controller, the switch acts based on

the answer, which may send packets from the out port field in the answer. The C2D

stores the received answer and the sent packets.

(4.9)

(4.8)

(4.10)

45

4.4.5 Formula of Packet Chain

A packet chain pc ∈ PC is formulated with Eq.11 and 12.

Table 4.4 Explanation of Data structure

Name Data structure

DP It is the array consisting of the tuple (ni, time, pkt), where the

packet pkt was captured from the network interface name ni in

the data-plane at time time.

CP It is the array consisting of the tuple (time, pkt), where the

packet pkt was captured from the network interface name ni in the

data-plane at time.

OF PORT It is the set consisting of the tuple (name, port), where the device

whose name is name establishes OpenFlow connections using the

TCP port port bin the control-plane.

(4.11)

(4.12)

46

SI It stores executed statements in the controller. The array of the

tuple (time, start, end, isms, ismr, method, ARGS), where

the statement from the start-th line to the end-th line was

executed at time time. If the statement is the first statement in

a handler method (start(), switch ready(), packet in()), the

isms is true; else if the statement called a function (packet out(),

flow mod())for sending OpenFlow messages, the ismr is true.

The method stores the name of the executed hander method

or the called method, and ARGS stores its arguments. We call

an element in SI a statement instance.

HI It stores executed handers. It is the set of the tuple (si s, si

e, cp in, CP OU T), where the SI[si s] is the first exe cuted

statement in the hander, and the SI[si e] is the lastly executed

statement in the hander. And also, the contoller executed - the

handler to treat the CP [cp in] and CP [cp out], cp out ∈ CP

OU T was sent by the controller because of executing

packet out() or flow mod().

F E It stores flow-entries with validity periods, meaning

t i m e -based flow-table. It is the set of the tuple (name,

time s, time e, match, action, trigger add), where the name

stores the switch name, the validity period starts from time

time s to time time e. And also, the match and action store the

match fields and the action fields respectively. After receiving CP

[trigger add], the switch added the flow-entry to the flow-table.

F I It stores forwarding logs in switches based on flow-tables,

called forwarding instances. It is the set of the tuple (rcv,

snd, fe, a), where a switch receives DP [rcv] and then sends DP

[snd] based on the a-th out port in the action of a flow-entry fe.

D2C It stores causal connections between the data-plane packets and

the control-plane packets. If switches receive DP [rcv] and then

send CP [snd], the tuple (rcv, snd) is added to D2C.

47

C2D It stores causal connections between the data-plane packets and

the control-plane packets. If switches receive CP [rcv] and then

send DP [snd] from the a-th out port in the action field of

CP [rcv], the tuple (rcv, snd, a) is added to C2D.

P C The set of the array that stores the captured packets whose pay

loads are identical on the assumption that payloads are

identifiable. The packets are sorted by captured order. PC

stands for Packet Chain. When payloads in DP[i].pkt,

DP[i+j].pkt, and DP[i+j+k].pkt are identical and different to

others in DP, pc ∈ P C, pc[0], pc[1], and pc[2] store i, i+j, and

i+j+k respectively.

In this work, Trema controller is used to implement controller programs and

build software defined networks. The detailed requirements and implementations of

software and hardware will be explained in section 5.1.

Trema can be used in the following area as case studies, such as

1. University Networks: Trema has been used in university campus

networks to study and implement dynamic network management and

security solutions.

2. Enterprise Networks: Enterprises use SDN controllers like Trema

to develop custom network management solutions tailored to their

specific needs.

In Trema, there are many applications such as;

1. Educational Tools and Simulations

2. Network Management and Monitoring

3. Security Applications

4. Load Balancing

5. Network Virtualization

6. QoS (Quality of Service) Management

7. Research and Prototyping.

By leveraging Trema, developers and researchers can create a wide range of

SDN applications that improve network performance, security, and manageability.

48

4.5 A Dependency Analyzing System Architecture

 In our system, we design a sample testbed network topology which includes 3

virtual hosts and 3 virtual switches as in Figure 4.1.

Figure 4. 1. A Sample Network Topology

4.5.1 Overview Explanation of the System

The overall system design of the proposed system is depicted in figure 4.2. It is

a block diagram of the proposed system.

In the proposed system, the network configuration information of the exercise problem

and the controller program are first received from the user. In such a case, the data

collection function starts packet capture and Trema, and logs the communication test

performed by the user.

When the user finishes the communication test and makes a termination request,

the data collection function terminates packet capture and Trema, obtains packets,

OpenFlow messages, and execution history, and saves them in the log DB as packet

information, OpenFlow information, and executable statement information to do.

When the data collection function ends, the time series flow table reproduction

function, route selection imitation function, and transmission route estimation function

are executed in order, and the time series flow table, route selection history, and

transmission route information are created and saved in the log Database.

There is a clue creation function as a means of obtaining necessary information

from the log DB, and this function is obtained from the log DB and returns the above

three clues to the user.

49

Figure 4. 2 The Overall System Design

4.5.2 Architectural Design of the Proposed System

The architecture of the proposed system is shown in Figure 4.3. The network

interface (NI) extractor finds the names of the network interfaces that are used for links.

Each tcpdump captures packets from each network interface. The IP address port

resolver finds the names of network interfaces used for links and the names of devices

equipping the network interfaces by analyzing the network configuration. This

information enables the resolver to find the names of devices that send/receive the

packets captured by each tcpdump in the data plane. The resolver also finds the port

number and name of each Open vSwitch [37] that is used for connecting to Trema. It

enables the resolver to find the names of Open vSwitches that send/receive packets in

the control plane. Finally, the resolver writes out all captured packets together with the

capturing time, the names of the sending devices, and the names of the receiving devices.

The logging code inserter adds codes that write which statements were executed

onto the standard outputs. The event extractor finds the logs from the standard outputs.

The generator sorts all the events by time order and then generates descriptions for

visualizing them with a sequence diagram. PlantUML [42] converts the description of

the output log events to the graphics.

50

4.6 Chapter Summary

 The details about the proposed system architectur design is depicted in this

chapter. Here we explained the details about the exercise problem, system design and

the functions used in this system. The system implementation phase will describe in the

next chapter.

51

 CHAPTER 5

IMPLEMENTATIONS OF PROPOSED SYSTEM

In this chapter, the implementations of the proposed system with experimental

testbed design is explained. The hardware requirements and software requirements used

in this system are also described in detail in this chapter. Then, the experimental testbed

topology and the controller programs are designed by using Trema controller with ruby

script.

5.1 Design and Implementation of Experimental Testbed

Figure 5.1 explains the flow of SND Network construction exercises. In the

exercise, the network configuration is given by the instructor. Given information to

learners are network configurations, communication examples (data for sending and

packet delivery routes), shell scripts for constructing networks, procedures for executing

controllers. The achievement conditions for the learners are while building networks

that satisfy the following conditions as an example;

1. The topology is given in Figure 5.2.

2. All hosts can communicate with ping each other.

3. No packet-loss

4. Minimum number of controller events (packet-in and packet-out)

Figure 5.1 Logical Testbed Design of Network Exercise Flow

52

To satisfy those conditions the learner proceeds with the exercise using the

Trema according to the following procedure. Firstly, learners create a controller

program. Next, they set the virtual network environment using a shell script. And then,

they execute the controller program according to the controller execution procedure and

perform a communication test. If this communication test fails to meet the communi-

cation example, the controller program is corrected as necessary. The exercise will

proceed by repeating this process.

Table 5.1 describes hardware requirements of experimental testbed and Table

5.2 describes the software, tools that are used in this research.

Table 5. 1 Hardware Requirements of Experimental Testbed Area

Name Specifications

CPU Core(TM) i7-6500U CPU @ 2.50GHz

2.59 GHz

RAM 8.00GB

HDD 500 GB

Operating System Linux 16.04 LTS

Number of PCs 1

Table 5. 2 Software and Tools Used in the System

Software Versions Used in

Trema (SDN Controller) 0.4.7 Implementation and Evaluation

Open vSwitch 2.9.2 Testbed (Evaluation)

OpenFlow Protocol Version 1.3 Testbed (Evaluation)

PlantUML 1.2024.5 Testbed (Evaluation)

5.2 Testbed Network Topology

Figure 5. 2 Logical Testbed Nnetwork Topologies

53

In Figure 5.2, we set three communication network topologies as a testbed

network environment. In the first figure A, we set three virtual host and one virtual

switch. In the second figure B, we set the topology with three virtual hosts and two

virtual switches. And finally, we set three virtual hosts and three virtual switches as in

figure C.

5.3 Requirements of Software for Experimental Testbed

In this system the following software are required to develop and experiment;

1. Trema Controller

2. PlantUML

5.3.1 Installation and Running of Trema Controller

 For the implementation of the proposed system, we used Trema controller

framework with ruby scripts. To install Trema on an Ubuntu system, follow these steps:

Step 1: Update and Install Dependencies

Start by updating your package list and installing the required dependencies:

sh

sudo apt-get update

sudo apt-get install build-essential git ruby ruby-dev libpcap-dev

Step 2: Install Bundler

Bundler is a dependency manager for Ruby projects:

sh

sudo gem install bundler

54

Step 3: Clone the Trema Repository

Clone the Trema GitHub repository to your local machine:

sh

git clone https://github.com/trema/trema.git

cd trema

Step 4: Install Trema

Install Trema and its dependencies using Bundler:

sh

bundle install

Step 5: Build Trema

Build Trema:

sh

./build.rb

Step 6: Verify Installation

Verify that Trema is installed correctly by checking the version:

sh

trema version

55

If the installation was successful, you should see the Trema version displayed.

Here we used the trema version 0.4.7

Note: The installation steps mentioned above are for the Ubuntu OS installation because

this dissertation used Ubuntu OS for implementation and hence explain the required step

for Ubuntu OS. The detailed installation steps and installation steps for other OS can

find in the documentation on the Trema GitHub page or website and it can provide

further assistance.

5.3.2 Installation and Running of PlantUML

 PlantUML[42] is a tool to create UML diagrams from plain text descriptions. It

is widely used for documenting software systems and can generate various types of

diagrams such as sequence diagrams, use case diagrams, class diagrams, and more. The

installation process may varies depending on the users’ OS type and version.

Step by Step Manual Installation Procedures for PlantUML

For more control over the installation process, you can manually download and set up

PlantUML.

1. Install Java:

As mentioned before, PlantUML requires Java.

sh

sudo apt update

sudo apt install default-jre

56

2. Download PlantUML JAR File:

Download the plantuml.jar file from the official website.

sh

wget http://sourceforge.net/projects/plantuml/files/plantuml.jar/download -O

plantuml.jar

3. Install Graphviz:

sh

sudo apt install graphviz

4. Run PlantUML:

Use the following command to generate diagrams from a PlantUML file (e.g.,

diagram.puml):

sh

java -jar plantuml.jar diagram.puml

5. Example Diagram Description

Create a sample PlantUML file (example.puml): puml

@startuml

Alice -> Bob: Hello

Bob -> Alice: Hi

@enduml

http://sourceforge.net/projects/plantuml/files/plantuml.jar/download%20-O%20plantuml.jar
http://sourceforge.net/projects/plantuml/files/plantuml.jar/download%20-O%20plantuml.jar

57

6. Generate the diagram:

sh

java -jar plantuml.jar example.puml

By following the above procedures, we can able to install and use PlantUML on

our Ubuntu system effectively. For more detailed information, refer to the PlantUML

documentation in [42].

5.4 Implementation of the System

In this system, we implement the dependency analyzing system by using

functions and methods that are designed and mentioned detailed in Chapter 4.

There are two methods for transmitting communication data using OpenFlow.

The first one is transferring data packets by FlowTable and the other is transferring data

packets by PacketOut function.

5.4.1 Transferring Packets by FlowTable

The first method is packet transmission based on the flow table explained in

figure 5.3. Firstly, FlowMod (Flow Modification Method) is sent by executing the

controller. The switch updates the flow table according to this FlowMod. When a packet

arrives, the switch uses this flow table to determine the packet output port and send it

out.

58

Figure 5.3 Transfer Packets by Flow Table

5.4.2 Transferring Packets by PacketOut Method

The second method of packet transmission based on PacketOut method is

explained in Figure 5.3. Firstly, when a packet arrives, the switch verifies that the packet

does not match the flow table. The switch then sends a PacketIn containing the packet

to the controller. PacketOut is sent when the controller that receives this PacketIn is

executed. The switch determines the packet output port by this PacketOut and sends it

out.

Figure 5.4 Transfer Packets by PacketOut

59

5.4.3 Data Collection Function

 In this stage, the network configuration information of the exercise problem and

the controller program are first received from the user. In such a case, the data collection

function starts packet capture and Trema, and logs the communication test performed

by the user.

The data collection function generates the following logs to the database for future

analysis and to generate visualize event;

• Packet information (P)

• Open flow information (OF)

• Execution information (E),

Figure 5.5 Flow of Data Collection Function

In the background, we add logging functions to controller program. And then,

we add a standard output function (prefix, line number, and clock) to all statements, and

finally we add a standard output function (packet_in ‘s parameters) to the first line in

packet_in function

Describes the data collection function. In this function, input data is created to

obtain the execution history. Execution history collection programs are regulated by

prefix line numbers. As an example, if the original executable statement is a packetin

method definition statement, add a description to output the argument in addition to the

prefix, line number, and time as shown in figure 5.6 below [57].

60

Figure 5.6 Data Collector Generate Controller with Logger

 In figure 5.7, the data collector analyzes execution history into the following

order;

 1. Divide execution history into methods

 2. Find execution start time of methods

 3. Find sequences of executions of PacketOut and FlowMod

Figure 5.7 Data Collector Analyze Execution History

The data collection function also associates PacketIn and controller executable

statements. The controller does not always process PacketIn in the order received. For

this reason, the following matching is performed. As an example, when three packetins

are sent from switches 1 and 2 and the packet-in method is executed three times,

matching is performed as shown in this color coding.

61

Figure 5.8 Data Collector Corresponds PacketIn to Executed Statements

in Controller

Also, Packetout and Flowmod are associated with controller executable

statements. In the controller, PacketOut and FlowMod are sent through the controller to

switchs. As an example, if a send execution statement is executed in this way with three

packet-in methods and packetout flowmod is sent in this way, first, execution 1 and

execution 2, 3 are separated from the first argument. And it associates like this color

classification from each execution order and transmission order.

Figure 5.9 Data Collector Corresponds PacketOut and FlowMod to

Executed Statements in Controller

5.4.4 Time Series Flow Table Reproducer

 After the data collection function generates the following logs to the log

database, time series flow table reproducing function has started. It uses the dependency

of Openflow Information (OF) log and then generates flow tables (FT) to the database.

62

Figure 5.10 Time Series Flow Table Reproducer

5.4.5 Delivery Route Estimator

Route selection histories are Logs from receiving packets to choosing output

devices in switch.

Here, we estimate delivery routes based on route selection histories

1. Find route selection history “A” whose sending device is a host

2. Find route selection history “B” that satisfies the following conditions

a. Reception device of A == Sending device of B

b. Sending device of A == Reception device of B

c. Packet sent from A == Packet received by B

d. Reception time of A < Reception time of B

3. If B’s reception device is not a host, then assign B to A and go back to step

2.

Figure 5.11 Route Selection Histories

 It describes the transmission path estimation function. This function estimates

the transmission route from the route selection history. The route selection histories are

represented by Figure 5.11. This is created by the route selection imitation function.

63

5.5 Chapter Summary

The implementation of the proposed system with the logical testbed design of

SDN network construction exercises is described in this chapter. Here we described the

SDN network topology, hardware and software requirements used in this system and the

installation and implementation of the system in explained in detail. The experimental

results of this testbed evaluation with multiple scenarios and multiple methods will be

presented in the next chapter.

64

CHAPTER 6

EXPERIMENTS AND RESULTS

This chapter carried out the experiments of the system by using three different

scenarios with three different controller programs. Firstly, this chapter discussed the

experiments results of each by conducting Trema Openflow Controller with and without

logging code. Then, it also discussed the experimental results of each controller program

with different network construction exercises.

6.1 Experiment Methods

In the proposed system, VMWare Workstation and Ubuntu16.04 LTS are used

for the testbed area.

6.1.1 The Main Files and Functions Used in the System Scenario

The following files are used to run the system;

1. trema_netwdbg2.rb

 where, it runs tcpdump processes to a SDN controller and a SDN network.

2. testf2 (source file: pcapanalize_f2.c)

 where, it analyzes tcpdump outputs (logfiles) and then writes packet

information and OpenFlow information to files in ./dbglog

3. contanalize_f2.rb

 where, it analyzes execution statements in controllers (logfiles) and then

writes the results to files in ./dbglog

4. data_analize.rb

 where, it generates time series flow tables, route selection histories, and

delivery route information, and then writes them to files in ./dbglog

respectively

6.1.2 Library Files Used in the System

1. External library for Ruby (./clib)

pktread.c where it is used for analyzing packets and OpenFlow

Note: A class name in ruby is PktRead. Refer to section PktRead library.

65

2. Required files for starting system

• make-dc.sh: a shell script file for building networks

• dc-data.txt: a file including network configurations used in item A

• trema-test1.rb: a controller program in Trema

6.1.3 Operational Flow of the System

 Destroy the networks built before based on the shell script file “make-dc.sh”

before creating the new network construction exercises

$./make-dc.sh del

And then build a network with the shell script and the following command;

$./make-dc.sh add

Check the networks built with the following command;

$ sudo ip netns list

where we can see the networks build by shell script as shown in Figure 6.1.

Figure 6.1 Building Virtual Networks

After that, run Trema with the following command to execute the system

$ sudo ruby trema_netwdbg2.rb trema-test1.rb dc-data.txt

Note: We need to wait approximately 5 seconds after "[screen] trema run" appears on

the screen. This is because the time is spent for connecting between the controller and

the switch.

66

Figure 6.2 Running Trema with Controller Programs

The file network debugger runs tcpdump processes between SDN controller program

and SDN network.

Figure 6.3 Output of TCPDUMP Files in the Log Database

Then, try to make network construction test by doing ping with the command ip

$ sudo ip netns exec vhost1 ping 192.168.0.2.

Figure 6.4 Making Network Communication Test

67

 After testing the network, stop trema by running the following command

$ sudo trema killall

6.1.4 Analyzing the System Output Logs

After testing ping communication with the controller programs, we analyze the

packets and analyze the dependency between communication routes and flow tables and

controllers.

To analyse packets that are generated in section 6.1.3, we run the following files

$./testf2

After that, the system generates the following log files into the database

1. pkt_data.txt: packet information

2. pkt_ofdata.txt: OpenFlow information

3. pkt_datahead.txt: meta data for packet information and OpenFlow

information

Figure 6.5 Output Logs for Packet Information and OpenFlow Information

To analyze execution statements, we run the ruby file naming

“contanalize_f2.rb” with the following command;

$ ruby contanalize_f2.rb

After that, the system generates the file naming

log_data_2t.txt: execution information

Figure 6.6 Output Logs for Execution Statement Information

68

To generate time series flow table, route selection histories and delivery route

information, we run the ruby file naming “data_analize.rb” and write the data int dc-

data.txt by the following command;

$ ruby data_analize.rb dc-data.txt

After that, the system generates the file naming

1. tft_data.txt: a time series flow table

2. rsd_data.txt: a route selection history

3. prd_data.txt: delivery route information

Figure 6.7 All Generated Output Log Files

6.2 Running Testbed Evaluation Environment and Visualizing the System

To highlight the outcome of our proposed system, we compare and analyze three

controller programs in two different scenarios. As an evaluation experiment, these three

network configurations were prepared, and using the controller program that succeeded

in continuity, configurations A to C were configured as in the actual exercise. The

execution environment criteria are as follows;

• Controller programs in which ping communications are successful

• Do ping communications between all pairs of hosts

• All hosts in each pair send three ICMP echo requests

69

Figure 6.8 Output Event Result Testing with Controller Program 1

70

Figure 6.19 Output Event Result Testing with Controller Program 2

71

Figure 6.10 Output Event Result Testing with Controller Program 3

72

6.3 Performance Evaluation

 In this system, the evaluation environment includes;

Host OS: Windows 10,

Host CPU: Intel(R) Core (TM) i7-6500U CPU @ 2.59GHz,

Virtual Machine: VMware Workstation 15 Player,

Guest OS: Ubuntu 16.04LTS and Guest memory assignment is 1 GB.

The visualizer and data analyzer are implemented with Ruby and C language,

and Plant UML is used to convert the description to graphics. It might make it possible

for us to achieve our goals. The analysis results are shown in table 1.

Table 6.1 Analysis Result

Controller

Program

Controller

Evets

Network

Reachability

Packet

Information

(KB)

Openflow

Information

Executed

Statement

Information

1 High Yes 18 38 49

2 Medium Yes 22 24 23

3 Low Yes 25 20 24

 The analysis results of the system are described in table 6.1 where the system

was tested with three different controller programs to be tested with the status of

controller events, the reachability of network communication and the amount of data in

packet information, OpenFlow information and executed statement information.

Figure 6.9 to 6.11 are the results of testbed configuration with three different

controller programs. In the Figures, the upper and lower squares are the device names,

and the yellow color-coded box is the part where the line number that was executed.

6.4 Chapter Summary

In this chapter, the experimental results of a dependency analyzing system has

been described for learners who learn and writing controllers with SDN network

construction exercises in universities, research labs and also useful for on job training

73

in business enterprises. The experiments for this research are described in this chapter

with step by step execution with the analysis results.

74

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation implemented a Dependency Analyzing System for

communication activities in Network Construction Exercises using Trema. In this

research, we demonstrated significant benefits in aiding students to debug and develop

their Software Defined Networking (SDN) controller programs. The system provides a

detailed analysis of the causal connections between packet transmissions in the data

plane, control plane activities, and the execution of controller program statements.

System represents a significant advancement in the educational tools available for

teaching SDN concepts. By providing a robust framework for analyzing and debugging

network communication activities, it helps bridge the gap between theoretical

knowledge and practical implementation, ultimately contributing to the development of

more proficient SDN practitioners. Key findings and conclusions from this study

include:

Improved Debugging Efficiency: By leveraging the Dependency Analyzing System,

students were better able to identify and correct errors in their controller programs. The

system's ability to trace packet flows and correlate them with specific statements in the

controller code proved invaluable in the debugging process.

Enhanced Understanding of SDN Operations: The system facilitated a deeper

understanding of SDN concepts among students. By visualizing the interactions between

the data plane, control plane, and controller programs, students gained a clearer insight

into the operational mechanics of SDN.

Identification of Common Error Patterns: The analysis revealed common patterns in

the errors made by students, such as misconfigured network settings or incorrect

controller logic. This information can be used to refine teaching materials and provide

targeted guidance to future students.

Increased Success Rates: With the support of the Dependency Analyzing System, a

higher percentage of students were able to meet the exercise requirements and build

functional SDN networks. This indicates the system's effectiveness in enhancing the

learning outcomes of network construction exercises.

Scalability and Adaptability: The system showed potential for scalability and

adaptability to different SDN frameworks and network configurations. This flexibility

75

makes it a valuable tool for a wide range of educational and practical applications in

SDN development.

7.1 Advantages of the System

 The implementation of the system using Software Defined Networking (SDN)

offers several advantages, particularly in the context of the modern information age and

the rapid development of networking and virtualization technologies. Here are the

advantages, based on the provided factors:

Promotion of Research and Innovation: Academic and Research Focus: SDN has

become a prominent area for research and innovation in academic and research fields.

Universities and research labs serve as hubs for this innovation, driving advancements

that can rapidly influence industrial practices. By engaging with SDN, these institutions

can contribute to the development of cutting-edge networking technologies.

Accelerated Change: Innovations originating from academia and research

organizations can significantly accelerate the rate of technological change in industries.

This collaborative environment fosters the exchange of ideas and the development of

practical solutions that can be quickly adopted in real-world scenarios.

Enhanced e-Learning Opportunities: Educational Exercises: SDN construction

exercises have been integrated into e-Learning platforms, providing novice learners with

hands-on experience in building and managing networks. These exercises help learners

understand the principles of SDN and gain practical skills that are essential in the

modern networking landscape.

Practical Understanding: When performing network construction exercises, learners

often struggle to understand network behavior and meet communication data

requirements. The system addresses this issue by allowing learners to construct SDN

networks using tools like Trema and the OpenFlow protocol for communication between

controllers and switches.

Debugging and Problem-Solving Assistance: Visual Clues for Debugging: A

significant challenge for learners is identifying and fixing bugs in their network settings.

Issues such as the inability to find delivery routes with ping, switches lacking logging

76

functions for output port selection rules, and Trema's inability to locate execution

statements for setting rules can hinder learning progress. The system provides visual

clues to help learners narrow down executed statements that cause incorrect

communication, facilitating easier debugging and problem-solving.

Improved Learning Outcomes: By offering visual debugging aids, the system

enhances learners' ability to identify and resolve issues in their network configurations.

This leads to a deeper understanding of SDN principles and improves overall learning

outcomes.

Hands-On Experience with Advanced Technologies: Use of OpenFlow Protocol: The

system utilizes the OpenFlow protocol for communication between controllers and

switches, giving learners hands-on experience with a key component of SDN. This

practical exposure helps learners become familiar with advanced networking

technologies and prepares them for future careers in the field.

Building Real-World Skills: Engaging with SDN exercises and troubleshooting real

network issues allows learners to build valuable skills that are directly applicable in the

networking industry. This experience can make them more competitive in the job market

and better equipped to handle complex networking tasks.

The advantages of implementing this system using SDN include fostering

research and innovation in academic settings, enhancing e-Learning opportunities,

providing effective debugging and problem-solving tools, and offering hands-on

experience with advanced networking technologies. These benefits collectively

contribute to a more effective and comprehensive learning experience for students and

researchers in the field of networking.

7.2 Limitations of the System

The limitations of the system using SDN include the complexity faced by novice

learners, challenges associated with debugging, partial effectiveness of visual aids,

technical and resource constraints, scalability issues, and the potential gap between

educational exercises and real-world application. Addressing these limitations is

essential to enhance the system's educational value and practical relevance.

77

7.3 Future Work

In this proposed system, there are four main parts; firstly, mentioned the flow of

the exercise using in the proposed system is mentioned, secondly, the system overview

is described and the description of the logging code was inserted and finally collect raw

data and show them in sequence diagram to help learners in visual way of data

collection. A function is classified to develop for estimating routes in data planes from

capture packets. Then that function will help students to detect incorrect communication

routes in their network. The system performance and effectiveness for students’

debugging will also be evaluated. And, it also plans to develop functions in order to

analyze network traffic for security.

78

AUTHOR’S PUBLICATIONS

[p1] Hlwam Maint Htet, Khin Than Mya, “A Transparent Tax Data Access

Control System Based on Blockchain” 17th International Conference on

Computer Applications (ICCA 2019)”, pages 107-111), Yangon, Myanmar

on February 27-28, 2019.

[p2] Hlwam Maint Htet, “DEPENDENCY ANALYSIS SYSTEM TO NARROW

DOWN MISSETTINGS IN SDN CONSTRUCTION EXERCISES USING

TREMA”, Indian Journal of Computer Science and Engineering, VOLUME

14 ISSUE 3 May-June 2024, (pp.358-363).

[p3] Hlwam Maint Htet, Amy Tun, “TREMA BASED DEPENDENCY

ANALYSIS SYSTEM FOR LEARNERS IN BUILDING SDN NETWORK

CONSTRUCTION EXERCISES”, Indian Journal of Computer Science and

Engineering, VOLUME 14 ISSUE 3 May-June 2024, (pp.364-369).

79

BIBLIOGRAPHY

[1] A. Tootoonchian and Y. Ganjali, “Hyperflow: A Distributed Control Plane for

Openflow,” In the Proceedings of the Internet Network Management Conference

on Research on Enterprise Networking (Vol. 3), April 2010.

[2] Antonakakis, M., et al. (2014). GNS3 Network Simulator. *Software Review

[3] Berde, P., Gerola, M., Hart, J. K., Higuchi, Y., Kobayashi, M., Lantz, B., & Snow,

W. (2014). "ONOS: Towards an open, distributed SDN OS." Proceedings of the

third workshop on Hot topics in software defined networking, 1-6.

[4] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., ... &

Walker, D. (2014). "P4: Programming protocol-independent packet processors."

ACM SIGCOMM Computer Communication Review, 44(3), 87-95.

[5] Cardenas, R., & Perkins, S., & Pfleeger, C. (2010). Virtual Laboratories for

Computer Security Education. *Proceedings of the 2010 ACM Conference on

Computer and Communications Security

[6] Cisco. (n.d.). *Packet Tracer*. Retrieved from [Cisco Packet

Tracer](https://www.netacad.com/courses/packet-tracer).

[7] Curtis, A. R., Mogul, J. C., Tourrilhes, J, Yalagandula, P., Sharma, P., & Banerjee,

S. (2011). "DevoFlow: Scaling flow management for high-performance networks."

ACM SIGCOMM Computer Communication Review, 41(4), 254-265.

[8] Fares, M. A., Radhakrishnan, S., Raghavan, B., Huang, N., & Vahdat, A. (2010).

"Hedera: Dynamic Flow Scheduling for Data Center Networks." Proceedings of

the 7th USENIX Symposium on Networked Systems Design and Implementation

(NSDI).

[9] Forte, G., & Mongiello, M. (2009). "An Educational Testbed for Teaching

Networking Based on Netkit." Journal of Educational Technology & Society,

12(3), 152-162.

[10] G. Liang and W. Li, “A Novel Industrial Control Architecture Based on Software

Defined Network,” Measurement and Control 51, no. 7-8 (2018): 360-367.

[11] Handigol, N., Heller, B., Jeyakumar, V, Lantz, B., & McKeown, N. (2012).

Reproducible Network Experiments using Container-Based Emulation.

*Proceedings of the 8th International Conference on Emerging Networking

Experiments and Technologies (CoNEXT '12)

80

[12] HIDEyuki Shimonishi, Yasuhito Takamiya, Yasunobu Chiba, Kazushi Sugyo,

Youichi Hatano, Kentaro Sonoda, Kazuya Suzuki, Daisuke Kotani, and Ippei

Akiyoshi, “Programmable Network Using OpenFlow for Network Researches and

Experiments”, ICMU 2012.

[13] Hongyi Zeng, Peyman Kazemian, George Varghese§, Nick McKeown, “Automatic

Test Packet Generation”, IEEE/ACM TRANSACTIONS ON NETWORKING,

VOL. 22, 2014.

[14] https://www.wikipedia.org/

[15] https://www.wireshark.org/

[16] Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V. (2015). "Mobile Edge

Computing—A Key Technology Towards 5G." ETSI White Paper, 11, 1-16.

[17] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A Roadmap for Traffic

Engineering in SDN-OpenFlow Networks,” Computer Networks, 71, pp.1-30,

October 2014.

[18] ip-netns(8) - Linux manual page: http://man7.org/linux/man- pages/man8/ip-

netns.8.html,

[19] Jain, R., & Paul, S. (2013). "Network virtualization and software-defined

networking for cloud computing: a survey." IEEE Communications Magazine,

51(11), 24-31.

[20] Jarraya, Y., Madi, T., & Debbabi, M. (2014). "A Survey and A Layered Taxonomy

of Software-Defined Networking." IEEE Communications Surveys & Tutorials,

16(4), 1955-1980.

[21] Jarschel, M., Oechsner, S., Schlosser, D., Pries, R., Goll, S., & Tran-Gia, P. (2011).

"Modeling and Performance Evaluation of An Openflow Architecture."

Proceedings of the 23rd International Teletraffic Congress, 1-7.

[22] Jones, A., & Wang, L. (2018). Intelligent Tutoring Systems for Network

Education: A Review. IEEE Transactions on Learning Technologies, 14(2), 87-99

[23] Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S.,

& Uhlig, S. (2015). "Software-Defined Networking: A Comprehensive Survey."

Proceedings of the IEEE, 103(1), 14-76.

https://www.wireshark.org/
http://man7.org/linux/man-
http://man7.org/linux/man-

81

[24] Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky,

S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey.

Proceedings of the IEEE, 103(1), 14-76.

[25] Lantz, B., Heller, B., & McKeown, N. (2010). "A Network in a Laptop: Rapid

Prototyping for Software-Defined Networks." *Proceedings of the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks (HotNets '10).

[26] Lantz, B., Heller, S., & McKeown, N. (2010). A Network in a Laptop: Rapid

Prototyping for Software-Defined Networks. *Proceedings of the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks (HotNets '10

[27] M. A. Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, “Hedera:

Dynamic Flow Scheduling for Data Center Networks,” In the Proceedings of

Networked Systems Design and Implementation Symposium, vol. 10, April 2010.

[28] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,

“Modeling and Performance Evaluation of An Openflow Architecture,” In the

Proceedings of 23rd International Tele Traffic Congr., pp. 1–7, September 2011.

[29] Martin, F., et al. (2018). Enhancing Network Education with GNS3. *Journal of

Network and Systems Management

[30] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,

J., ... & Turner, J. (2008). "OpenFlow: Enabling innovation in campus networks."

ACM SIGCOMM Computer Communication Review, 38(2), 69-74.

[31] Medved, J., Varga, R., Tkacik, A., & Gray, K. (2014). OpenDaylight: Towards a

model-driven SDN controller architecture. Proceedings of the 2014 IEEE 15th

International Symposium on World of Wireless, Mobile and Multimedia Networks

(WoWMoM), 1-6.

[32] Mongiello, M., & Forte, G. (2013). The Netkit Network Emulation System:

Overview and Operational Details. *Technical Report*, University of Bari

[33] Monsanto, C., Reich, J., Foster, N., Rexford, J., & Walker, D. (2013). "Composing

software-defined networks." *NSDI*, 13, 1-14.

[34] Netkit. (n.d.). Netkit: Network Emulation Toolkit*. Retrieved from [Netkit official

website] (http://www.netkit.org).

[35] Nunes, B. A. A., Mendonca, M., Nguyen, X. N., Obraczka, K., & Turletti, T.

(2014). "A Survey of Software-Defined Networking: Past, Present, and Future of

82

Programmable Networks." IEEE Communications Surveys & Tutorials, 16(3),

1617-1634.

[36] Open Networking Foundation, “Software-Defined Networking: The New Norm

for Networks,” ONF White Paper 2, pp : 2-6, 2012.

[37] Open vSwitch: https://www.openvswitch.org/,

[38] OpenFlow Switch Specification Version 1.5.1 (Protocol version 0x06), Open

Networking Foundation, March 2015, [Online] Available:

https://www.opennetworking.org/wp-content/uploads/2014/10/ openflow-switch-

v1.5.1.pdf

[39] pages/man4/veth.4.html,

[40] Phemius, K., Bouet, M., & Leguay, J. (2014). "DISCO: Distributed multi-domain

SDN controllers." 2014 IEEE Network Operations and Management Symposium

(NOMS), 1-4.

[41] Phemius, K., Bouet, M., & Leguay, J. (2014). "DISCO: Distributed multi-domain

SDN controllers." 2014 IEEE Network Operations and Management Symposium

(NOMS), 1-4.

[42] PlantUML: https://plantuml.com/

[43] R. Jmal and L. C. Fourati, “Implementing Shortest Path Routing Mechanism Using

Openflow POX Controller,” In the Proceedings of IEEE International Symposium

on Networks, Computers and Communications, pp. 1-6, June 2014.

[44] Ricciato, F., Mongiello, M., & Forte, G. (2008). "Netkit: Easy Emulation of

Complex Networks on Inexpensive Hardware." *Proceedings of the 2008 ACM

Conference on SIGCOMM.

[45] Smith, T., & Brown, H. (2009). Peer Learning in Network Education: Benefits and

Challenges. *Computers & Education*, 130, 76-89.

[46] Stalling, W. (2013). "Software-Defined Networks and OpenFlow." The Internet

Protocol Journal, 16(1), 2-18.

[47] Takashi Yokoyama, Hisayoshi Kunimune, Masaaki Niimura, Shinshu

UniversityJapan, “Determining Learning Status in SDN Construction

Exercises”,E-Learn 2016 - Washington, DC, United States, November 14-16,

2016.

https://www.opennetworking.org/wp-content/uploads/2014/10/%20openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/%20openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/%20openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/%20openflow-switch-v1.5.1.pdf
https://plantuml.com/

83

[48] Toshio Tonouchi Satoshi Yamazaki , “A fast method of verifying network routing

with back-trace header space analysis”, 2015 IEEE.

[49] “Trema: A Brief Introduction and Tutorial”, Shyhji Ishii, APAN 32nd Future

Internet Testbed Workshop, 2011.

[50] A Trosky B. Callo Arias · Pieter van der Spek ·Paris Avgeriou, “A practice-driven

systematic review of dependency analysis solutions”, Empir Software Eng (2011)

16:544–586.

[51] veth(4) - Linux manual page: http://man7.org/linux/man-

[52] W. Stalling, “Software-Defined Networks and OpenFlow,” The Internet Protocol

Journal, Volume 16, No. 1, March 2013.

[53] Wang, L., & Jones, A. (2021). Automated Feedback in Higher Education: Benefits

and Challenges. *Computers & Education*, 130, 76-89.

[54] Y. Jarraya, T. Madi, M. Debbabi, “A Survey and A Layered Taxonomy of

Software-Defined Networking,” IEEE Communications Surveys & Tutorials,

16(4), April 2014.

[55] Yeganeh, S. H., Tootoonchian, A., & Ganjali, Y. (2013). "On scalability of

software-defined networking." *IEEE Communications Magazine*, 51(2), 136-

141.

[56] Yeganeh, S. H., Tootoonchian, A., & Ganjali, Y. (2013). "On scalability of

software-defined networking." IEEE Communications Magazine, 51(2), 136-141.

[57] Yuichiro Tateiwa, Akifumi Asano, Yonghwan Kim, Yoshiaki Katayama, and

Masaaki Niimura Nagoya Institute of Technology, Shinshu University, “Proposal

of an event visualization system for debugging in software-defined networking

exercises using Trema”.

[58] Yuichiro Tateiwa, Nagoya University, Japan, “A System for Generating Hints on

Network Construction Exercises for Beginners”, ICCE 2016 IEEE.

[59] Hlwam Maint Htet, “DEPENDENCY ANALYSIS SYSTEM TO NARROW

DOWN MISSETTINGS IN SDN CONSTRUCTION EXERCISES USING

TREMA”, Indian Journal of Computer Science and Engineering, VOLUME 14

ISSUE 3 May-June 2024, (pp.358-363).

[60] Hlwam Maint Htet, Amy Tun, “TREMA BASED DEPENDENCY ANALYSIS

SYSTEM FOR LEARNERS IN BUILDING SDN NETWORK

http://man7.org/linux/man-

84

CONSTRUCTION EXERCISES”, Indian Journal of Computer Science and

Engineering, VOLUME 14 ISSUE 3 May-June 2024, (pp.364-369

85

List of Acronyms

SDN Software Defined Networking

vHost Virtual Host

vSwitch Virtual Switch

FlowMod Flow Modification

ONF Open Networking Foundation

OF Open Flow

OVS Open Virtual Switch

RPC Remote Procedure Call

QoS Quality of Service

NFV Network Function Virtualization

TCAM Ternary Content-Addressable Memory

DP Data Plane

CP Control Plane

SI Statement Instance

HI Handler Instance

FE Flow Entries

FI Forwarding Instance

C2D Control Plane to Data Plane

D2C Data Plane to Control Plane

PC Packet Chain

FlowMod Flow Modification

